Цапковое соединение это: Что такое цапковая арматура | ООО “МК НХТС”

строение и сферы применения / ООО «МК НХТС»

13 августа 2019

Цапковая и запорная арматура: строение и сферы применения

Арматура — это комплект дополнительных деталей или устройств, которые обеспечивают работу машин, оборудования или конструкций. Отдельно можно выделить трубопроводную арматуру и железобетонную арматуру, благодаря которой усиливается бетонная конструкция зданий. Основные виды арматуры, которая используется при строительстве трубопроводов, — цапковая и запорная арматура. 

Цапковая арматура

Цапковая арматура для трубопроводов отличается внешне наличием присоединительных патрубков с наружной резьбой и наличием буртика. 

Арматура с цапковым соединением используется для работы на участках с высоким давлением. Части трубопровода с цапковой арматурой получаются герметичными. 

Благодаря резьбе в местах присоединения арматуры к другим деталям, у цапковой арматуры небольшое количество присоединительных элементов. Поэтому цапковая арматура легкая по весу. Другая ее особенность — уменьшение толщины стенки трубы в месте резьбового соединения. Такой тип соединения малопригоден для труб с тонкими стенками. 

Кроме трубопроводов цапковая арматура используется для специального оборудования и приборов.

Применение такой арматуры рекомендовано в работах с технологическими трубопроводами. Например, для транспортировки материалов нейтральной и негорючей природы используется арматура из чугуна с диаметром до 50 мм. Для транспортировки любых сред можно применять стальную арматуру с диаметром до 40 мм.  

Соединение цапкового типа применяется в арматуре с невысокими показателями давления и с небольшими размерами. Именно такой вид соединения более предпочтителен во время ввинчивания в корпуса аппаратов, сосудов, различных типов установок.

В качестве распространенного примера соединения цапкового типа можно привести систему подсоединения пожарного рукава к пожарному гидранту.

Особенности строения цапковой арматуры 

В цапковой арматуре нарезка находится на наружной стороне на присоединительных концах. Арматура с таким типом соединения предназначена для использования в системах с давлением в пределах 10 МПа при показателях Dy до 200 мм.

Цапковая арматура производится с гайками накидного вида или с ниппелями для отбортовки труб, а также для приваривания к ним. У цапковой арматуры может быть муфтовый присоединительный конец и цапковый.

Герметичность цапкового соединения

Герметичность при соединении цапкового типа обеспечивается за счет дополнительного применения специальных прокладок и смазок. При затягивании прокладка сжимается в месте соединения и герметизирует стык. Дополнительно могут применяться специальные смазки.

Все виды резьбовых соединений отличаются такими преимуществами, как использование минимума присоединительных элементов, небольшой показатель металлоемкости, высокая технологичность, небольшой вес.

Качественно выполненные монтажные работы требуют полного совпадения резьбы (как внутренней, так и наружной), а также применения специальных уплотняющих материалов. 

| Читайте также: Трубопроводная арматура: затворы и заслонки

Запорная арматура 

Без запорной арматуры не строят ни одного современного трубопровода. Запорная арматура применяется для обустройства систем водоснабжения, канализаций и многих других коммуникаций. Долгое время запорная арматура была единственным видом арматуры. Затем появились регулирующая, обратная и другие виды трубопроводной арматуры.

Главное требование к запорной арматуре – это высокая надежность. На этапе проектирования трубопроводных систем крайне важно правильно определить нагрузки, которые будут приходиться на запорную арматуру, и подобрать соответствующие элементы.

Также запорная арматура должна обладать высокой герметичностью. Все элементы механизма должны быть плотно подогнаны, чтобы не было пропусков рабочей среды. Если герметичность будет утрачена, то запорную арматуру заменяют. Каждый узел и деталь механизма должны работать так, чтобы формировать соединения, через которые не может проникать транспортируемая среда в любом направлении.

Повышенные требования к герметичности запорной арматуры приходится обеспечивать в достаточно сложных условиях. Воздействие рабочих нагрузок разного характера и трение приводят к постепенному износу материалов. На этапе проведения контрольных испытаний запорной арматуры в первую очередь необходимо проверить ее герметичность и качество исполнения затворного механизма. Продукция имеет свои технические характеристики, в соответствии с которыми подбирается для последующей эксплуатации.

Конструкция запорной арматуры

Запорная арматура используется для перекрытия потока жидкости или газообразного вещества, в промышленности для установки систем коммуникаций промышленных и жилых зданий. Запорная арматура работает в циклическом ритме отпирания и запирания рабочей полости трубопровода, а также в статическом – когда она большую часть времени открыта или закрыта.

Конструкция запорной арматуры идеально продумана, когда необходимо обеспечить два положения рабочего механизма. Поэтому нередко средняя позиция запорного элемента вовсе не предусматривается. 

К запорной арматуре относятся шаровые краны, задвижки и мембранные клапаны. Краны шарового типа можно встретить в разных областях техники. Например, они используются для организации систем трубопроводов относительно небольшого диаметра, а также при монтаже измерительных и контрольных приборов.

Задвижки диаметром от пятидесяти до двух тысяч миллиметров используются на магистральных и технологических трубопроводах. Мембранные клапаны эффективны, когда нужно обеспечить мгновенное перекрытие потока, а также требуется повышенная цикличность работы механизма.

Сферы применения запорной арматуры

  • Запорная арматура для трубопроводов используется в ЖКХ при строительстве отопительных систем и систем водоснабжения, а также газовых коммуникаций.

  • Запорная арматура используется в атомной энергетике, нефтеперерабатывающей промышленности.

  • Также запорная арматура используется в авиации, космонавтике и при создании вакуумной техники. 

Запорная арматура: краны

Краны относятся к запорной арматуре, они применяются для управления силой потока рабочей среды. Также с помощью крана можно снижать подачу потока или отключать его совсем.

В тех случаях, когда трубопровод проводит газ, пар или воду, на нем необходимо устанавливать краны. Краны компактные и имеют низкие показатели сопротивления. Пробковый и шаровой виды являются наиболее распространенными. Для герметизации применяют два способа: сальниковый и натяжной.

Устройство крана

Все устройства схожи по своей конструкции. У них есть корпус закрытого типа, который защищен от внешних воздействий. Внутри корпуса находится узел арматуры. Внутри корпуса находятся два конца, благодаря которым кран крепится к трубопроводу.

Основной задачей узла считается разделение системы на несколько частей. С помощью уплотнительных поверхностей орган для запора и седло соприкасаются друг с другом.

Крепление кранов обеспечивается с помощью муфты или сварки. Муфтовые краны из чугуна устанавливают на трубопроводах, которые используются для транспортировки газа. Чтобы кран был надежно закреплен, используют резьбовую муфту. Они могут эксплуатироваться в среде до 50 градусов по Цельсию. Уровень давления не может превышать 0,1 МПа.

Сальниковые муфтовые краны 

Они способны выдержать повышенную нагрузку. Их сфера применения – транспортировка газа и воды. Детали таких конструкций изготовлены из чугуна. Резину или пеньку используют для дополнительной набивки. Максимальная температура жидкости внутри крана не может превышать 100 градусов, а давление 1 МПа.

Шаровые краны

Они обладают самыми компактными размерами. Их используют для больших трубопроводов, поскольку они обладают высокой надежностью. Сам кран отливают из чугуна, дополнительно устанавливаются кольца для уплотнения, которые производят из фторопласта-4.

Фланцевые краны из стали 

Они присоединяют к трубопроводу с помощью фланцев. Дополнительная установка червячного редуктора требуется в тех случаях, когда кран обладает большими габаритами.

Иногда в конструкции крана может использоваться маховик. Он служит для регулирования потока. Управление такими кранами выполняется с помощью маховика или дистанционно. Важно отметить, что для такого типа крана допускается только вертикальная установка.

| Читайте также: Проектирование и монтаж трубопроводов

Запорная арматура: клапаны

Клапан считается самой популярной запорной арматурой. Клапаны применяют в различных инженерных системах. Они необходимы для эксплуатации в специальных условиях и подходят для общего применения. Клапан может регулировать интенсивность потока и закрывать или открывать его при необходимости.

Устройство клапана

Клапан представляет собой деталь с затвором. Сам затвор может иметь форму конуса или плоскую форму. Вентиль – один из видов клапанов. У него движение затвора происходит, благодаря резьбе.

Запорные вентили получили высокую популярность. Их используют для установки на трубопроводы определенного типа. Ручная регулировка проводится с использованием маховика, дистанционная – через электропривод.

Кольца, которые могут быть произведены из различных материалов, обеспечивают прочность уплотнения. Чтобы соединить клапан с трубой, необходима установка резьбовой муфты. Заполняют клапан асбестовой набивкой. В ее состав входят нити из асбеста, которые пропитываются антифрикционно.

Если рабочая температура жидкости не более 50 градусов, возможна установка муфтового запорного вентиля. Установка выполняется в любом положении. Сам вентиль отливают из чугуна, а для изготовления уплотнительных колец используют кожу, для прокладок – паронит.

Запорная архитектура с электрическим приводом может использоваться в трубопроводе, где уровень температуры жидкости составляет 45-50 градусов. Обязательно устанавливать его таким образом, чтобы он направлялся наверх. Корпус отливают из чугуна. Для изготовления золотника и крышки применяют сталь. Вентилем можно управлять дистанционно или вручную.

Запорная арматура: заслонки

Заслонки используется в разных трубах, сечение которых не превышает 2200 мм.  Отличительная особенность заслонок — простой монтаж, маленький вес, небольшой размер. 

Современные заслонки регулируются или вручную, или с помощью электропривода. Электроприводные заслонки применяются в системах с сечением трубы от 300 до 1600 мм. и с давлением рабочей среды 1 МПа. 

Для трубопроводов, которые осуществляют транспортировку воды, используются бесфланцевые заслонки с резиновым уплотнителем.

 

Заслонки крепятся вручную, с помощью электропривода или привариваются. 

Запорная арматура: задвижки

Данная арматура используется в магистральных трубопроводах. Конструкция задвижки содержит специальный элемент — шпиндель.  

Шпиндели могут быть выдвижными и невыдвижными. Изготавливаются шпиндели из чугуна и других металлов. Их монтируют на трубопровод с помощью фланцев.  

Шпиндели применяются для трубопроводов, транспортирующих топливный газ, нефть, масло, коксовый газ. 

Применение задвижек 

Задвижки для трубопроводов, переносящих топливный газ, должны выдерживать температуру рабочей среды до 100 градусов по Цельсию, их регулируют только вручную. Форма таких задвижек клиновидная двухдисковая с невыдвижным шпинделем. 

На трубопроводы, переносящие коксовый газ, устанавливаются задвижки с выдвижным шпинделем. Регулируются они с помощью электропривода. 

Для трубопроводов, переносящих нефть и масло, используются стальные задвижки с выдвижным шпинделем.  

| Читайте также: Трубопроводная арматура: сферы использования и виды

Изображения: Pixabay

 

Цапковое соединение – Большая Энциклопедия Нефти и Газа, статья, страница 1

Cтраница 1

Цапковое соединение с наружной резьбой применяют, когда арматура ввинчивается в тело какого-либо аппарата, прибора или машины, в основном для мелкой арматуры высокого давления.  [1]

Цапковые соединения применяются для КИП и лабораторий.  [2]

Цапковое соединение, имеющее наружную резьбу, используют для ввинчивания арматуры непосредственно в тело сосудов, аппаратов, приборов и машин.  [3]

Цапковые соединения

применяются для КИП и лабораторий.  [4]

Цапковое соединение применяется в случаях, когда арматура должна ввертываться одним концом в тело резервуара, аппарата или котла. В табл. 5 приведены условные проходы и допустимые условные давления в зависимости от материала корпуса и резьбы.  [5]

Что представляет собой цапковое соединение.  [6]

Для мелкой арматуры высоких давлений, которую обычно изготовляют из поковок или проката, чаще всего применяют цапковое соединение с наружной резьбой под накидную гайку.  [7]

По виду соединения с трубопроводами арматура делится: на фланцевую; резьбовую – с внутренней ( муфтовое соединение) и наружной ( цапковое соединение) резьбой; сварную – с концами, привариваемыми к трубопроводам.  [8]

К разъемным соединениям относятся фланцевые, цапковые и муфтовые1, Распространенным способом присоединения арматуры является фланцевое; Фланцевые соединения, рассчитанные на условное давление 0 1 – 20 МПа, стандартизованы.

Цапковое соединение, имеющее наружную резьбу, применяют для ввинчивания арматуры с малым DJ непосредственно в тело сосудов, аппаратов, приборов и машин.  [9]

К разъемным соединениям относятся фланцевые, цапковые и муфтовые1, Распространенным способом присоединения арматуры является фланцевое; Фланцевые соединения, рассчитанные на условное давление 0 1 – 20 МПа, стандартизованы. Цапковое соединение, имеющее наружную резьбу, применяют для ввинчивания арматуры с малым DJ непосредственно в тело сосудов, аппаратов, приборов и машин.  [10]

Основные типы фланцевых соединений.  [11]

В муфтовом резьбовом соединении герметичность достигается применением мелкой резьбы соответствующей длины и поперечного сечения, а также специальных смазок, не растворяющихся в перекачиваемом продукте и обладающих большой вязкостью при рабочих условиях. В цапковом соединении герметичность обеспечивается металлической прокладкой, которая зажимается накидной гайкой между специально обработанными поверхностями соединяемых труб, а также специальными смазками.  [12]

Для мелкой арматуры высоких давлений, которую обычно изготовляют из поковок или проката, чаще всего п-рименяют цапковое соединение с наружной резьбой под накидную гайку.  [13]

Для мелкой арматуры высоких давлений, которую обычно изготовляют из поковок или проката, чаще всего применяют цапковое соединение с наружной резьбой под накидную гайку.

 [14]

Технический осмотр арматуры предназначен для определения состояния и пригодности ее к дальнейшей эксплуатации. При техническом осмотре выполняют внешний осмотр и мелкий ремонт арматуры в рабочем состоянии. В первую очередь осматривают и определяют качество присоединительных фланцев, резьбовых муфт и цапковых соединений. При этом обращают внимание на отсутствие утечек газа, наличие полного комплекта болтов, гаек и шпилек, целость маховика и надежность его крепления, состояние окраски и смазки поверхностей. Затем проверяют подвижность ходовой части арматуры, открывая затвор на полную величину. После двукратного опускания и поднимания затвора вентилей и задвижек проверяют на герметичность сальник. В случае тяжелого хода шпинделя или наличия утечки газа производят перенабивку сальника, для чего снижают давление в трубопроводе, поднимают вверх до отказа затвор с целью перекрытия сальникового пространства. После отключения сальниковой полости осторожно снимают крышку и втулку сальника и добавляют или заменяют набивки сальника. Затем набивку сальника затягивают вновь, проверяют действие привода и определяют герметичность сальника обмы-ливанием. При техническом осмотре окрашивают наружные поверхности арматуры, а резьбы смазывают защитной смазкой, затем восстанавливают номерные знаки и указатели направления открывания.  [15]

Страницы:      1    2

поддержка и типы подключения

поддержка и типы подключения

Типы опор и соединений


Структурные системы передают свою нагрузку через ряд элементов наземь. Это достигается путем проектирования соединения элементов. на их пересечениях. Каждое соединение разработано таким образом, что оно может передавать, или поддержка, определенный тип нагрузки или условия загрузки. Для того, чтобы быть способный анализировать структуру, прежде всего необходимо иметь четкое представление о силы, которым можно сопротивляться и которые можно передать на каждом уровне поддержки на протяжении всей структура. Фактическое поведение поддержки или соединения может быть довольно сложный. Настолько, что если учесть все различные условия, проектирование каждой опоры было бы ужасно длительным процессом. И все еще, условия на каждой из опор сильно влияют на поведение элементы, из которых состоит каждая структурная система.

Системы из конструкционной стали имеют сварные или болтовые соединения. сборный железобетонные системы могут быть механически связаны разными способами, в то время как монолитные системы обычно имеют монолитные соединения. Древесина системы соединяются гвоздями, болтами, клеем или специальными соединителями. Независимо от материала, соединение должно быть спроектировано таким образом, чтобы жесткость. Жесткие, жесткие или неподвижные соединения лежат на одном крайнем пределе этот спектр и шарнирные или штифтовые соединения связывают друг друга. Жесткий соединение поддерживает относительный угол между соединенными элементами, в то время как шарнирное соединение допускает относительное вращение. Есть и связи в стальных и железобетонных конструктивных системах, в которых частичная жесткость является желаемой конструктивной особенностью.


ТИПЫ ОПОР
Три общих типа соединений, которые соединяют встроенную конструкцию с ее фундамент; ролик , штифт и фиксированный . Четвертый тип, редко встречающийся в строительных конструкциях, известен как простой поддерживать. Это часто идеализируется как поверхность без трения). Все эти опоры могут располагаться в любом месте вдоль конструктивного элемента. Они найдены на концах, в середине или в любых других промежуточных точках. Тип соединения опор определяет тип нагрузки, которую может выдержать опора. Тип опоры также оказывает большое влияние на несущую способность конструкции. каждого элемента, а значит и системы.

На схеме показаны различные способы использования каждого типа поддержки. представлен. Единый унифицированный графический метод для представления каждого из этих типов поддержки не существует. Скорее всего, одно из этих представлений будет похоже на местную обычную практику. Однако каким бы ни было представление, силы, которым может противостоять тип, действительно стандартизированы.


РЕАКЦИИ
Обычно необходимо идеализировать поведение опоры, чтобы для облегчения анализа. Принят подход, аналогичный безмассовому, Шкив без трения в домашней задаче по физике. Несмотря на то, что эти шкивы не существуют, они полезны для изучения определенных вопросов. Таким образом, трением и массой часто пренебрегают при рассмотрении поведения связи или поддержки. Важно понимать, что все графические представления о подставках — это идеализации реальной физической связи. Следует приложить усилия, чтобы найти и сравнить реальность с реальностью. и/или числовая модель. Часто очень легко забыть, что предполагаемая идеализация может быть совершенно иной. чем реальность!

Диаграмма справа показывает силы и/или моменты, которые «доступен» или активен для каждого типа поддержки. Это ожидаемо что эти репрезентативные силы и моменты, если их правильно рассчитать, будут привести к равновесию в каждом структурном элементе.


ОПОРНЫЕ РОЛИКИ
Роликовые опоры могут свободно вращаться и перемещаться вдоль поверхности при на котором лежит ролик. Поверхность может быть горизонтальной, вертикальной или наклонной под любым углом. Результирующая сила реакции всегда является единственной силой, которая перпендикулярно поверхности и удалено от нее. Роликовые опоры обычно расположен на одном конце длинных мостов. Это позволяет конструкции моста расширяться и сжиматься при изменении температуры. Силы расширения могут ломать опоры у берегов, если конструкция моста была «заперта» на месте. Роликовые опоры также могут иметь форму резиновых подшипников, коромысла, или набор шестерен, которые предназначены для обеспечения ограниченного количества боковых движение.

Роликовая опора не может противостоять боковым силам. Представить конструкция (возможно, человек) на роликовых коньках. Остался бы на месте до тех пор, пока структура должна поддерживать только себя и, возможно, совершенно вертикальная нагрузка. Как только боковая нагрузка любого рода давит на конструкцию он откатится в ответ на силу. Боковая нагрузка может быть толчком, порыв ветра или землетрясение. Поскольку большинство конструкций подвергается боковых нагрузок следует, что здание должно иметь другие виды опор в дополнение к роликовым опорам.


ОПОРЫ НА ШТИФТАХ
Опоры на штифтах могут противостоять как вертикальным, так и горизонтальным силам, но не момент. Они позволят элементу конструкции вращаться, но не переводить в любом направлении. Предполагается, что многие соединения являются закрепленными соединениями. даже если они могут немного сопротивляться моменту в реальности. это также верно, что штифтовое соединение может допускать вращение только в одном направлении; обеспечение сопротивления вращению в любом другом направлении. Колено может быть идеализирован как соединение, допускающее вращение только в одном направлении и обеспечивает сопротивление боковому движению. Конструкция штифтового соединения хороший пример идеализации действительности. Одно закрепленное соединение обычно недостаточно, чтобы сделать конструкцию устойчивой. Другая поддержка должна быть предусмотрен в какой-то момент, чтобы предотвратить вращение конструкции. Представительство шарнирной опоры включают в себя как горизонтальные, так и вертикальные силы.
ШТЫРЬЕВЫЕ СОЕДИНЕНИЯ
В отличие от роликовых опор конструктор часто может использовать штифтовые соединения в структурной системе. Это типичная связь, обнаруженная почти в все фермы. Они могут быть артикулированы или скрыты от глаз; они могут быть очень выразительный или тонкий.

Есть иллюстрация одного из элементов Олимпийского стадиона. в Мюнхене ниже. Это соединитель из литой стали, который действует как узел для решения ряд растягивающих усилий. При ближайшем рассмотрении можно заметить, что соединение выполнено из нескольких частей. Каждый кабель подключается к узел концевой «скобой», которая соединена с большим штифтом. Это буквально «закрепленное соединение». Из-за природы геометрии кронштейна и штифта, определенное количество вращательных движений будет разрешено вокруг оси каждого штифта.

Далее следует одно из соединений пирамиды Луавра И.М. Пейя ниже. Обратите внимание, как он также использовал закрепленные соединения.

Закрепленные соединения встречаются ежедневно. Каждый раз, когда распашная дверь открытое штифтовое соединение позволило вращаться вокруг определенной оси; и помешал переводу на два. Дверная петля предотвращает вертикальное и горизонтальное перевод. На самом деле, если достаточный момент не создается для создания вращения дверь вообще не будет двигаться.

Вы когда-нибудь рассчитывали, сколько времени требуется, чтобы открыть конкретный дверь? Почему одну дверь легче открыть, чем другую?


ФИКСИРОВАННЫЕ ОПОРЫ
Неподвижные опоры могут выдерживать вертикальные и горизонтальные силы, а также момент. Поскольку они ограничивают как вращение, так и перемещение, они также известны как жесткие опоры. Это означает, что конструкции требуется только одна фиксированная опора. чтобы быть стабильным. Все три уравнения равновесия могут быть удовлетворены. Флагшток, установленный на бетонном основании, является хорошим примером такой поддержки. Представление неподвижных опор всегда включает две силы (горизонтальную и вертикально) и момент.

ФИКСИРОВАННЫЕ СОЕДИНЕНИЯ
Фиксированные соединения очень распространены. Стальные конструкции многих размеров состоят элементов, сваренных между собой. Монолитная бетонная конструкция автоматически становится монолитным и становится серией жестких соединений при правильном размещении арматуры. Спрос на фиксированные соединения большее внимание во время строительства и часто являются источником строительных неудачи.

Пусть этот маленький стул проиллюстрирует, как два типа «фиксированных» соединения могут быть созданы. Один сварной, а другой состоит из два винта. Оба считаются фиксированными соединениями из-за того, что что оба они могут противостоять вертикальным и боковым нагрузкам, а также развивать сопротивление моменту. Таким образом, было обнаружено, что не все фиксированные соединения должны быть сварными или монолитными. Пусть петли в точках A и B рассмотреть более подробно.



ПРОСТЫЕ ОПОРЫ

Некоторые идеализируют простые опоры как поверхностные опоры без трения. Это правильно, поскольку результирующая реакция всегда является единственной. сила, направленная перпендикулярно поверхности и направленная от нее. Тем не менее, в этом тоже похожи на роликовые опоры. Они отличаются тем, что простой опора не может выдерживать боковые нагрузки любой величины. Созданная реальность часто зависит от гравитации и трения, чтобы создать минимальное количество трения устойчивость к умеренным боковым нагрузкам. Например, если положить доску через зазор, чтобы обеспечить перемычку, предполагается, что планка останется на своем месте. Он будет делать это до тех пор, пока ногой не ударит его или не сдвинет. В тот момент доска сдвинется, потому что простое соединение не может создать никакого сопротивления к латеральному лолу. Простая поддержка может быть найдена как тип поддержки для длинных мостов или пролетов крыш. Простые опоры часто встречаются в зонах частой сейсмической активности.


ПОСЛЕДСТВИЯ
Следующие видеоролики иллюстрируют значение типа поддержки условие поведения при изгибе и местонахождения максимального изгиба напряжения балки, опирающейся на ее концы.

Простые балки с петлями слева и роликами справа.

Простые балки с петлями слева и правильно.

Простые балки, закрепленные с обоих концов.


Вопросы к размышлению

хммм…..

 

Проблемы с домашним заданием

 

Дополнительные показания

уточняется


Copyright © 1995 Крис Х. Любкеман и Дональд Peting
Copyright © 1996, 1997, 1998, Крис Х. Любкеман.

Штыревые соединения – Проектирование стальных конструкций Вопросы и ответы

Этот набор вопросов и ответов с несколькими вариантами ответов (MCQ) по проектированию стальных конструкций посвящен «штыревым соединениям».

1. Что такое штыревые соединения?
a) элементы конструкции, соединенные болтами
b) элементы конструкции, соединенные цилиндрическими штифтами
c) элементы конструкции, соединенные болтами и штифтами
d) элементы конструкции, соединенные сваркой соединяются с помощью штифтов цилиндрической формы, соединение известно как штифтовое соединение. Он сопротивляется горизонтальному и вертикальному движению, но не моменту.

2. Штыревые соединения предоставляются, когда требуется _______.
a) Шарнирное соединение
b) Неподвижное соединение
c) Безвращательное соединение
d) Жесткое соединение горизонтальные и вертикальные перемещения нежелательны.

3. Штифты, используемые для соединения _________
а) не влияет на вторичные напряжения
б) увеличивает вторичные напряжения
c) уменьшить вторичные напряжения
d) удвоить вторичные напряжения
Посмотреть ответ

Ответ: c
Объяснение: Штифты, используемые для соединения, уменьшают вторичные напряжения. Он служит той же цели, что и стержень болта.

реклама

реклама

4. Силы, действующие на штифт, ______ силы на болт
а) меньше
б) равна
в) половина силы
г) больше
Посмотреть ответ

Ответ: г
Пояснение : Поскольку в соединении присутствует только один штифт, силы, действующие на штифт, больше, чем на болт.

5. В каком из следующих случаев штыревые соединения не используются?
a) ферменные мостовые балки
b) шарнирные арки
c) высотные здания
d) диагональное соединение связей
Просмотр Ответ

Ответ: c
Объяснение: Штифтовые соединения используются в следующих случаях: (i) ферменные мостовые балки, (ii ) шарнирные арки, (iii) соединение стяжек в резервуарах для воды, (iv) в качестве диагональных связей в балках и колоннах, (v) висячие мосты с цепными тросами.

6. Прочность на сдвиг штифта при разрешенном вращении определяется как
A) 0,5F YP A
B) 0,6F YP A
C) 0,7F YP A
D) 0,8F YP A
Просмотр. определяется как (i) 0,5f yp A, когда требуется вращение, (ii) 0,6f yp A, когда вращение не требуется, где f yp = расчетная прочность штифта, A = поперечное сечение площадь булавки.

7. Несущая способность штифта при недопустимом вращении определяется по
а) 0,8f YP DT
B) 0,6F YP DT
C) 0,7F YP DT
D) 1,5F YP DT
Ответ

Ответ: D 9001 ) 1,5f yp A, когда вращение не требуется, (ii) 0,8f yp dt, когда вращение не требуется, где f yp = расчетная прочность штифта.

реклама

8. Способность пальца к моменту, когда вращение не допускается, определяется как
a) 0.8f yp Z
b) 0.6f yp Z
c) 1.5f yp Z
d) 2.0f yp Z
Посмотреть Ответ

Ответ: c

Момент дано: c
Пояснение f yp Z, когда вращение не требуется, (ii) 1,0fypdt, когда вращение не требуется, где f yp = расчетная прочность штифта, Z = модуль упругости штифта.

9. Элементы, соединенные штифтовыми соединениями, разнесены на некоторое расстояние _____
а) для обеспечения трения
б) для головок болтов
c) для изгиба
d) для снятия если элементы построены, (iii) для облегчения покраски.

реклама

10. Расчет штифтовых соединений в основном регулируется
a) сдвигом
b) изгибом
c) изгибом
d) трением
Посмотреть ответ

Ответ: c
Объяснение: при соединении элементов возникают большие изгибающие моменты штыревые соединения разнесены на некоторое расстояние. Таким образом, диаметр штифта обычно определяется изгибом.

Sanfoundry Global Education & Learning Series – Проектирование стальных конструкций.

Для практики во всех областях проектирования стальных конструкций, здесь представлен полный набор из 1000+ вопросов и ответов с несколькими вариантами ответов .

Категории Проектирование стальных конструкций MCQ

реклама

реклама

Подпишитесь на наши информационные бюллетени (тематические).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *