Электрический бойлер с циркуляцией: Электрический бойлер с рециркуляцией горячей воды

Содержание

Электрический бойлер с рециркуляцией горячей воды

Давления воды в самом бойлере может быть недостаточным, для обеспечения дачи горячей водой. Для рециркуляции горячей воды через бойлер, необходимо правильно смонтировать систему ГВС c установкой циркуляционного насоса.

В больших дачных домах специалисты рекомендуют устанавливать систему горячего водоснабжения (ГВС) централизованного способа нагрева воды, через газовую и электрическую колонку (можно также использовать одноконтурный газовый котел). В таком случае, чтобы обеспечить необходимый запас горячей воды, в эту систему должен быть вмонтирован бойлер косвенного нагрева.

Объем бойлера рассчитывается с учетом всех проживающих в доме людей (для семьи из 4-х человек, достаточно будет бойлера на 100-150 л.). Вода в системе ГВС нагревается при помощи теплообменника, который подключен к источнику нагрева (котел, колонка).

Бойлер системы ГВС имеет несколько входов и выходов.

Особенность конструкции бойлеров косвенного нагрева состоит в том, что в него монтируется змеевик в виде спиралевидной трубки из металла, по которой проходит горячая вода с котла. За счет теплообмена между горячей водой в змеевике и холодной водой в бойлере, осуществляется нагрев жидкости внутри бойлера. Так создается предварительный запас горячей воды для нужд человека.

Вся система ГВС имеет замкнутый цикл работы. Если долгое время горячая вода не используется, она начинает остывать. Когда человек захочет воспользоваться горячей водой, он наверняка столкнется с проблемой первоначального отсутствия. При включении крана, система сама активируется и начинается обогрев воды. Но до того времени, когда она нагреется до нужной температуры может пройти несколько минут.

Чтобы можно было пользоваться горячей водой сразу после открытия крана, в систему монтируют циркуляционный насос, который обеспечивает рециркуляцию воды по контуру постоянно, не зависимо от того, пользуется ли человек горячей водой, или нет.

Бесперебойная рециркуляция воды через бойлер осуществляется при помощи установки дополнительного оборудования: расширительного бачка, обратного и предохранительного клапанов, спускного воздушного клапана.

Таким образом, рециркуляция горячей воды через бойлер, проходит при помощи циркуляционного насоса, теплообменника и дополнительного оборудования, которое монтируется в единую систему ГВС. В итоге человеку не придется ждать, пока вода нагреется, пропуская воду на протяжении некоторого времени.

Обвязка бойлера с рециркуляцией

Одним из самых важных и сложных процессов монтажа системы горячего водоснабжения является обвязка бойлера с рециркуляцией, но его вполне реально осуществить собственноручно.

Одним из самых экономичных и эффективных водонагревателей для дома и дачи, специалисты считают бойлер косвенного нагрева. В качестве источника нагрева воды может быть газ, электричество или теплообменник. Именно теплообменник обеспечивает экономичность применения системы ГВС с бойлером косвенного нагрева.

От правильно проведенной обвязки бойлера, зависит дальнейшее функционирование всей системы. Понятие обвязки можно определить, как особенность монтажа и подсоединения системы ГВС к источнику водонагрева.

При осуществлении монтажа бойлера и всей системы с рециркуляцией, нужно:

  • Установить точку рециркуляции. Она, как правило, расположена в центре нагревательной емкости;
  • Подвод холодной воды производится в нижнее отверстие бойлера;
  • Отвод горячей воды должен монтироваться в верхней части бойлера;
  • Труба теплоносителя подключается сверху, и проходит вниз (циркуляция воды теплообменника буде проходить по контуру, вход которого будет вверху бойлера, а выход – снизу).
  • К источнику энергии подвод труб должен осуществляться по правилам монтажа материалов, а подключаться при помощи переходников. Клапанов и кранов.

Следует знать, что эффективность системы рециркуляции ГВС зависит от системы отопления дома. Это способствует повышению коэффициента полезного действия косвенного водонагревателя (бойлера) на 35%.

Обвязку бойлера с рециркуляцией осуществляют стандартным набором материалов: краны, трубы ПВХ, переходники, арматурные изделия, насосы. Выбирать нужно только качественную сертифицированную продукцию из прочных материалов. Категорически не рекомендуется использование гофрированных шлангов и материала порошковой металлургии.

Схема рециркуляции бойлера

Рециркуляция воды в системе ГВС необходима для того, чтобы обеспечить горячей водой любую точку системы без дополнительного ее проливания. Для этого монтируется контур, по которому проходит вода из бойлера по всей системе, а затем возвращается назад в бойлер. Осуществляется рециркуляция при помощи небольшого насоса, который работает совсем бесшумно. Такая система способствует поддержке стабильной температуре горячей воды в любой точке дома.

Среди распространенных схем рециркуляции существуют несколько основных вариантов:

  • Монтаж трехходового или сервоприводного клапана. Применяют этот способ для настенных и напольных моделей бойлеров. К бойлеру подключается две трубы (два контура). Одни контур предназначен для отопления, другой – для горячей воды. Водонагреватель в этой системе выступает основным теплоносителем. При снижении температуры воды, применяется сервоприводный или трехходовой клапан, который начинает работать на подогрев воды. Отопление в это время перекрывается. После нагрева воды до нужной температуры, подогрев отопления возобновляется;
  • Монтаж двух насосов циркуляции в одной системе. При такой схеме, один из насосов предназначен для рециркуляции горячей воды по системе отопления, а иной – по контуру бойлера. Эта система первоначально обеспечивает нормальную температуру воды в бойлере, а потом уже в системе отопления. Особенностью такой схемы, является наличие термостата и переключателя режимов, который позволяет отключать, при необходимости, одну из систем;
  • Применение гидравлической стрелки. Применяется, если в доме существует более двух контуров (отопление, горячая вода, теплый пол). Эта схема направлена на обогрев воды, за счет которой проводится обогрев всех контуров. Эта система имеет существенный недостаток – при разборе воды. Теплоноситель может не справляться с обеспечением потребностей всех людей одновременно.

Выбор способа обогрева воды и отопления, а также способы ее рециркуляции через бойлер, должен осуществляться в соответствии с четкими расчетами всех потребителей и мощностью теплоносителя. Преимуществом среди основных схем обладают бойлера с трехходовыми или сервоприводными клапанами.

Видео об организации рециркуляции горячей воды

Компания «Термомир» предлагает широкий ассортимент косвенных и комбинированных бойлеров, подключаемых к различным типам отопительных котлов и имеющих дополнительную линию рециркуляции.

Такие водонагреватели представляют собой емкости достаточно большого литража с теплообменником внутри, обеспечивают нагрев воды в баке от теплоносителя, прогреваемого котлом отопления, обычно приобретаются и монтируются вместе с самим котлом. Комбинированные бойлеры дополнительно оснащены электрическим ТЭНом для работы в летний период при отключенном отоплении.

Вся система ГВС имеет замкнутый цикл работы. Если долгое время горячая вода не используется, она начинает остывать. Когда человек захочет воспользоваться горячей водой, он наверняка столкнется с проблемой первоначального отсутствия. При включении крана, система сама активируется и начинается обогрев воды. Но до того времени, когда она нагреется до нужной температуры может пройти несколько минут.
Чтобы можно было пользоваться горячей водой сразу после открытия крана, монтируется контур, по которому проходит вода из бойлера по всей системе, а затем возвращается назад в бойлер — для этого в бойлере предусмотрен отдельный циркуляционный вход. Осуществляется рециркуляция при помощи небольшого насоса, который работает совсем бесшумно. Такая система способствует поддержке стабильной температуре горячей воды в любой точке дома.

Большой ассортимент бойлеров с рециркуляцией представлен ниже на странице и в меню сайта.

Если вам сложно сделать выбор, обращайтесь за консультацией к нашим специалистам.

Требуется помощь в выборе или не нашли нужную модель? Позвоните!

Достоинства и недостатки способов получения горячей воды

Рециркуляция ГВС для настенного котла с бойлером

Рециркуляция горячего водоснабжения (ГВС) позволяет поддерживать температуру воды в трубопроводе за счет периодического «прокручивания» воды через бойлер. Таким образом, открыв кран, не нужно ждать, пока пойдет горячая вода. Данная схема удобна, но для этого нужно установить специальный рециркуляционный насос, а также проложить трубу контура рециркуляции от самой дальней точки потребления горячей воды до входа в бойлер.

Совет: Чтобы уменьшить теплопотери в трубопроводе, необходимо использовать трубчатую теплоизоляцию. Это позволит замедлить остывание воды в горячем трубпроводе в перерывах работы рециркуляционного насоса, а также сэкономит потребление энергии на поддержание температуры бойлера.

В некоторых моделях бойлеров есть отдельный вход для подлючения контура рециркуляции. Однако, не в каждом настенном котле с бойлером он предусмотрен. Как быть в такой ситуации? Можно использовать вход холодной воды с некоторыми доработками. Нужно установить тройник и два обратных клапана. Тройник позволит воде поступать в бойлер как из холодного трубопровода, так и из контура рециркуляции. Обратные клапаны необходимы для предотвращения попадания горячей воды обратно в трубопровод холодной воды. Это может произойти при падении давления в трубе холодного водоснабжения (ХВС), например, при смыве бачка в туалете.

Совет: Используйте насосы для рециркуляции ГВС со встроенным обратным клапаном и таймером. Это позволит сэкономить место и сбережет электроэнергию. Достаточно, чтобы насос включался через каждые 15 мин. В ночное время рециркуляцию вообще можно отключить или сделать реже.

В процессе эксплуатации бойлера при нагреве поступающей в него холодной воды происходит увеличение объема, давление в бойлере может вырасти. Для избежания срабатывания предохранительных клапанов и сброса воды из бойлера убедитесь, что в вашем котле установлен мембранный бак ГВС, который позволяет сгладить скачки давления в бойлере. Особенно это актуально при установке обратных клапанов перед входом в котел.

Совет: Периодически проверяйте давление в воздушной части мембранного бака ГВС.

Теплый пол и рециркуляция ГВС

Мы потратили усилия и проложили трубу контура рециркуляции, а также установили рециркуляционный насос с обратным клапаном и таймером. Давайте рассмотрим, какие еще преимущества можно извлечь из этой схемы.

Отопительный сезон длится 8-9 месяцев, поэтому котел в режиме отопления летом не работает. Если подключить полотенцесушитель в ванной к контуру отопления, то летом мы будем иметь холодный полотенцесушитель и негде будет высушить вещи.

Совет: Используйте только нержавеющие полотенцесушители, поскольку в данной схеме через полотенцесушитель постоянно протекает разогретая вода из водопровода, содержащая в себе растворенный кислород, из-за чего ржавеют стальные полотенцесушители.

К тому же, несмотря на теплое время года, в ванной хотелось бы иметь теплый пол даже летом: это добавляет комфорта, а также позволяет просушивать помещение после принятия душа.

Совет: Если вы решили подключить теплый пол ванной в контур рециркуляции ГВС, рекомендуем понизить максимальную температуру бойлера с 60°С до 50°C. Также следует учесть, что насосы рециркуляции обычно не обладают большой мощностью, поэтому площадь теплого пола не должна превышать 5-6 м2.

Электрический бойлер с рециркуляцией горячей воды

Бойлер с рециркуляцией

Рециркуляция горячей воды через бойлер


Давления воды в самом бойлере может быть недостаточным, для обеспечения дачи горячей водой. Для рециркуляции горячей воды через бойлер, необходимо правильно смонтировать систему ГВС c установкой циркуляционного насоса.

В больших дачных домах специалисты рекомендуют устанавливать систему горячего водоснабжения (ГВС) централизованного способа нагрева воды, через газовую и электрическую колонку (можно также использовать одноконтурный газовый котел). В таком случае, чтобы обеспечить необходимый запас горячей воды, в эту систему должен быть вмонтирован бойлер косвенного нагрева.

Объем бойлера рассчитывается с учетом всех проживающих в доме людей (для семьи из 4-х человек, достаточно будет бойлера на 100-150 л.). Вода в системе ГВС нагревается при помощи теплообменника, который подключен к источнику нагрева (котел, колонка).

Бойлер системы ГВС имеет несколько входов и выходов. Особенность конструкции бойлеров косвенного нагрева состоит в том, что в него монтируется змеевик в виде спиралевидной трубки из металла, по которой проходит горячая вода с котла. За счет теплообмена между горячей водой в змеевике и холодной водой в бойлере, осуществляется нагрев жидкости внутри бойлера. Так создается предварительный запас горячей воды для нужд человека.

Вся система ГВС имеет замкнутый цикл работы. Если долгое время горячая вода не используется, она начинает остывать. Когда человек захочет воспользоваться горячей водой, он наверняка столкнется с проблемой первоначального отсутствия. При включении крана, система сама активируется и начинается обогрев воды. Но до того времени, когда она нагреется до нужной температуры может пройти несколько минут.

Чтобы можно было пользоваться горячей водой сразу после открытия крана, в систему монтируют циркуляционный насос, который обеспечивает рециркуляцию воды по контуру постоянно, не зависимо от того, пользуется ли человек горячей водой, или нет.

Бесперебойная рециркуляция воды через бойлер осуществляется при помощи установки дополнительного оборудования: расширительного бачка, обратного и предохранительного клапанов, спускного воздушного клапана.

Таким образом, рециркуляция горячей воды через бойлер, проходит при помощи циркуляционного насоса, теплообменника и дополнительного оборудования, которое монтируется в единую систему ГВС. В итоге человеку не придется ждать, пока вода нагреется, пропуская воду на протяжении некоторого времени.

Обвязка бойлера с рециркуляцией

Одним из самых важных и сложных процессов монтажа системы горячего водоснабжения является обвязка бойлера с рециркуляцией, но его вполне реально осуществить собственноручно.

Одним из самых экономичных и эффективных водонагревателей для дома и дачи, специалисты считают бойлер косвенного нагрева. В качестве источника нагрева воды может быть газ, электричество или теплообменник. Именно теплообменник обеспечивает экономичность применения системы ГВС с бойлером косвенного нагрева.

От правильно проведенной обвязки бойлера, зависит дальнейшее функционирование всей системы. Понятие обвязки можно определить, как особенность монтажа и подсоединения системы ГВС к источнику водонагрева.

При осуществлении монтажа бойлера и всей системы с рециркуляцией, нужно:

  • Установить точку рециркуляции. Она, как правило, расположена в центре нагревательной емкости;
  • Подвод холодной воды производится в нижнее отверстие бойлера;
  • Отвод горячей воды должен монтироваться в верхней части бойлера;
  • Труба теплоносителя подключается сверху, и проходит вниз (циркуляция воды теплообменника буде проходить по контуру, вход которого будет вверху бойлера, а выход – снизу).
  • К источнику энергии подвод труб должен осуществляться по правилам монтажа материалов, а подключаться при помощи переходников. Клапанов и кранов.

Следует знать, что эффективность системы рециркуляции ГВС зависит от системы отопления дома. Это способствует повышению коэффициента полезного действия косвенного водонагревателя (бойлера) на 35%.

Обвязку бойлера с рециркуляцией осуществляют стандартным набором материалов: краны, трубы ПВХ, переходники, арматурные изделия, насосы. Выбирать нужно только качественную сертифицированную продукцию из прочных материалов. Категорически не рекомендуется использование гофрированных шлангов и материала порошковой металлургии.

Схема рециркуляции бойлера

Рециркуляция воды в системе ГВС необходима для того, чтобы обеспечить горячей водой любую точку системы без дополнительного ее проливания. Для этого монтируется контур, по которому проходит вода из бойлера по всей системе, а затем возвращается назад в бойлер. Осуществляется рециркуляция при помощи небольшого насоса, который работает совсем бесшумно. Такая система способствует поддержке стабильной температуре горячей воды в любой точке дома.

Среди распространенных схем рециркуляции существуют несколько основных вариантов:

  • Монтаж трехходового или сервоприводного клапана. Применяют этот способ для настенных и напольных моделей бойлеров. К бойлеру подключается две трубы (два контура). Одни контур предназначен для отопления, другой – для горячей воды. Водонагреватель в этой системе выступает основным теплоносителем. При снижении температуры воды, применяется сервоприводный или трехходовой клапан, который начинает работать на подогрев воды. Отопление в это время перекрывается. После нагрева воды до нужной температуры, подогрев отопления возобновляется;
  • Монтаж двух насосов циркуляции в одной системе. При такой схеме, один из насосов предназначен для рециркуляции горячей воды по системе отопления, а иной – по контуру бойлера. Эта система первоначально обеспечивает нормальную температуру воды в бойлере, а потом уже в системе отопления. Особенностью такой схемы, является наличие термостата и переключателя режимов, который позволяет отключать, при необходимости, одну из систем;
  • Применение гидравлической стрелки. Применяется, если в доме существует более двух контуров (отопление, горячая вода, теплый пол). Эта схема направлена на обогрев воды, за счет которой проводится обогрев всех контуров. Эта система имеет существенный недостаток – при разборе воды. Теплоноситель может не справляться с обеспечением потребностей всех людей одновременно.

Выбор способа обогрева воды и отопления, а также способы ее рециркуляции через бойлер, должен осуществляться в соответствии с четкими расчетами всех потребителей и мощностью теплоносителя. Преимуществом среди основных схем обладают бойлера с трехходовыми или сервоприводными клапанами.

Источник: https://glav-dacha.ru/retsirkulyatsiya-goryachey-vody-boyler/

Электрические бойлеры с рециркуляцией

В магазине «Теплоэксперт» вы можете приобрести системы для нагрева воды с рециркуляцией. В наличии продукция производства Германии, Словении, Болгарии, России и других стран. Мы продаем только проверенные водонагреватели с сертификатом качества!

Для чего нужна рециркуляция в бойлере?

Такая функция обеспечивает большее удобство пользования системой. Накопительные бойлеры набирают воду и доводят до нужной температуры. Однако, если долгое время ее не использовать, то она начнет остывать, и вы не сможете пользоваться устройством сразу – придется ждать, когда согреется очередная партия. Чтобы можно было иметь горячую воду всегда, в современные бойлеры добавляется специальный циркуляционный насос, который «гоняет» воду по контуру и не дает ей остывать. Таким образом, вы сможете воспользоваться горячей водой в любой момент.

Почему выгодно покупать электрические водонагреватели в «Теплоэксперте»?

Хотите приобрести электрический бойлер с дополнительной функцией рециркуляции? У нас большой выбор продукции от известных брендов и быстрая доставка! Наши менеджеры с удовольствием подберут вам нужный вариант в зависимости от нужного объема, мощности и бюджета. При необходимости мы возьмем на себя монтаж оборудования. По Москве доставка осуществляется в день заказа, по России – с помощью транспортных компаний.

Источник: https://www.TeploExpert.com/catalog/vodonagrevateli/tip_topliva-is-elektrichestvo/retsirkulyatsiya-is-da/

Что такое рециркуляция системы горячего водоснабжения и где ее следует применять.

Что такое рециркуляция? Какие плюсы и минусы данной системы ожидать? Как организовать правильное и комфортное водоснабжение дома? На эти и другие вопросы ответит статья нашего сайта, посвященная функционалу бойлеров – системе рециркуляции воды.

Для комфортного пользования горячей водой, при проектировании современных систем, принято использовать накопительные водонагреватели. Они дают возможность всегда иметь необходимый запас горячей воды для нужд жильцов. Как правильно рассчитать необходимый объем водонагревателя описано в статье нашего блога.

Бойлер косвенного нагрева.

Крайне выгодно использовать для нагрева горячей воды бойлер косвенного нагрева, который дает экономические и конструктивные преимущества по сравнению с обычным электрическим водонагревателем. В бойлер косвенного нагрева, помимо стандартного электрического ТЭНа встроен теплообменник (или несколько теплообменников), по которому можно пустить теплоноситель из альтернативной системы (отопительного котла, солнечного коллектора, теплового насоса и пр.). Это, в первую очередь, дает экономические преимущества нагрева горячей воды. В период отопительного сезона, бойлер будет отлично нагреваться от системы отопления дома, не включая электрический ТЭН. А при использовании бойлера с солнечным коллектором, вообще можно получить бесплатную систему нагрева воды от солнца круглый год.

Некоторые бойлеры косвенного нагрева оснащены дополнительным патрубком рециркуляции, который можно использовать в системе горячего водоснабжения для создания дополнительного комфорта. При закладке труб горячей воды к смесителю, необходимо заложить еще одну, обратную трубу для рециркуляции воды. Таким образом, по трубам горячего водоснабжения будет всегда циркулировать горячая вода и при открытии крана, моментально, водой можно пользоваться. Рециркуляция, по сути, это движение горячей воды по замкнутому трубному кольцу, с возможностью ее отбора из этого кольца. 

Где стоит закладывать рециркуляцию воды из бойлера.

В первую очередь, рециркуляция применяется в местах, где точка водоразбора находится на большом удалении от бойлера – нагревателя. Пока вы не пользуетесь горячей водой, она в трубах остывает и, после открытия крана, необходимо спускать охладившуюся воду какой-то промежуток времени. Рециркуляция полностью решает данную проблему. Если нет желания все время спускать воду из крана, то следует выбрать систему с рециркуляцией горячей воды. Подобная система имеет трубопроводы подачи и обратки, но система очень удобная и комфортная.
Дополнительно, на систему рециркуляции горячей воды можно подключить водяной полотенцесушитель. В данном случае, полотенцесушитель будет теплым круглый год, т.к. запитан будет не от отопления, а от горячего водоснабжения дома.

 

Недостатки системы рециркуляции.

Основной недостаток системы рециркуляции – сложность монтажа из-за необходимости прокладки дополнительной трубы. Данные работы можно выполнить только при строительстве дома или капитальном ремонте.
Кроме этого, для работы системы рециркуляции понадобится циркуляционный насос и дополнительные материалы для обвязки. Для движения воды от бойлера по трубам и в обратную сторону применяют циркуляционный насос ГВС, запрещается применять насос для отопительной системы. Насос постоянно подключен к сети и расходует мало электроэнергии, примерно 25-80 Ватт в час (в зависимости от модели и производительности насоса).
Стоит отметить, что при работе рециркуляции горячей воды, стоимость нагрева воды увеличится, ведь она будет постоянно циркулировать, отдавая тепло стенам, полотенцесушителю и пр. и воду придётся греть чаще, чем в обычном бойлере замкнутого цикла нагрева. За комфорт приходится платить. Для достижения максимального уровня экономии энергии обратная линия, как и линия подачи воды, должны быть хорошо теплоизолированы для уменьшения потерь тепла, иначе вместо системы водоснабжения можно получить дополнительную систему обогрева стен с постоянно работающим циркуляционным насосом.
Не следует пренебрегать и установкой дополнительной группы безопасности – установить расширительный бак, а заодно и автоматический воздухоотводчик, чтобы исключить попадание воздуха в насос. При желании, можно установить также и предохранительный клапан, для защиты водонагревателя от избыточного давления, вызванного расширением воды при нагреве. При достижении критического давления предохранительный клапан выпустит «лишнюю» воду. Но в большинстве случаев достаточно установить лишь расширительный бак. Он компенсирует давление в системе горячего водоснабжения, отбирая излишки воды, тем самым уменьшая давление при нагреве. Давление воздуха в расширительном баке не должно превышать давление предохранительного клапана, иначе действие расширительного бака бесполезны. А минимальное давление воздуха должно быть не ниже минимального давления в системе водоснабжения.

Рециркуляция горячей воды. Как, зачем и для чего?

ТЕПЛОТА — ХАРЬКОВ, блог о климатической технике

Купить котел, колонку, водонагреватель или радиатор стало сложно. Мы поможем разобраться в выборе…

Что такое рециркуляция системы горячего водоснабжения и где ее следует применять.

Что такое рециркуляция? Какие плюсы и минусы данной системы? Как организовать правильное и комфортное водоснабжение дома? На эти и другие вопросы ответит статья нашего сайта, посвященная функционалу бойлеров – системе рециркуляции воды


Для комфортного пользования горячей водой, при проектировании современных систем, принято использовать накопительные водонагреватели. Они дают возможность всегда иметь необходимый запас горячей воды для нужд жильцов. Как правильно рассчитать необходимый объем водонагревателя описано в статье нашего блога.

Бойлер косвенного нагрева.
Крайне выгодно использовать для нагрева горячей воды бойлер косвенного нагрева, который дает экономические и конструктивные преимущества по сравнению с обычным электрическим водонагревателем. В бойлер косвенного нагрева, помимо стандартного электрического ТЭНа встроен теплообменник (или несколько теплообменников), по которому можно пустить теплоноситель из альтернативной системы (отопительного котла, солнечного коллектора, теплового насоса и пр.). Это, в первую очередь, дает экономические преимущества нагрева горячей воды. В период отопительного сезона, бойлер будет отлично нагреваться от системы отопления дома, не включая электрический ТЭН. А при использовании бойлера с солнечным коллектором, вообще можно получить бесплатную систему нагрева воды от солнца круглый год.

Что такое рециркуляция.

Некоторые бойлеры косвенного нагрева оснащены дополнительным патрубком рециркуляции, который можно использовать в системе горячего водоснабжения для создания дополнительного комфорта. При закладке труб горячей воды к смесителю, необходимо заложить еще одну, обратную трубу для рециркуляции воды. Таким образом, по трубам горячего водоснабжения будет всегда циркулировать горячая вода и при открытии крана, моментально, водой можно пользоваться.

Рециркуляция, по сути, это движение горячей воды по замкнутому трубному кольцу, с возможностью ее отбора из этого кольца.

Где стоит закладывать рециркуляцию воды из бойлера.
В первую очередь, рециркуляция применяется в местах, где точка водоразбора находится на большом удалении от бойлера – нагревателя. Пока вы не пользуетесь горячей водой, она в трубах остывает и, после открытия крана, необходимо спускать охладившуюся воду какой-то промежуток времени. Рециркуляция полностью решает данную проблему. Если нет желания все время спускать воду из крана, то следует выбрать систему с рециркуляцией горячей воды. Подобная система имеет трубопроводы подачи и обратки, но система очень удобная и комфортная.
Дополнительно, на систему рециркуляции горячей воды можно подключить водяной полотенцесушитель. В данном случае, полотенцесушитель будет теплым круглый год, т.к. запитан будет не от отопления, а от горячего водоснабжения дома

Недостатки системы рециркуляции.
Основной недостаток системы рециркуляции – сложность монтажа из-за необходимости прокладки дополнительной трубы. Данные работы можно выполнить только при строительстве дома или капитальном ремонте.
Кроме этого, для работы системы рециркуляции понадобится циркуляционный насос и дополнительные материалы для обвязки. Для движения воды от бойлера по трубам и в обратную сторону применяют циркуляционный насос ГВС, запрещается применять насос для отопительной системы. Насос постоянно подключен к сети и расходует мало электроэнергии, примерно 25-80 Ватт в час (в зависимости от модели и производительности насоса).


Стоит отметить, что при работе рециркуляции горячей воды, стоимость нагрева воды увеличится, ведь она будет постоянно циркулировать, отдавая тепло стенам, полотенцесушителю и пр. и воду придётся греть чаще, чем в обычном бойлере замкнутого цикла нагрева. За комфорт приходится платить. Для достижения максимального уровня экономии энергии обратная линия, как и линия подачи воды, должны быть хорошо теплоизолированы для уменьшения потерь тепла, иначе вместо системы водоснабжения можно получить дополнительную систему обогрева стен с постоянно работающим циркуляционным насосом.
Не следует пренебрегать и установкой дополнительной группы безопасности – установить расширительный бак, а заодно и автоматический воздухоотводчик, чтобы исключить попадание воздуха в насос. При желании, можно установить также и предохранительный клапан, для защиты водонагревателя от избыточного давления, вызванного расширением воды при нагреве. При достижении критического давления предохранительный клапан выпустит «лишнюю» воду. Но в большинстве случаев достаточно установить лишь расширительный бак. Он компенсирует давление в системе горячего водоснабжения, отбирая излишки воды, тем самым уменьшая давление при нагреве. Давление воздуха в расширительном баке не должно превышать давление предохранительного клапана, иначе действие расширительного бака бесполезны. А минимальное давление воздуха должно быть не ниже минимального давления в системе водоснабжения.

Рециркуляция ГВС

Проживая в городских квартирах мы привыкли, что открывая кран горячего водоснабжения практически сразу же начинает течь горячая вода. В большинстве загородных домов этот происходит по-иному. Открыв кран ГВС приходится ждать некоторое время, пока из крана начинает течь горячая вода и чем дальше точка водоразбора от котла, тем продолжительнее это время. Происходит это потому, что в системе водоснабжения дома не оборудована рецеркуляция ГВС. Вот о том, как устроена рецеркуляция ГВС и стоит ли ее делать, мы и поговорим в этой статье.

Рециркуляция ГВС, это движение горячей воды по замкнутому контуру, с возможностью ее отбора. Благодаря такой схеме водоснабжения в контуре ГВС постоянно находится горячая вода и открывая кран, пользователь получает горячую воду практически сразу.

Рециркуляции ГВС и ее применение

Очень часто бывает так, когда в загородном доме система водоподготовки оборудована в техническом помещении, при этом оно расположено на значительно расстоянии от жилой зоны. К тому же большинство домов, имеет несколько санузлов на разных этажах. Проектируя систему водоснабжения для таких домов, инженеры закладывают значительную протяженность трубопроводов, в которых находится достаточно большой объем воды.

В том случае, если жильцы дома долгое время не пользовались горячей водой, через какое-то время вода в трубах остывает. Вот поэтому, при открытии крана ГВС требуется время, иногда немалое, пока горячая вода, проследовав по трубопроводу начнет поступать из крана. Это создает не только определенные неудобства для пользователя, но и приводит к перерасходу воды, особенно если она поступает из городского водопровода.

Для того, чтобы этой проблемы не было, при проектировании горячего водоснабжения дома, предусматривается узел рециркуляции, поддерживающий постоянный или периодический поток воды в системе ГВС. Благодаря этому горячая вода поступает из крана практически сразу.

Установить узел рециркуляции ГВС можно там, где за нагрев воды отвечает накопительный нагреватель, бойлер косвенного нагрева либо второй контур котла. Необходимо отметить, что рециркуляция ГВС подразумевает совершенно иную компоновку системы водоснабжения. Поэтому лучше всего, если она будет разрабатываться на стадии проектирования дома, так как попытки переделать уже имеющуюся систему, как правило приводят к большим затратам.

Схемы организации рециркуляции ГВС

Принципиальная схема рециркуляции ГВС может отличаться в зависимости от используемого оборудования. Так, например, в конструкции некоторых бойлеров косвенного нагрева предусмотрен третий отвод для подключения возвратной трубы рециркуляции. Если такого отвода в вашем бойлере нет, обратный поток можно подключить через тройник к патрубку подачи холодной воды.

Схема обвязки бойлера косвенного нагрева с рециркуляцией ГВС

На рисунке выше показана схема обвязки бойлера косвенного нагрева с рециркуляцией ГВС, где:

  1. Котел отопления;
  2. Группа безопасности котла с расширительным баком;
  3. Циркуляционный насос системы ГВС;
  4. Группа безопасности бойлера с расширительным баком;
  5. Потребители горячей воды;
  6. Радиаторы отопления;
  7. Бойлер косвенного нагрева;
  8. Циркуляционный насос бойлера;
  9. Обратные клапаны;
  10. Циркуляционный насос системы отопления;
  11. Сетчатый фильтр грубой очистки

Схема рециркуляции ГВС с накопительным бойлером

Если на вашей даче стоит электрический водонагреватель с двумя отводами, то для организации рециркуляции на патрубке подачи холодной воды сначала устанавливается разъемное соединение с накидной гайкой и группа безопасности для бойлеров. Ниже монтируется тройник, на два свободных отвода которого устанавливают шаровые краны. Один из них предназначен для подключения к магистрали ХВС, а другой — для обратной трубы петли рециркуляции.

На рисунке выше показана схема рециркуляции ГВС с накопительным бойлером, где:

  1. Накопительный водонагреватель;
  2. Кран для подсоса воздуха при сливе бака;
  3. Группа безопасности;
  4. Обратные клапаны;
  5. Циркуляционный насос;
  6. Суточный таймер;
  7. Потребители горячей воды

В приведенной схеме организации рециркуляции ГВС, подача холодной воды в систему происходит только при снижении давления, в остальных случаях горячая вода будет циркулировать по замкнутому контуру, включая весь объем накопительного бойлера. Но такая схема имеет и свои недостатки, так как при таком подключении, бойлер не будет отдавать 2/3 своего объема с неизменно высокой температурой, как это положено, так как при подпитке весь объем жидкости будет равномерно охлаждаться.

Насосы для системы рециркуляции ГВС

Для организации рециркуляции ГВС производителями сантехнического оборудования разработаны целые серии циркуляционных насосов. Их основным отличием от стандартных циркуляционных насосов, является резьбовые патрубки для подключения такого же типоразмера, который обычно используется в бытовых системах водоснабжения, а, именно под резьбу 1/2″ или 1/4″. Также такие насосы могут оснащаться дополнительными функциями, например, регулировкой производительности, недельным таймером или термостатом.

В остальном циркуляционные насосы для систем рециркуляции ГВС полностью идентичны насосам, которое используется в системах отопления с принудительной циркуляцией теплоносителя.

Трубопроводы для системы рециркуляции ГВС

Стоит иметь ввиду, что рециркуляция ГВС потребует затратить значительно больше средств на ее монтаж. Помимо затрат на водопроводный контур, дополнительно требуется обеспечить теплоизоляцию труб, чтобы удержать в пределах нормы утечки тепла.

В качества материала для обустройства системы рециркуляции ГВС лучше всего подойдут трубы из сшитого полиэтилена (PEX). О них мы уже говорили в предыдущей статье. Эти трубы применяются для организации отопления с помощью теплого пола. В пересчете на погонный метр трубы РЕХ обойдутся вам значительно дешевле полипропиленовых и металлопластиковых труб, к тому же срок их эксплуатации значительно выше.

Сама схема прокладки трубопровода достаточно проста. Одна ее часть, подающая воду к точкам водоразбора, последовательно монтируется непрерывной линией от теплового узла к каждой точке. Однако на последней точке водоразбора трубопровод не заканчивается, а возвращается обратно к тепловому узлу. Это надо учитывать при рассмотрении различных схем прокладки, для минимизации расхода материалов.

Перед тем как начинать прокладку, каждый сегмент трубопровода помещается в поясную теплоизоляцию из вспененного полиэтилена или каучука. Каучук больше подходит для тех участков труб, которые впоследствии будут замурованы. Изолируются не только сами трубы, но и фитинги, к тому же все стыки в теплоизоляционном материале обязательно проклеиваются металлизированным скотчем.

Эксплуатация системы рециркуляции ГВС

Рециркуляция ГВС достаточно затратное удовольствие, так как бойлеру придется постоянно подогревать воду, дополнительно затрачивая на это энергоносители, а циркуляционный насос будет постоянно расходовать электроэнергию.

Некоторые специалисты советуют отключать рециркуляцию ГВС летом, но тогда теряется весь смысл ее организации, так как горячая вода требуется ежедневно и круглогодично. Для того, что можно было сэкономить на энергозатратах, придется еще немного потратиться. Например, можно приобрести циркуляционный насос с встроенным, программируемым таймером или установить отдельное управляющее устройство, которое с определенной цикличностью будет прогонять по контуру горячего водоснабжения воду, тем самым не давая ей остынуть. К тому же рециркуляцию ГВС можно отключать на ночь и на то время, когда вас нет дома.

В следующей статье я расскажу об анемостате.

ТЕПЛОТА

Циркуляция в контуре ГВС

Чтобы горячая вода была доступна в любой точке системы, необходимо собрать такой контур, по которому она будет непрерывно циркулировать, поступая из бойлера или накопительного водонагревателя и возвращаясь в него же, если система работает в режиме ожидания. Благодаря этому вода в трубах никогда не остывает и всегда доступна пользователям.

Циркуляция в контуре ГВС может быть естественной за счет конвекции. Однако большей эффективности можно достичь, используя принудительную циркуляцию с помощью небольшого насоса.

Современные бытовые циркуляционные насосы практически бесшумны и имеют мощность всего несколько десятков ватт. Они просты в эксплуатации и практически не требуют обслуживания. Однако это не те циркуляционные насосы, которые используются в системах отопления. Они лучше защищены от коррозии, поскольку в контуре ГВС вода насыщена воздухом, в отличие от закрытых систем ЦО. Так, ротор и другие элементы, контактирующие с водой, выполнены из не чувствительных к кислороду материалов.

Какое давление в системе

9-ти этажки

Дома высотой до 9 этажей имеют нижний розлив снизу вверх. Т.е. от водомера по большой трубе вода уходит по стоякам до 9-го этажа. Если у водоканала настроение хорошее, то на вводе нижней зоны должно быть примерно 4 кг/см2 . С учётом падения давления в один килограмм на каждые 10 метров водяного столба жители 9-го этажа получат приблизительно 1 кг давления, что считается нормой. На практике же в старых домах давление на вводе составляет всего 3,6 кг. И жители 9го этажа довольствуются ещё меньшим давлением чем 1кг/см2

12-20 этажей

Если дом выше 9-ти этажей, например 16 этажей, то такая система делится 2 зоны. Верхняя и нижняя. Где для нижней зоны сохраняются те же условия, а для верхней давление поднимают примерно до 6 кг. Чтобы воду поднять на самый верх в подающую магистраль, а с ней вода стояками идёт до 10-го этажа. В домах выше 20-ти этажей подача воды может делится на 3 зоны. При такой схеме подачи, вода в системе не циркулирует, стоит на подпоре. В квартире многоэтажки в среднем мы получаем давление от 1 до 4 кг. Бывают и другие значения но сейчас мы их рассматривать не будем.

Когда циркуляция в контуре ГВС необходима

Централизованный нагрев воды — это оптимальный способ обеспечения ГВС в больших домах. Система в таком случае обязательно должна включать в себя накопительный водонагреватель либо бойлер косвенного нагрева, используемый в паре с одноконтурным котлом. Это необходимо для того, чтобы потребителям постоянно был доступно определенное количество горячей воды. Емкость бойлера определяется предполагаемым расходом воды. До заданной температуры вода в бойлере нагревается встроенным ТЭНом либо от теплообменника, подключенного к котлу. Когда горячая вода не востребована, система находится в режиме ожидания. Но при открывании крана горячей воды система включается, предоставляя сразу достаточное ее количество. Объемы бойлеров могут быть от нескольких десятков до нескольких сотен литров. При этом в отличие от проточных водонагревателей, величина протока не ограничивается.

Однако система централизованного ГВС тоже имеет свои недостатки, хотя объективно является лучше других. Дело в том, что трубы, которыми подключены точки водоразбора к бойлеру, имеют, как правило, большую протяженность, и вода в них будет остывать, если долго ей не пользоваться. Потребитель, таким образом, оказывается в ситуации, когда при открытии горячей воды какое-то время из крана течет еле теплая или холодная вода. Время ожидания зависит от протяженности труб и может длиться до 30 секунд. Это слишком долго и к тому же расточительно. Причем речь идет не о потере нескольких десятков литров холодной воды, а о потере воды предварительно нагретой. В этом случае помочь может только циркуляция воды в контуре ГВС.

Двухконтурные котлы и колонки, а также электрические проточные водонагреватели тоже могут работать в системах централизованного горячего водоснабжения дома, но не способны делать это экономично и комфортно для потребителя. Их целесообразно использовать в маленьких коттеджах, где точек водоразбора немного и все они сконцентрированы возле водонагревателя. Однако и в таком случае, одновременно лучше пользоваться только одним краном, а не несколькими.

Холодное водоснабжение или ХВС

Местная насосная станция подаёт воду в магистраль из сети водоканала. Большая подающая труба входит в дом и заканчивается задвижкой, после которой идёт водомерный узел.

Если говорить коротко, то водомерный узел состоит из двух задвижек, сетчатого фильтра и счётчика.

В некоторых есть дополнительно обратный клапан

и обвод водомера.

Обвод водомера представляет из себя дополнительный счётчик с задвижками, который может питать систему, если основной водомер обслуживается. После счётчиков вода подаётся в домовую магистраль

где распределяется по стоякам, которые ведут воду в квартиры по этажам.

Типы схем водоснабжения

Система водоснабжения бывает трех типов:

  • последовательная;
  • комбинированная (смешанная).
  • В последнее время, когда в квартирах все чаще встречается большое количество сантехнического оборудования, используют коллекторную схему разводки

    . Она является оптимальным вариантом нормального функционирования всех приборов. Схема горячего водоснабжения коллекторного типа исключает перепады давления в разных точках подключения. Это является главным преимуществом данной системы.

    Если рассматривать схему более подробно, то можно сделать вывод, что никаких проблем с использованием сантехнического оборудования по назначению в одно и то же время не будет. Суть подключения такова, что каждый отдельный потребитель воды соединяется с коллекторами стояка холодного и горячего водоснабжения изолированно. Трубы не имеют множества разветвлений, поэтому вероятность протечки очень мала. Такие схемы водоснабжения в многоэтажных домах просты в обслуживании, однако стоимость оборудования достаточно высокая.

    По мнению специалистов, коллекторная схема горячего водоснабжения требует установки более сложной установки сантехнических приборов. Однако эти отрицательные стороны не столь критичны, особенно если учесть тот факт, что у коллекторной схемы есть множество достоинств, к примеру — скрытый монтаж труб и учет индивидуальных особенностей оборудования.

    Последовательная схема горячего водоснабжения

    многоэтажного дома — это самый простой способ разводки. Такая система проверена временем, она вводилась в эксплуатацию еще во времена СССР. Суть ее устройства в том, что трубопровод холодного и горячего водоснабжения проводят параллельно друг другу. Инженеры советуют использовать данную систему в квартирах с одни санузлом и небольшим количеством сантехнического оборудования.

    В народе такую схему горячего водоснабжения многоэтажного дома называют тройниковой. То есть от главных магистралей идут разветвления, которые соединяются друг с другом тройниками. Несмотря на простоту монтажа и экономию расходного материала, данная схема имеет несколько основных недостатков:

    1. В случае протечке трудно искать поврежденные участки.
    2. Невозможность подачи воды к отдельному сантехническому прибору.
    3. Трудность доступа к трубам в случае поломки.

    Рециркуляция горячей воды через бойлер

    Давления воды в самом бойлере может быть недостаточным, для обеспечения дачи горячей водой. Для рециркуляции горячей воды через бойлер, необходимо правильно смонтировать систему ГВС c установкой циркуляционного насоса.

    В больших дачных домах специалисты рекомендуют устанавливать систему горячего водоснабжения (ГВС) централизованного способа нагрева воды, через газовую и электрическую колонку (можно также использовать одноконтурный газовый котел). В таком случае, чтобы обеспечить необходимый запас горячей воды, в эту систему должен быть вмонтирован бойлер косвенного нагрева.

    Объем бойлера рассчитывается с учетом всех проживающих в доме людей (для семьи из 4-х человек, достаточно будет бойлера на 100-150 л.). Вода в системе ГВС нагревается при помощи теплообменника, который подключен к источнику нагрева (котел, колонка).

    Бойлер системы ГВС имеет несколько входов и выходов. Особенность конструкции бойлеров косвенного нагрева состоит в том, что в него монтируется змеевик в виде спиралевидной трубки из металла, по которой проходит горячая вода с котла. За счет теплообмена между горячей водой в змеевике и холодной водой в бойлере, осуществляется нагрев жидкости внутри бойлера. Так создается предварительный запас горячей воды для нужд человека.

    Вся система ГВС имеет замкнутый цикл работы. Если долгое время горячая вода не используется, она начинает остывать. Когда человек захочет воспользоваться горячей водой, он наверняка столкнется с проблемой первоначального отсутствия. При включении крана, система сама активируется и начинается обогрев воды. Но до того времени, когда она нагреется до нужной температуры может пройти несколько минут.

    Чтобы можно было пользоваться горячей водой сразу после открытия крана, в систему монтируют циркуляционный насос, который обеспечивает рециркуляцию воды по контуру постоянно, не зависимо от того, пользуется ли человек горячей водой, или нет.

    Бесперебойная рециркуляция воды через бойлер осуществляется при помощи установки дополнительного оборудования: расширительного бачка, обратного и предохранительного клапанов, спускного воздушного клапана.

    Таким образом, рециркуляция горячей воды через бойлер, проходит при помощи циркуляционного насоса, теплообменника и дополнительного оборудования, которое монтируется в единую систему ГВС. В итоге человеку не придется ждать, пока вода нагреется, пропуская воду на протяжении некоторого времени.

    Обвязка бойлера с рециркуляцией

    Одним из самых важных и сложных процессов монтажа системы горячего водоснабжения является обвязка бойлера с рециркуляцией, но его вполне реально осуществить собственноручно.

    Одним из самых экономичных и эффективных водонагревателей для дома и дачи, специалисты считают бойлер косвенного нагрева. В качестве источника нагрева воды может быть газ, электричество или теплообменник. Именно теплообменник обеспечивает экономичность применения системы ГВС с бойлером косвенного нагрева.

    От правильно проведенной обвязки бойлера, зависит дальнейшее функционирование всей системы. Понятие обвязки можно определить, как особенность монтажа и подсоединения системы ГВС к источнику водонагрева.

    При осуществлении монтажа бойлера и всей системы с рециркуляцией, нужно:

    • Установить точку рециркуляции. Она, как правило, расположена в центре нагревательной емкости;
    • Подвод холодной воды производится в нижнее отверстие бойлера;
    • Отвод горячей воды должен монтироваться в верхней части бойлера;
    • Труба теплоносителя подключается сверху, и проходит вниз (циркуляция воды теплообменника буде проходить по контуру, вход которого будет вверху бойлера, а выход – снизу).
    • К источнику энергии подвод труб должен осуществляться по правилам монтажа материалов, а подключаться при помощи переходников. Клапанов и кранов.

    Следует знать, что эффективность системы рециркуляции ГВС зависит от системы отопления дома. Это способствует повышению коэффициента полезного действия косвенного водонагревателя (бойлера) на 35%.

    Обвязку бойлера с рециркуляцией осуществляют стандартным набором материалов: краны, трубы ПВХ, переходники, арматурные изделия, насосы. Выбирать нужно только качественную сертифицированную продукцию из прочных материалов. Категорически не рекомендуется использование гофрированных шлангов и материала порошковой металлургии.

    Схема рециркуляции бойлера

    Рециркуляция воды в системе ГВС необходима для того, чтобы обеспечить горячей водой любую точку системы без дополнительного ее проливания. Для этого монтируется контур, по которому проходит вода из бойлера по всей системе, а затем возвращается назад в бойлер. Осуществляется рециркуляция при помощи небольшого насоса, который работает совсем бесшумно. Такая система способствует поддержке стабильной температуре горячей воды в любой точке дома.

    Среди распространенных схем рециркуляции существуют несколько основных вариантов:

    • Монтаж трехходового или сервоприводного клапана. Применяют этот способ для настенных и напольных моделей бойлеров. К бойлеру подключается две трубы (два контура). Одни контур предназначен для отопления, другой – для горячей воды. Водонагреватель в этой системе выступает основным теплоносителем. При снижении температуры воды, применяется сервоприводный или трехходовой клапан, который начинает работать на подогрев воды. Отопление в это время перекрывается. После нагрева воды до нужной температуры, подогрев отопления возобновляется;
    • Монтаж двух насосов циркуляции в одной системе. При такой схеме, один из насосов предназначен для рециркуляции горячей воды по системе отопления, а иной – по контуру бойлера. Эта система первоначально обеспечивает нормальную температуру воды в бойлере, а потом уже в системе отопления. Особенностью такой схемы, является наличие термостата и переключателя режимов, который позволяет отключать, при необходимости, одну из систем;
    • Применение гидравлической стрелки. Применяется, если в доме существует более двух контуров (отопление, горячая вода, теплый пол). Эта схема направлена на обогрев воды, за счет которой проводится обогрев всех контуров. Эта система имеет существенный недостаток – при разборе воды. Теплоноситель может не справляться с обеспечением потребностей всех людей одновременно.

    Выбор способа обогрева воды и отопления, а также способы ее рециркуляции через бойлер, должен осуществляться в соответствии с четкими расчетами всех потребителей и мощностью теплоносителя. Преимуществом среди основных схем обладают бойлера с трехходовыми или сервоприводными клапанами.

    Видео об организации рециркуляции горячей воды

    Рециркуляция ГВС: для чего необходима и как правильно смонтировать

    Поговорим про организацию системы ГВС с рециркуляцией. Благодаря такой схеме водоснабжения в контуре ГВС постоянно поддерживается циркуляция горячей воды.

    Преимущества циркуляции ГВС и область применения

    Достаточно широко распространены ситуации, когда в частных домах вся система водоподготовки объединяется в одном техническом помещении, максимально удалённом от обитаемой зоны. Также часто можно встретить проекты домов, имеющих несколько санузлов, в том числе на разных этажах. Для таких ситуаций характерна значительная протяжённость трубопроводов горячего водоснабжения, что сулит жильцам некоторые неудобства.

    Например, при открытии горячей точки водоразбора требуется время, порой немалое, пока вода, проследовав по каналам и отдав им часть собственного тепла, начнёт поступать из крана при номинальной температуре. Это не только вызывает определённые неудобства при каждом использовании санузла, но также приводит к перерасходу воды, которая на многих объектах частного строительства служит стратегическим ресурсом.

    Проблему решает узел рециркуляции, поддерживающий постоянный проток в системе ГВС. Благодаря этому горячая вода поступает из крана сразу после открытия, к тому же её температура может быть точно отрегулирована вне зависимости от режима работы нагревательного прибора.

    Узлами рециркуляции могут быть укомплектованы те системы, в которых за нагрев воды отвечает накопительный нагреватель, бойлер косвенного нагрева или второй контур котла. При использовании проточных газовых и электрических нагревателей их гораздо разумнее переместить ближе к точкам водоразбора.

    Нужно отметить, что рециркуляция ГВС подразумевает совершенно иную топологию системы. Поэтому реализация такой идеи возможна только в процессе строительства, ну или как минимум капитального ремонта. При попытках доработать имеющийся сантехнический комплекс с целью организовать рециркуляцию, вряд ли получится обойтись малой кровью.

    Насосный узел и обвязка

    Схема компоновки узла рециркуляции может отличаться в зависимости от используемого водогрейного и насосного оборудования. Например, конструкцией некоторых бойлеров косвенного нагрева предусмотрен третий отвод из верхней трети ёмкости для подключения возвратной трубы рециркуляции. Если такого отвода нет, обратный поток подключается через тройник к патрубку подачи холодной воды.


    Пример схемы обвязки бойлера косвенного нагрева с рециркуляцией ГВС: 1 — котёл отопления; 2 — группа безопасности котла с расширительным баком; 3 — циркуляционный насос системы ГВС; 4 — группа безопасности бойлера с расширительным баком; 5 — потребители горячей воды; 6 — радиаторы отопления; 7 — бойлер косвенного нагрева; 8 — циркуляционный насос бойлера; 9 — обратные клапаны; 10 — циркуляционный насос системы отопления; 11 — сетчатый фильтр грубой очистки

    Если взять в качестве примера стандартный электрический водонагреватель с двумя отводами, то на патрубке подачи холодной воды сначала устанавливается разъёмное соединение с накидной гайкой и группа безопасности для бойлеров. Ниже монтируется тройник, на два свободных отвода которого устанавливают шаровые краны. Один из них предназначен для подключения к магистрали ХВС, другой — для обратной трубы петли рециркуляции.


    Схема рециркуляции ГВС с накопительным бойлером: 1 — накопительный водонагреватель; 2 — кран для подсоса воздуха при сливе бака; 3 — группа безопасности; 4 — обратные клапаны; 5 — циркуляционный насос; 6 — недельно-суточный таймер; 7 — потребители горячей воды

    Таким образом, подача холодной воды в систему происходит только при снижении давления от открытия водоразбора, в остальных случаях горячая вода циркулирует по замкнутой петле, включающей весь объём бойлера.

    Это главный недостаток водонагревательных приборов, конструкция которых не предусматривает их использование в системах ГВС с рециркуляцией. При такой схеме подключения бойлер не будет как положено отдавать 2/3 своего объёма с неизменно высокой температурой, ведь при подпитке весь объём жидкости будет равномерно охлаждаться.

    Что касается самого насоса, для этих целей ведущими производителями сантехнического оборудования (Wilo, Grundfos) разработаны целые серии приборов. Их основное отличие от стандартных циркуляционных насосов — резьбовые патрубки для подключения такого же типоразмера, который обычно используется в бытовых системах водоснабжения — под резьбу 1/2″ или 1/4″.

    В остальном такие насосы практически полностью идентичны оборудованию, которое используется в системах отопления с принудительной циркуляцией теплоносителя. Из дополнительных функций могут иметься в наличии регулировка производительности, суточно-недельный таймер и термостат.

    Система трубопроводов

    Один из главных недостатков систем ГВС с рециркуляцией заключён в их повышенной материалоёмкости. Помимо того что водопроводный контур состоит из двух труб, замкнутых в петлю, дополнительно требуется обеспечить теплоизоляцию каналов, дабы сдерживать в пределах нормы паразитные утечки тепла. Но обе эти проблемы решаются относительно легко.

    Лучший вариант материала для обустройства системы с рециркуляцией — полиэтиленовые трубы (PEX) с надвижными пресс-фитингами. Да, монтаж таких систем требует использования специального дорогостоящего оборудования, однако вполне можно обойтись комплектом ручного инструмента для опрессовки, взятым в аренду. При этом в пересчёте на погонаж сами трубы обходятся значительно дешевле полипропиленовых и металлопластиковых, а срок их службы несопоставимо выше.

    В любом случае, схема прокладки трубопровода достаточно проста. Первая её часть, подающая воду к сантехническому оборудованию, монтируется непрерывной линией от теплового узла последовательно к каждой точке водоразбора. На последней точке в цепи трубопровод не заканчивается, он возвращается обратно к тепловому узлу. Это обстоятельство нужно учитывать при рассмотрении различных схем прокладки, чтобы минимизировать расход материалов на организацию петли.

    Перед прокладкой каждый отдельный сегмент трубопровода облачается в поясную теплоизоляцию из вспененного полиэтилена или каучука. Последний материал более предпочтителен для тех участков труб, которые впоследствии будут замурованы. Теплоизоляция должна размещаться вплотную к фитингам, все стыки между оболочкой нужно обязательно проклеить металлизированным скотчем.

    Эксплуатация и режимы работы

    Мнение, что система рециркуляции послужит причиной дополнительных энергозатрат, не лишено оснований, однако во многом преувеличено. Дело в том, что в отопительный период, когда в горячей воде есть самая насущная необходимость, паразитные теплопотери так или иначе остаются внутри теплового контура здания, а потому не могут считаться бесцельной тратой.

    Летом же, когда в обогреве помещений надобности нет, рециркуляцию можно попросту отключить, обесточив насос и перекрыв кран на обратной стороне петли. Правда, для этого устройство принудительной циркуляции должно размещаться по схеме после всех точек водоразбора.

    Рециркуляция ГВС может быть относительно легко автоматизирована. Даже если насос не снабжён встроенным программируемым таймером, ничто не мешает установить отдельное управляющее устройство и отключить работу системы ночью или в отсутствие хозяев. Если же жильё снабжено системой бытовой автоматизации, можно наладить работу системы рециркуляции на основе алгоритмов «Умного дома» или охранной сигнализации. опубликовано econet.ru

    Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

    Понравилась статья? Напишите свое мнение в комментариях.
    Подпишитесь на наш ФБ:

    Для чего нужна рециркуляция горячей воды?

    У автономных систем подогрева и подачи воды есть ряд недостатков, которые большинству простых пользователей кажутся неизбежными. На самом же деле некоторые из этих проблем легко решаются при помощи относительно несложного и не самого дорогого дополнительного оборудования.

    Если подогрев воды в доме осуществляется при помощи проточного газового котла, можно столкнуться с некоторыми проблемами, которые усложняют жизнь.

    – При увеличении водоразбора падают температура и напор горячей воды.

    – Горячая вода при открытии крана появляется с задержкой. Особенно это заметно по утрам: приходится ждать, пока из трубопровода сольется вода, остывшая за ночь. Причем чем больше дом (и, соответственно, расстояние между котлом и точкой водоразбора), тем дольше ожидание.

    – Проточный нагреватель запускается каждый раз при открытии крана, даже если количество необходимой горячей воды невелико – например, вам нужно всего лишь почистить зубы. Это не только приводит к ускоренному износу котла, но и «сжигает» газ или электричество.

    В малом хозяйстве эти проблемы не очень заметны, но если в доме живет большая семья, которая пользуется горячей водой часто, много и одновременно в разных точках водоразбора (например, в один и тот же момент задействованы душевая, ванна и кухонная мойка), есть смысл предусмотреть систему ГВС с внешним бойлером косвенного нагрева и рециркуляцией горячей воды.

    Как это работает?

    Бойлер косвенного нагрева – это накопительный бак, внутри которого установлен теплообменник, подключенный к котлу. Горячая вода от котла, проходя через теплообменник бойлера, нагревает его содержимое, при этом не затрачиваются никакие дополнительные ресурсы. Вода из бойлера подается в систему ГВС, обеспечивая стабильную температуру и напор независимо от того, сколько кранов сейчас открыто. Объем бойлера рассчитывается исходя из числа проживающих в доме так, чтобы на одного человека приходилось от 20 (минимальный уровень комфорта) до 100 л (максимальный уровень). Если жители дома любят принимать ванну или в семье много детей, которых необходимо купать, на одного человека должно приходиться не менее 80 л объема бойлера.

    Для экстренных ситуаций в некоторых моделях бойлеров кроме теплообменника устанавливается независимый нагревательный элемент, чаще всего электрический. Это может пригодиться, например, при временном отключении газа или при запуске системы после долгого простоя, чтобы быстро нагреть воду в бойлере.

    Рециркуляция ГВС – это процесс, при котором вода в системе циркулирует постоянно, проходя через бойлер, и поэтому всегда остается горячей – в любое время суток и любой точке разбора. Для этого в системе необходимо установить специальный циркуляционный насос для системы ГВС — например, одну из моделей Grundfos серии COMFORT. Он подключается к электрической сети, но потребляет очень мало — максимум 7 Вт, так что его эксплуатация вряд ли заметно повысит расходы на электричество. В базовой комплектации COMFORT работает непрерывно, 24 часа в сутки. Чтобы ограничить время работы насоса и, соответственно, расходы на электроэнергию, существуют модификации COMFORT BT и COMFORT BA. COMFORT BT оборудован встроенным температурным датчиком, который позволяет насосу включаться только тогда, когда вода в системе ГВС начинает остывать. Во второй модификации COMFORT BA реализована интеллектуальная система AUTOadapt для анализа потребности хозяйства в воде. Управляющая электроника собирает данные об использовании горячей воды по часам в течение недели, после чего производит настойку программы работы таким образом, чтобы циркуляция осуществлялась только в те часы, когда она необходима.

    COMFORT BXA

    Организация циркуляции ГВС в доме ИЖС с бойлерами косвенного нагрева

    Циркуляция ГВС для системы водоснабжения дома

    В первую очередь поясним, почему, для чего

    Циркуляцию ГВС в домах организуют:

    1. Для исключения ожидания протока остывшей горячей воды, что находится в участке трубы до крана разбора, к примеру, утром пришли умыться и почистить зубы, открываем кран, а вместо горячей воды из него льется несколько литров, или даже десятков литров холодной воды, приходится терпеливо ждать ее протока, пока горячая вода из бойлера дойдет до крана, напрягает, не правда ли?

    2. Для подогрева санузла, ванной комнаты в период когда основное отопление уже не работает, в межсезонье и летом, на улице чуть похолодало, в доме поднялась влажность, в санузлах, особенно с северной стороны дома, становится очень некомфортно, полотенца не сохнут, стоят запахи сырости и затхлости, зайти и принять душ становится неприятно, да что говорить, посетить “белого друга” с книжкой в руках (или планшетом), и то уже как то не так, хочется тепла (ну если только планшет при быстрой работе может чуть подогреть Вас теплом от процессора).

    3. Для исключения появления “тухлой воды” в подводящих трубопроводах, при перерыве в разборе, что соответственно спасет Вас от всем известной “легионеллы”, да и запаха “тухлой воды” при открывании крана больше не появится.

    В каких случаях циркуляцию организовать необходимо, а в каких можно обойтись без нее?

    Если протяженность от бойлера косвенного нагрева до крана с горячей водой превышает 8-10 метров, при расстоянии 2-3 метра, (если Вы устроили удобную вертикально интегрированную планировку санузлов, кухни, и котельной) можно не делать циркуляцию ГВС, но, тогда рекомендую на замену установить электрические полотенцесушители, дабы всеже было тепло в этих помещениях.

    Теперь о плюсах и минусах данной системы

    Плюсы мы уже озвучили, тепло внутри помещений санузлов, вода всегда горячая из крана в любое время суток, вода не протухнет в трубе, полотенца можно сушить во время отключенной системы отопления.

    Минусы тоже есть, перечислим их, это расход трубы, вентилей и обратных клапанов на протяжку от крайних точек обратно к бойлеру, покупка циркуляционного насоса, потребление электроэнергии на его работу, ремонтные процедуры (замена насоса, вентилей), расход энергии на потерю тепла на трубах и отдача тепла полотецесушителях при нагреве помещений, (тоже немаловажно), но, это плата за комфорт!

    Теперь об устройстве системы циркуляции ГВС, как ее можно реализовать, и на каком оборудовании

    В общем виде система циркуляции представляет собой трубопроводы с крайних точек подвода ГВС в доме, с возвратом в общий коллектор, через подключенные к ней полотенцесушители, с коллектора циркулирующая горячая вода забирается насосом и направляется в бойлер косвенного нагрева, соотвественно, из бойлера горячая вода снова направляется к точкам разбора по линии подачи горячей воды из бойлера, цикл повторяется, при этом само собой, вода в бойлере постоянно подогревается либо контуром от котла, либо электроподогревом, если циркуляцию мы организуем через электрический бойлер (в котором должен быть либо дополнительный штуцер, либо ввод циркуляции через раздвоенный штуцер на подаче холодной воды в электронагреватель

    Организация классической рециркуляции ГВС в доме с бойлером косвенного нагрева

    организация циркуляции ГВС в доме

    На рисунке выше видна система организации циркуляции ГВС на примере бойлера Дражице (у автора такой бойлер), все предельно просто, труба горячей воды, у водоразборного крана (посредством тройника, либо коллектора) поступает в полотенцесушитель, затем приходит на прием циркулирующему насосу, управление которым можно организовать по таймеру (чтобы не крутил воду круглые сутки и экономил ресурс и энергию), и, с напора насоса, через обратный клапан (чтобы при остановленном насосе, вода в кран не поступала из средней части бойлера), поступает в среднюю часть бойлера, нагревается, и снова уходит к кранам.

    Общие тонкости системы, и проблемы что можно столкнуться при ее реализации, при множестве точек водоразбора, необходима балансировка системы, для равномерной циркуляции по всем точкам, и равномерный нагрев во всех полотенцесушителях

    Организация рециркуляции ГВС в доме с электронагревателем горячей воды

    организация циркуляции ГВС в доме с электронагревателем со штуцером рециркуляции ГВС

    На рисунке выше видна система организации циркуляции ГВС на примере накопительного водонагревателя горячей воды, со специальным штуцером для ввода рециркулята, в этом случае тоже все аналогично предыдущему варианту, исключение составляет только то что нагрев воды осуществляется электроэнергией

    организация циркуляции ГВС в доме с электронагревателем без щтуцера рециркуляции ГВС

    На рисунке выше видна система организации циркуляции ГВС на примере накопительного водонагревателя горячей воды, без специального штуцера для ввода рециркулята, в этом случае тоже все аналогично предыдущему варианту, но возможно для применения обычным, самым распространенным нагревателем, в двух последних случаях установки электронагревателя, нужно учитывать мощность с учетом затрат на отдачу тепла на полотенцесушителях (обычно это ватт 400-500 в среднем) и теплопотери на трубах, что крайне важно, трубы необходимо будет утеплить

    Насосы для рециркуляции | Насосы и принадлежности

    Здравствуйте, уважаемые читатели блога nasos-pump.ru

    Насосы для рециркуляции

    В рубрике «Насосы» поговорим о насосах для рециркуляции в системах горячего водоснабжения (ГВС). Насосы для рециркуляции ГВС являются насосами с «мокрым» ротором. Благодаря насосам происходит циркуляция горячей воды в системе водоснабжения и тем самым горячую воду можно получить сразу же после открытия крана. Данное оборудование предназначено для перекачивания чистых, не вязких и не агрессивных жидкостей без волокон и твердых частиц, умягченной и чистой воды в системах горячего водоснабжения. Чтобы достичь максимальный режима экономии при рециркуляции ГВС, трубопровод подачи горячей воды и возвратный трубопровод должны иметь теплоизоляцию для снижения потери тепла и экономии теплоносителя, используемого на ее нагрев. Все насосы, используемые для рециркуляции ГВС, имеют бронзовый корпус. Важным дополнением ко многим насосам различных фирм производителей является таймер, при помощи которого можно программировать работу насоса и тем самым получать экономию электроэнергии.

    Схема рециркуляции горячей воды

    Попробуем разобраться, как работает схема рециркуляции горячей воды. На (Рис. 1) имеется система горячего водоснабжения, состоящая из двух точек горячего водопотребления: умывальник и душ.

    Схема рециркуляции

    Центральным элементом этой системы, является бойлер, который производит нагрев горячей воды. Существует огромная разновидность бойлеров косвенного нагрева, которые могут нагревать воду как от системы отопления, от солнечных батарей так и от электрического  ТЭНа. У бойлеров для приготовления горячей воды есть вывод для ввода холодной воды, выхода горячей воды и у большинства бойлеров есть еще один вывод для входа горячей воды. Именно этот вывод используется для линии рециркуляции ГВС и к нему подключается циркуляционный насос. Линия рециркуляции всегда монтируется от самой дальней точки разбора горячей воды. Только при такой схеме монтажа на всех точках разбора, можно получить сразу горячую воду.

    Устройство и конструкция

    Конструктивно насосы для систем ГВС состоят из тех же основных элементов, что и насосы, применяемые в системах циркуляции теплоносителя. Данную конструкцию мы подробно разбирали, когда рассматривали циркуляционные насосы для систем отопления. Но насосы для рециркуляции могут иметь и немного другую конструкцию (Рис. 2). Состоит данное оборудование из: статора, ротора с рабочим колесом и корпуса.

    Конструкция насосов для ГВС

    1. Корпус насосов для рециркуляции – изготавливается из бронзы или латуни.
    2. Статор односкоростной. Он охлаждается перекачиваемой жидкостью. Максимальная рабочая температура перекачиваемой среды составляет +65° С, при температуре окружающей среды +40° С
    3. Ротор – короткозамкнутый, имеет вал из нержавеющей стали.
    4. Рабочее колесо изготавливается из специального, тугоплавкого пластика

    Способы монтажа

    Монтаж насосов для рециркуляции следует проводить после завершения всех сварочных работ и промывки системы рециркуляции, так как любой посторонний предмет при попадании в насос  может привести к выходу его из строя. Основные моменты, на которые следует обратить внимание при монтаже:

    • Монтировать насос следует в доступном месте, для удобства его обслуживании и демонтажа.
    • Стрелка на корпусе насоса указывает направление протока жидкости.
    • Сразу же за насосом необходимо смонтировать обратный клапан, а для удобства обслуживания и демонтажа оборудования, перед и за насосом, следует смонтировать запорную арматуру.
    • На монтируемый насос не должно оказываться механическое напряжение со стороны трубопроводов.
    • Ось вала насоса должна быть расположена в горизонтальном положении.
    • Монтировать насос для рециркуляции необходимо всегда на возвратном  трубопроводе. Данное оборудование никогда не монтируется на подающем трубопроводе.

    Электрическое подсоединение

    Электрическое подключение насосов для рециркуляции должен осуществлять  квалифицированный электрик, согласно Правилам устройства электроустановок (ПУЭ). Напряжение в сети должны соответствовать данным указанным на фирменной табличке насоса. Подключение следует выполнять согласно инструкции по эксплуатации и со  штепсельным соединением для подключения в розетку с заземлением. Сечение кабеля должно соответствовать мощности подключаемого оборудования, а сам кабель не должен касаться трубопроводов. Для предотвращения попадания влаги через кабельную муфту, уплотнительная гайка должна плотно и надежно обжимать кабель. Клеммная  коробка  двигателя не должна быть опущена вниз, ибо в таком положении в нее может  попасть  вода. В случае необходимости корпус двигателя следует перевернуть.

    Первый запуск оборудования

    После выполнения всех монтажных работ и заполнения системы, можно вводить оборудование в эксплуатацию. Удаление воздуха из рабочей камеры большинства типов насосов происходит после непродолжительного его включения автоматически. У некоторых насосов на торце есть винт для удаления воздуха. Если в таком насосе слышен, «шум», то нужно при помощи плоской отвертки отпустить на вполоборота или оборот винт для удаления воздуха и воздух из насосной части удалится. При этом вместе с выходящим воздухом будет вытекать и вода. Насосы для рециркуляции очень часто подключают в сеть питания через суточный таймер. Таймер включает насос в работу в заданные временные промежутки и тем самым экономит расход электроэнергии.

    Эксплуатация обслуживание и ремонт

    Насосы для рециркуляции являются надежным и эффективным оборудованием, работающим долго при соблюдении условий эксплуатации. Специального обслуживания они не требуют. При длительном простое, необходимо убедится, что рабочее колесо не «закисло» и вал насоса вращается легко и свободно. В противном случае следует расклинить вал насоса и только после этого можно вводить насос в эксплуатацию повторно. Ремонту они не подлежат, так как запасных частей на данное оборудование нет.

    Подводя итог, можно сказать, что современные системы ГВС в индивидуальных зданиях нуждаются в высококачественном насосном оборудовании, способном обеспечить эффективную циркуляцию горячей воды. Для долгой и надежной их эксплуатации необходимо соблюдать условия монтажа и правила эксплуатации.

    Спасибо за проявленный интерес.

    P.S. Не упустите возможность сделать доброе дело: нажмите на кнопки социальных сетей расположенных на верху страницы, в которых вы зарегистрированы, чтобы и другие люди тоже получили пользу от этого поста. БОЛЬШОЕ СПАСИБО!

    .

    Еще похожие посты по данной теме:

    Бойлеры косвенного нагрева

    Бойлер косвенного нагрева с системой “бак в баке” – это теплообменник или тепло-аккумулятор, состоящий из двух ёмкостей, расположенных одна в другой. Внутренняя ёмкость содержит нагреваемую жидкость (вторичный контур), выполнена из нержавеющей стали и имеет гофрированную поверхность. Наружная стальная емкость содержит греющий теплоноситель (первичный контур). Система обеспечивает однородный нагрев воды по всему объёму резервуара, а возможность свободного перемещения внутренней ёмкости и её гофрированные стенки обеспечивают самоочистку бойлера от накипи. В продаже встречаются модели водонагревателей без теплообменных трубок — конструкция состоит из двух емкостей, установленных одна в другую, внутренняя выполнена из нержавеющей стали, а теплоноситель циркулирует между стенок внешней и внутренней емкостей. Другими словами- “бак в баке”. Змеевидная труба теплообменника из стали или латуни, установленная внутри емкости, имеет сложную форму, что позволяет проходящему по ней теплоносителю быстрее и лучше нагревать воду. Витки спирали теплообменника могут располагаться ближе к нижней части емкости бойлера, в более холодном слой воды. Встречаются модели бойлеров с двумя трубчатыми теплообменниками, один из которых предназначен для циркуляции теплоносителя из отопительной системы, а второй — для теплоносителя из альтернативных источников, например- от теплового насоса.
    Бойлер косвенного нагрева – это отличная альтернатива обычному двухконтурному отопительному котлу, особенно, если есть необходимость в больших количествах горячей воды. Такой водонагреватель подходит для установки в квартирах, коттеджах, офисных помещениях, и т.д.

    Плюсы использования бойлера косвенного нагрева:

    • не использует электричество для нагрева воды в холодное время года;
    • высокая производительность, при условии достаточной мощности котла;
    • внутренняя поверхность змеевика в бойлере контактирует лишь с подготовленной водой, содержащей малое количество солей;
    • обеспечение горячей водой без ее предварительного слива из крана;
    • возможность подключения различных источников тепловой энергии.

    Бойлер косвенного нагрева удобен тем, что ему для работы нужно только тепло, которое вырабатывают другие источники, он не питается за счет газа, электроэнергии или другого топлива. Он может работать с котлами на любых видах топлива, может интегрироваться в центральные системы отопления, его можно устанавливать в удобном для вас месте, так как для работы не нужен мощный источник электричества.
    Водонагреватель прост в обслуживании и регулировке, поддержка температуры воды производится автоматически, они бесшумны, экологичны и долговечны, так как в них нет камер сгорания или мощных ТЭНов. Однако, так как бойлер косвенного нагрева работает с более холодным источником тепловой энергии, его производительность ограничена. То есть сложно обеспечить высокую мощность без серьезного увеличения размеров. Поэтому выпускаются исключительно накопительные агрегаты, которые нагревают воду постепенно и хранят нужный вам объем при заданной температуре. Благодаря эффективной теплоизоляции, вода очень медленно остывает, что сводит к минимуму потери тепла. Сама емкость выполняется из металла или полимерных материалов, с обязательным антикоррозионным покрытием внутренней поверхности, часто используется дополнительная защита анодом.
    Есть модели с дополнительным электрическим нагревательным элементом, он также выручает летом, когда отопление не работает. Комплектуются термометрами и термостатами. Если горячая вода используется не только для технических нужд, но и для приготовления пищи, то важно выбирать модели, не выделяющие в воду вредных веществ.

    Минусы бойлеров косвенного нагрева

    • Высокая стоимость комплекта оборудования (бойлер косвенного нагрева+одноконтурный котел), по сравнению с электрическим бойлером или двухконтурным котлом;
    • на нагрев холодной воды в емкостях объемом свыше 100 л уходит несколько часов, в это время снижается интенсивность отопления жилых помещений;
    • емкость бойлера занимает много места.

    Устройство и принцип работы

    Внешне бойлер косвенного нагрева напоминает металлическую бочку для сбора воды и имеет цилиндрическую форму, он может вмещать как десятки, так и сотни литров воды — точный объем зависит от конкретной модели. Существуют бойлеры как вертикальной, так и горизонтальной установки: первый тип крепится к стене на некоторой высоте от уровня пола и предпочтителен, если помещение котельной небольшое по площади. Корпус накопительной емкости выполняется из окрашенной эмалью стали, пластика и нержавеющей стали — последние два материала обеспечивают значительно больший срок службы, т.к. не подвержены коррозии.

    Принцип работы.
    Принцип работы весьма простой — через ввод в емкость бойлера поступает холодная вода, по змеевику теплообменника или между стенками двойного корпуса циркулирует теплоноситель, нагретый отопительным котлом, который эту холодную воду и нагревает. Каждый бойлер косвенного нагрева имеет патрубки, которые соединяют его с отопительным котлом, а нагретая вода поступает к кранам через патрубок вывода. Для снижения теплопотерь и исключения повреждения бойлера из-за постоянных перепадов внутренней и внешней температур, снаружи его емкость закрыта теплоизолирующим материалом из полиуретановой пены, пенополистирола или минеральной ваты. При малом расходе воды, т.е. не выше 1,5-2 л/мин, установка бойлера косвенного нагрева и одноконтурного котла невыгодна, проще и дешевле будет установить двухконтурный котел. Не имеет смысла использование такого водонагревателя при использовании электрического котла отопления. Но если, когда горячая вода необходима в больших объемах и отопительный котел работает на твердом топливе или природном газе— бойлер косвенного нагрева просто незаменим!

    Сравнение бойлера косвенного нагрева с другими типами водонагревателей

    • Газовая колонка. Установка требует согласования проекта, устройство дымохода, неспособность поддерживать постоянную температуру воды.
    • Водонагреватель газовый, накопительный — требования такие же, что и при установке газовой колонки.
    • Проточный электронагреватель — быстрый нагрев воды, низкая производительность из-за меньшей мощности, чем у бойлера косвенного нагрева.
    • Накопительный электронагреватель — не способен обеспечить нагрев воды за короткий срок. Ну и проблема любых электронагревателей — большой расход электроэнергии.
    • Двухконтурный котел — низкая производительность, температура нагретой воды непостоянна, забивание змеевика, в котором циркулирует вода, известковыми отложениями. В результате , т.к. накипь препятствует теплопередаче, уменьшается сечение трубки змеевика, отчего вода при открытии крана течет слабой струей, котел теряет мощность.

    Вопрос – ответ

    Использовать лучше бойлер косвенного нагрева или двухконтурный котел?
    Бойлер косвенного нагрева используется в паре с одноконтурным котлом — это оборудование занимает больше места и стоит дороже, чем просто двухконтурный котел. Но есть и преимущество перед просто двухконтурным котлом — значительное количество горячей воды практически без перебоев с постоянной температурой.
    Любая водонагревательная система, основанная на нагреве проточной воды, всегда имеет негативные факторы, например, не удастся одновременно вымыть посуду и принять душ, не испытав при этом нехватки воды и понижения ее температуры. Принимающему душ приходится просить других, чтобы те не открывали кран с горячей водой и не доставляли купающемуся бодрящих ощущений. В бойлере косвенного нагрева количество одновременно используемых точек пользования горячей водой ограничено лишь емкостью водонагревателя, горячая вода в нем уже нагрета и имеет одинаковую температуру по всему объему. Таким образом не придется ждать, пока циркуляция воды при открытии крана доставит горячую воду нужной температуры.

    Анод из магния. Зачем он?
    Внутри бойлера, в заполняемом водой баке, находится анод из магния. Он предназначен для защиты металлической емкости от гальванической коррозии: его электрический потенциал ниже, чем у металлических поверхностей бойлера, поэтому коррозия будет воздействовать и разрушать именно магниевый анод. Требует периодической замены, т.к. коррозия не щадит и его. Заменить нужно магниевый катод при уменьшении его длины на половину.

    ТЭН, зачем он в бойлере косвенного нагрева?
    Бойлеры косвенного нагрева оснащаются электрическим тэном, который используется в теплый сезон, когда отопительный котел отключен, а горячая вода все равно необходима.

    Как подключить бойлер косвенного нагрева?
    Подключение бойлера выполняется контуром, параллельному отопительному контуру, в который встраивается независимый циркуляционный насос — благодаря этому достигается независимость горячего водоснабжения от отопительной системы. Кроме того, такое подключение позволит при необходимости полностью отключить отопительный контур и направить теплоноситель только в бойлер. Установка бойлера в гравитационную систему отопления возможна, необходимо ввести его в отопительный контур последовательно через байпас, после котла и до отопительных приборов.

    Как удалить накипь в бойлере косвенного нагрева самостоятельно?
    Профилактическое обслуживание выполняется раз в полгода или раз в год. Сначала определимся- пора ли удалять накипь. Будем мерять разницу температур на входе бойлера (температуру теплоносителя идущего от котла на входной патрубок бойлера косвенного нагрева) и температуру на выходе из бойлера. Если разница НЕ МЕНЬШЕ 15 градусов- все в порядке, если меньше- пора браться за работу. Почему? Потому что известковая накипь на внешней поверхности змеевика препятствует теплопередаче и теплоноситель не успевает передать тепло воде, соответственно срок нагрева воды возрастет .
    Как будем убирать накипь?
    Способ «тепловой удар». Для этого полностью слейте воду из бойлера и пустите через змеевик горячий теплоноситель от работающего котла на 10-15 минут, чтобы максимально разогреть теплообменник в пустой емкости бойлера. Затем максимально быстро заполните бойлер холодной водой. В результате большой разницы между температурой змеевика и окружающей его водой известковые отложения отстанут от трубки — промойте и повторите удаление накипи «тепловым ударом» еще раз. Если же на вводе-выводе теплоносителя в бойлер разница температур менее 12градусов, «тепловой удар» не поможет — слишком велик нарост накипи на змеевике. Потребуется применение химических средств для удаления накипи, рекомендованных производителем. Использовать какие-то «домашние» средства и составы для удаления известковой накипи не рекомендуется — емкость бойлера может быть повреждена. Химические средства для удаления накипи, как использовать и пропорции разведения приводятся на упаковке средства очистки. Составленная смесь заливается в емкость бойлера и ее уровень должен полностью закрыть змеевик. Срок очистки, как правило, составляет от 4-х до 8-ми часов и зависит от объема бойлера. По окончании срока очистки содержимое бойлера полностью удаляется, затем его необходимо дважды наполнить холодной водой и слить ее.

    На что обратить внимание при покупке бойлера косвенного нагрева?
    Первым делом нужно подобрать оптимальный объем бойлера. Определитесь со средним расходом горячей воды в сутки с небольшим запасом подберите объем бойлера.
    Внимание! Бойлер косвенного нагрева емкостью 20 литров нагреет воду за 40 минут, а 200-литровый бойлер нагреется за 6 часов!
    Обратите внимание на материалы, из которых изготовлены трубка змеевика, внутренняя емкость для воды и теплоизоляция. Недорогие модели оснащены стальным змеевиком, приваренным к емкости бойлера, более дорогие- имеют латунный змеевик, иногда оребренный. Съемный змеевик из латуни более эффективен, его легко очистить от накипи, приваренному помочь невозможно.


    Наши специалисты помогут Вам подобрать, а также смонтировать водонагреватель, найдут приемлемое решение по цене.
    Вы останетесь довольны, сотрудничая с нами!

    Система рециркуляции горячей воды | Циркуляционные водонагреватели А. О. Смита

    Циркуляционные водонагреватели XP

    В высокоэффективном конденсационном водонагревателе XP, соответствующем требованиям ENERGY STAR®, A.O. Smith используется современный теплообменник и технология управления для подачи больших объемов горячей воды для требовательных коммерческих и промышленных систем горячего водоснабжения. Теплообменник из нержавеющей стали и регулируемое сгорание в совокупности обеспечивают до 96% теплового КПД.

    Просмотр продуктов

    Циркуляционные водонагреватели XP PLUS

    Благодаря сочетанию инновационных функций управления и возможностей регулирования, XP PLUS является новейшим высокоэффективным полностью конденсационным продуктом от A.O. Smith, предлагающим высокую производительность для требовательных крупных коммерческих приложений. Благодаря современной технологии теплообменников из нержавеющей стали, XP PLUS может достигать теплового КПД до 98% при использовании в низкотемпературных приложениях, таких как тепловые насосы или системы горячего водоснабжения.

    Просмотр продуктов

    Циркуляционные водонагреватели VF ™

    Что вы получите, если объедините модулируемую горелку и репутацию А. О. Смита в области инноваций? Устройство, созданное для обеспечения максимальной отдачи для ваших клиентов. Благодаря точному регулированию выходной мощности в БТЕ и тепловому КПД 85%, VF является наиболее щадящим циркуляционным водонагревателем, который когда-либо проектировал А. О. Смит.Поговорим об освежающем повороте.

    Просмотр продуктов

    Genesis

    ® Циркуляционный водонагреватель

    Линия газовых циркуляционных водонагревателей средней эффективности Burkay® Genesis® предоставляет вам все: исключительную эффективность, простоту установки и компактный дизайн. Они хорошо подходят для широкого спектра коммерческих приложений: школ, многоквартирных домов, мотелей и т. Д.Каждый Genesis оснащен усовершенствованным электронным управлением для более быстрой диагностики нагревателя.

    Просмотр продуктов

    Специалист по охране окружающей среды

    ® Burkay ® Циркуляционный водонагреватель Газовые циркуляционные водонагреватели

    Conservationist® Burkay® с высоким КПД предназначены для использования внутри помещений в установках, требующих более высоких затрат (до 670 000 БТЕ). Они устойчивы к ржавчине, потому что вода не контактирует ни с чем, кроме меди, латуни или бронзы.Горелка Burkay отличается запатентованной конструкцией, которая обеспечивает максимальную эффективность сгорания.

    Просмотр продуктов

    Естественная циркуляция – обзор

    16.9.1 Введение

    Термогидравлический контур с естественной циркуляцией (NCL) является важным аспектом в конструкции, эксплуатации и безопасности всех концепций Gen IV. Некоторые концепции полагаются на естественную циркуляцию для нормальных рабочих условий и нестандартных условий безопасности. Другие зависят от естественной циркуляции только в пассивных ненормальных условиях безопасности.Целью пассивных систем безопасности с естественной циркуляцией является поддержание системы в безопасном отключенном состоянии в течение длительных периодов времени без необходимости вмешательства оператора или наличия электроэнергии.

    Пассивные системы безопасности на основе естественной циркуляции предназначены для обеспечения максимального теплоотвода в случае нарушения нормальной работы системы охлаждения реактора. Ввиду его критической важности фундаментальное понимание свойств и характеристик гидродинамики естественной циркуляции, тепловых откликов и термодинамики в сложном инженерном оборудовании энергетических систем ядерных реакторов имеет важное значение.Для систем поколения IV, которые основаны на естественной циркуляции в нормальных рабочих состояниях, также необходимо хорошо понимать свойства и характеристики в установившихся условиях.

    Как правило, потоки с естественной циркуляцией, встречающиеся на атомных электростанциях, будут связаны с замкнутыми контурами, состоящими из трубопроводов, проточных каналов различной формы и нескольких компонентов оборудования. Петли обычно закрыты, но отказ трубопровода, составляющего петлю, может нарушить естественную циркуляцию и сделать систему непригодной для использования по назначению.Вторичная сторона парогенераторов (ПГ) для заводов, использующих естественную циркуляцию для нормальной работы, характеризуется как НКП с пропускной способностью; ввод питательной воды из конденсатора и отбор пара на выходе из ПГ для питания турбин. Все эти системы будут иметь области, в которых поток идет по параллельным каналам, таким как топливные стержни и пучки твэлов, в активной зоне и трубки в SG и HEX.

    Потоки с естественной циркуляцией вокруг контуров и потоки в параллельных каналах подвержены как отклонениям от установившегося режима работы, так и переходам в колебательные и потенциально нестабильные состояния.Таким образом, энергетические системы ядерных реакторов поколения IV сочетают в себе тип потока жидкости и геометрию, которые, как известно, потенциально могут привести к нежелательным состояниям. В частности, следует избегать нежелательных колебательных состояний при установившемся режиме работы. Вся система и связанный с ней рабочий диапазон предназначены для предотвращения нестабильных состояний.

    Обсуждения в следующих разделах будут сосредоточены на теплогидравлических свойствах и характеристиках потоков в параллельных каналах и NCL. Будет кратко рассмотрена литература по общим аспектам аналитического, экспериментального, математического моделирования, численным методам решения и вычислительным аспектам этих потоков.Эти аспекты, связанные с конкретными системами Gen IV, также будут обсуждаться.

    Циркуляционная система котла: помимо паропроизводящего котла

    Основное назначение парогенерирующего котла – производство пара для выработки электроэнергии. Перегретый пар поступает из котла в турбину и вращает лопасти турбины, чтобы произвести электричество. То, как вода поступает и выходит из котла, называется системой циркуляции пара и котла. Трубы и трубки, из которых состоят эти кровеносные системы, состоят из многих частей.

    Для того, чтобы котел мог непрерывно производить пар, по его трубам должна циркулировать вода. В котлах используется тепловая циркуляция, при которой вода подвергается нагреву и начинает превращаться в пароводяную смесь. Поскольку комбинация воды и пара менее плотная, чем вода, сила тяжести заставит воду двигаться вниз, а смесь пара и воды подниматься.

    Все парогенераторные котлы имеют одинаковую систему, описанную ниже. В этой статье наш пример – излучающий пылевидный угольный котел.

    Излучающий пылевидный угольный котел делится на три части:

    1. участок топки, где расположен источник тепла
    2. Участок пароперегревателя, где производится перегретый пар
    3. конвекционный проход или зона рекуперации тепла, где расположен экономайзер.

    В этих зонах смесь воды и пара циркулирует по всему котлу. На Рисунке 1 показана типичная циркуляционная система излучающего котла.

    Система циркуляции воды / пара

    Прежде чем вода попадет в парогенератор, ее необходимо обработать и очистить от минералов и щелочей (например,g., железо или кальций), которые могут закупорить трубки и нарушить нормальную циркуляцию. После обработки или очистки вода предварительно нагревается в баках подогревателя питательной воды. Затем предварительно нагретая вода поступает в котел через входной коллектор экономайзера. Система трубопроводов, по которой вода поступает во впускной коллектор экономайзера, называется системой трубопроводов питательной воды. (Примечание: температуры, показанные на Рисунке 1 для каждой системы, взяты из исторических данных и будут варьироваться в зависимости от конструкции и режима работы котла.)

    Для радиантного котла температура нагревателя питательной воды на входе экономайзера составляет приблизительно 483 ° F (для промышленного котла или котла с псевдоожиженным слоем температура будет примерно на 100 ° F ниже).Вода циркулирует вверх по трубкам экономайзера к выходному коллектору экономайзера, где она достигает 576ºF. Из выходного коллектора экономайзера вода / пар проходит через соединительные трубы экономайзера IPS диаметром 8 дюймов в паровой барабан.

    Паровой барабан имеет диаметр 6,5 футов и собирает и распределяет воду / пар, непрерывно циркулируя по котлу. Как только вода / пар попадает в барабан из выпускного коллектора экономайзера через соединительную трубу экономайзера, он направляется вниз по трубам, называемым сливными стаканами, под действием силы тяжести.

    Нисходящие стаканы представляют собой трубы большого диаметра (25 дюймов IPS), которые отводят воду / пар, поступающие из парового барабана, к нижним коллекторам водяной стенки конвекционного прохода и стенкам печи.

    Подающие трубы (диаметром 5 дюймов) подают пар / воду из сливных стаканов в отдельные нижние коллекторы водяной стенки. Затем вода / пар поднимается по стеновым трубам (естественная тепловая циркуляция), пока не достигнет верхних коллекторов водяной стенки. Температура воды / пара к этому времени достигла 688ºF.Подъемные трубы, названные так в честь воды / пара, поднимающейся из верхних водяных коллекторов, возвращают воду / пар при 688ºF обратно в паровой барабан.

    Циркуляционная система воды / пара заканчивается внутри парового барабана. Однако до того, как пар попадет в следующую систему кровообращения, остается еще один шаг. Смесь воды и пара, поступающая в барабан, все еще содержит влагу (воду) и поэтому должна поступать в зону разделения пара и воды в верхней половине парового барабана. Зона разделения пара и воды состоит из множества цилиндрических трубок, называемых циклонными сепараторами.Циклонные сепараторы вращают смесь влажной воды и пара в циклонном режиме, отделяя воду от влажной смеси за счет центробежной силы. Влажная влага опускается в нижнюю половину парового барабана, где она смешивается с водой / паром, выходящим из выпускного коллектора экономайзера, попадает в сливные стаканы и снова начинает циркуляционный процесс.

    Циркуляционная система перегретого пара начинается с уже сухого пара при температуре 688 ° F. Сухой пар поднимается из парового барабана из циклонных сепараторов через соединительный трубопровод для выпуска пара в верхней части парового барабана.Соединительный трубопровод выхода пара подводит сухой пар в систему циркуляции перегретого пара котла.

    Циркуляционная система перегретого пара

    В системе циркуляции перегретого пара сухой пар из котла перегревается и направляется в электрогенератор или турбину. Трубы, объединенные в секции с несколькими петлями, подвешены внутри котла, где горячие дымовые газы из топки проходят вокруг этих рядов труб. Количество рядов трубок пароперегревателя зависит от размера котла и требований к температуре пара на выходе.

    Циркуляционная система перегретого пара начинается с сухого пара 688 ° F, поступающего из парового барабана через соединительный трубопровод для выхода пара во входной коллектор первичного пароперегревателя. Пар циркулирует через ряды входных и выходных труб первичного пароперегревателя, циркулируя вверх и вниз, пока не достигнет выходного коллектора первичного пароперегревателя. Температура пара достигла 811ºF. По соединительной трубе пар передается во входной коллектор вторичного пароперегревателя. Между первичным выпускным коллектором и вторичным впускным коллектором расположены регуляторы разбрызгивания воды.Агрегаты – это коллекторы с датчиками, которые могут отслеживать и регулировать температуру пара, выходящего из выпускного коллектора первичного пароперегревателя. Они названы так потому, что распыляют воду или влажный пар как средство контроля температуры.

    Пар с температурой 811ºF циркулирует через секции трубы вторичного пароперегревателя, поднимаясь и опускаясь, пока не достигнет выходного коллектора вторичного пароперегревателя. Температура сухого перегретого пара теперь составляет 1 005 ° F.

    Ряды труб первичной и вторичной секций пароперегревателя находятся над трубами свода печи.Трубы водяной стенки, расположенные непосредственно под пучками труб, иногда называют трубами пола пароперегревателя. На Рисунке 1 обратите внимание, что секция труб первичного и вторичного пароперегревателя размещается в середине блока, непосредственно между конвекционным проходом (областью рекуперации тепла) и областью топки котла. Также обратите внимание, что секции трубы вторичного пароперегревателя находятся перед секциями трубы первичного пароперегревателя, улавливая больше максимального количества тепла печи.

    Связанные трубопроводы

    Для всех открытых трубопроводов снаружи котла требуется изоляция и отделочный материал (например,г., алюминиевая оболочка). Понимание исходной температуры трубопроводной системы, требующей изоляции, имеет первостепенное значение. Температура дренажных линий от входа экономайзера отличается от температуры дренажных линий нижних коллекторов водяной стенки. Трубопровод нагнетателя сажи может исходить либо от первичного выпускного коллектора, либо от вторичного выпускного коллектора.

    Толщина изоляции должна зависеть от того, откуда идет трубопровод. Существует много индивидуально изолированных трубопроводов разных размеров.См. Типичный отвод трубопроводов излучающего котла на Рисунке 2, на котором показано более 3500 линейных футов индивидуально изолированного трубопровода и более 2800 квадратных футов покрытия из минеральной ваты для труб, которые могут быть объединены в пучки.

    Заключение

    Понимание системы циркуляции воды и пара в котле – первый шаг в правильной конструкции котла. Основная функция котла – производить пар для выработки электроэнергии. Только зная системы циркуляции котла, их температуру и функцию котла, проектировщики и установщики смогут должным образом изолировать системы трубопроводов и максимально повысить энергоэффективность.Чем лучше мы понимаем систему циркуляции пара в котле, тем лучше и экономичнее будут системы изоляции.

    Список литературы

    Информация, содержащаяся в этой статье, была получена в основном из открытых источников, без прямого участия каких-либо производителей котлов.

    Combustion Fossil Power, Combustion Engineering, Inc.,
    4-е издание (1991).

    Steam, его создание и использование, Babcock & Wilcox Company,
    40-е издание (1992).

    Рисунок 1

    Типовая циркуляционная система излучающего котла

    Рисунок 2

    Типовой отвод трубопроводов излучающего котла

    Рисунок 3

    Электрогенератор

    Рисунок 4

    Нагрев и перекачка питательной воды

    Мицубиси Пауэр, Лтд. | Барабанные котлы

    Обзор

    В барабанном котле циркуляция воды осуществляется за счет разницы плотностей воды в нисходящей трубе и пароводяной смеси в топочных трубах.В котлах низкого давления, где эта разница плотностей велика, сила циркуляции велика и может быть обеспечен большой объем циркуляции, но поскольку становится трудно поддерживать достаточный объем циркуляции, когда разница плотностей между двумя уменьшается из-за более высокого давления, насос (BCP) установлен в нижней части трубы для увеличения циркуляционной силы. Тип, который обеспечивает циркуляцию воды с использованием только разницы в плотности, называется котлом с естественной циркуляцией, а тип, который включает в себя насос, называется котлом с принудительной циркуляцией.

    Схема протока жидкости в котле с естественной циркуляцией

    Схема прохождения жидкости в котле с принудительной циркуляцией

    Отчет о доставке

    • Котел с принудительной циркуляцией
      Заказчик BLCP
      Завод (деревня) Электростанция BLCP (Таиланд)
      Выход 717 МВт
      Максимальный продолжительный диапазон 2,285 т / ч
      Условия пара Температура основного пара 538 ° С
      Температура вторичного пара 538 ° С
      Давление основного пара 16.7 МПаА
      Топливо Уголь каменный
      Начало работы 2006
    • Котел с естественной циркуляцией
      Заказчик Каирская компания по производству электроэнергии
      Завод (деревня) Западная Каирская электростанция, блоки 7 и 8 (Египет)
      Выход 350 МВт
      Максимальный продолжительный диапазон 1094т / ч
      Условия пара Температура основного пара 541 ° С
      Температура вторичного пара 541 ° С
      Давление основного пара 18.1 МПаА
      Топливо Природный газ, мазут
      Начало работы 2011

    Что такое циркуляционный насос горячей воды и как он работает?

    Вы когда-нибудь задумывались, почему ваш кран с горячей водой дает вам холодную воду при первом включении? В зависимости от размера вашего дома вы можете подождать несколько секунд или даже минут, чтобы подать горячую воду. Это не только неудобно, но и расходует много воды.

    Расстояние, на которое должна пройти горячая вода, является причиной того, что холодная вода выходит первой. Когда кран открыт, горячая вода поступает в раковину по водопроводу. Выключение останавливает подачу воды, но не возвращает ее в водонагреватель. Он остается в трубах и остывает. В следующий раз, когда вам понадобится горячая вода, холодная вода в трубах должна быть вытеснена свежей горячей водой из водонагревателя. Чем больше трубопроводов между водонагревателем и краном, тем больше холодной воды и тем больше времени требуется.

    Но есть некоторые решения.

    Ваш сантехник может установить рециркуляционный насос. На вашем водонагревателе установлен циркуляционный насос горячей воды, возвращающий неиспользованную горячую воду обратно в водонагреватель. Предназначен для подачи горячей воды по запросу.

    Два типа рециркуляционных насосов

    Вариант №1

    Система с полным рециркуляционным насосом

    С этой опцией в водопровод вашего дома устанавливается дополнительная труба, предназначенная для горячей воды.Эта система создает петлю от водонагревателя до крана и обратно. Неиспользованная горячая вода возвращается через этот контур насосом, поэтому, когда вы включаете краны с горячей водой, вы быстро получаете горячую воду. Вода не остывает в трубах, и вы тратите меньше воды, потому что вам не нужно ждать.

    Вам может быть интересно, как это влияет на ваши затраты на газ и электроэнергию. Если водонагреватель работает постоянно, а вода постоянно циркулирует, разве это не стоит дороже? Не обязательно.

    Многие насосы имеют датчики и таймеры. Датчик отключает насос, когда горячая вода делает полный цикл. Таймер позволяет контролировать, когда насос активен. Вы можете настроить его автоматическое отключение ночью, на работе или в отпуске. Если в вашей помпе нет этих функций, специалист-сантехник может помочь вам добавить их.

    Это вариант не для всех. Стоимость насоса и дополнительной трубы может быть высокой. Кроме того, многие проекты домов в Нью-Мексико затрудняют добавление труб, необходимых для этой системы.Если это решение сложно для вашего дома или бюджета, есть еще один вариант.

    Вариант №2

    Система комфорта циркуляционного насоса

    В этой системе используется существующий трубопровод холодной воды для отправки неиспользованной воды обратно в водонагреватель. Это экономичное решение для домовладельцев, которые разочарованы ожиданием горячей воды, но не могут установить первый вариант. Система комфорта может быстро подавать горячую воду в те места в доме, где требуется много времени для получения горячей воды.Например, если вода находится далеко от душа или кухни, рециркуляционный насос решит эту проблему.

    Также не нужно устанавливать дополнительную трубу. Это снижает начальную стоимость. Эти насосы обычно стоят от 500 до 800 долларов, хотя есть исключения. Однако у этой системы есть свои недостатки.

    Проблема с этой опцией заключается в том, что из-за того, что горячая и холодная вода используют одну и ту же трубу, вода из холодного крана может быть чуть теплой или охлаждаться через некоторое время, особенно если у вас есть охладитель для болот.Некоторые домовладельцы отключают насос летом, чтобы решить эту проблему.

    Вы можете не осознавать, что у вас уже есть рециркуляционная система. Предыдущий домовладелец мог отключить насос. Стоит проверить, есть ли он у вас уже, особенно если вас расстраивает время, необходимое для доставки горячей воды в некоторые части вашего дома. Ваш сантехник поможет вам найти помпу и привести ее в порядок. Вы также можете проверить это самостоятельно в верхней или нижней части водонагревателя.

    Что в итоге?

    Циркуляционный насос завершит ожидание горячей воды. Какого бы размера ни был ваш дом, вы сэкономите время, деньги и воду своей семье. Компания TLC готова пригласить наших опытных сантехников в Альбукерке сегодня, чтобы узнать, является ли рециркуляционный насос хорошим решением для вас и вашей семьи. Остались вопросы? Спросите у наших сантехников.

    Основы циркуляционного насоса

    – Принцип работы насоса Нагревательный насос HVAC Принцип работы

    Прокрутите вниз, чтобы просмотреть обучающее видео на YouTube

    Изучите основы обычного циркуляционного насоса, чтобы понять, как он работает и где мы их используем.

    Посетите Statesupply.com, который любезно спонсировал эту статью. Здесь вы можете узнать, какие циркуляционные насосы доступны, сделать покупки для запчастей или поговорить со знающими специалистами по продукции о ведущих брендах насосов, таких как Bell & Gossett и Taco. Просто нажмите здесь, чтобы узнать больше.

    State Supply – это ваш источник компонентов паровых и гидравлических систем отопления, таких как конденсатоотводчики, клапаны, регуляторы и насосы (включая ведущие в отрасли бренды, такие как Bell & Gossett, Taco и другие).Посетите www.statesupply.com или позвоните нам по бесплатному телефону 877-775-7705, чтобы получить беспрецедентный выбор продуктов, опытных экспертов и отличное обслуживание клиентов.

    Проверьте циркуляционные насосы ➡️ https://www.statesupply.com/pump/hydronic

    Просмотреть видеоролики о ремонте и техническом обслуживании насоса ➡️ https://www.youtube.com/statesupply

    Загрузите это руководство ➡️ https://www.statesupply.com/boiler-inspection-checklist

    Что такое циркуляционный насос и где они используются?

    Циркуляционные насосы

    Циркуляционные насосы бывают разных форм, цветов и размеров, но обычно выглядят примерно так.Эти насосы представляют собой встроенные насосы центробежного типа, что означает, что их вход и выход выровнены, а метод перемещения воды основан на центробежных силах.

    Контур горячей воды

    Мы собираемся найти эти насосы, используемые для циркуляции горячей воды по контуру нагретой воды, так что, открывая кран, мы почти мгновенно получаем доступ к горячей воде. В противном случае каждый раз, когда мы открывали кран, нам приходилось ждать, пока горячая вода не потечет через всю систему.

    Системы водяного отопления

    В системах водяного отопления мы также найдем эти насосы, используемые для циркуляции нагретой воды между котлом и радиаторами или другими типами теплообменников.

    Большие системы отопления

    Мы также можем найти циркуляционные насосы, используемые в более крупных системах отопления, для подачи тепла в различные части или зоны внутри здания.

    Основные части циркуляционного насоса

    Детали насоса

    Циркуляционный насос состоит из двух основных частей: насоса и двигателя.

    Двигатель представляет собой двигатель асинхронного типа, который позволяет преобразовывать электрическую энергию в механическую. Эта механическая энергия используется для приведения в действие насоса и перемещения воды.

    Вход и выход

    Когда мы смотрим на корпус насоса, мы видим как вход, так и выход. Насос всасывает воду через впускное отверстие и выталкивает через выпускное отверстие. Как правило, на корпусе есть стрелка, указывающая направление потока, чтобы вы знали, где находится вход и выход.

    Поскольку это встроенный насос, впускной и выпускной патрубки выровнены концентрически, это полезно, потому что мы потенциально можем вырезать часть трубы из системы горячего водоснабжения и установить циркуляционный насос в этом пространстве без необходимости изменять трубопровод, например это необходимо для стандартного центробежного насоса.

    Ушка рабочего колеса

    Это по-прежнему насос центробежного типа, поэтому вода должна поступать в насос через проушину крыльчатки. Для этого впускной патрубок следует по изогнутой траектории, которая входит в крыльчатку.

    Корпус насоса

    Эта деталь представляет собой корпус насоса. Внутри есть канал, известный как спираль. После того, как вода выйдет из крыльчатки, она будет собираться в этом канале и поступать к выпускному отверстию. Мы увидим это более подробно позже в статье.

    Улитка

    Затем мы находим рабочее колесо, которое находится внутри корпуса насоса и окружено каналом улитки.Рабочее колесо вращается и передает центробежную силу на воду, которая выталкивает ее из насоса по трубам.

    Рабочее колесо

    За рабочим колесом находится задняя пластина. Задняя пластина действует как барьер и удерживает поток воды внутри корпуса насоса. На задней пластине также находится один из подшипников вала, обеспечивающий плавное вращение. К нему мы также найдем резиновое уплотнение для предотвращения утечек.

    BackplateRubber Seal

    Теперь мы собираемся найти вал и ротор.Ротор прикреплен к валу, а вал прикреплен к крыльчатке. Когда ротор вращается, вал и крыльчатка вращаются вместе с ним. Это движущая сила воды внутри насоса.

    Ротор и вал

    Ротор находится внутри корпуса ротора. Ротор обеспечивает физический барьер, который предотвращает попадание воды на электрическую цепь асинхронного двигателя.

    Rotor Can

    Вокруг ротора находится индукционный двигатель. Он состоит из нескольких витков медной проволоки, плотно упакованных в статор.Катушки и статор неподвижны и не вращаются. Электричество течет через катушки внутри статора, это создает вращающееся электромагнитное поле, которое заставляет вращаться ротор.

    Статор и обмотки

    Защищая статор и катушки, мы имеем корпус двигателя. Сбоку от корпуса двигателя мы найдем электрическую клеммную коробку. На передней панели у нас есть переключатель скорости, он позволяет нам вручную изменять скорость вращения двигателя между низкой, средней и высокой, что изменяет скорость потока насоса.

    Корпус двигателя

    Внутри клеммной коробки находится переключатель скорости. У нас также есть клеммы заземления, нейтрали и линии, которые позволяют нам подключать насос к источнику питания. Обычно внутри этого типа насоса есть конденсатор, конденсатор жизненно важен для работы насоса, поэтому мы вскоре рассмотрим его подробно.

    Клеммная коробка

    Обмотки двигателя и конденсатор

    Электродвигатель циркуляционного насоса представляет собой однофазный асинхронный двигатель переменного тока.

    Однофазный асинхронный двигатель переменного тока

    Электричество – это поток электронов по проводу. У нас есть постоянный или постоянный ток, который мы получаем от таких источников, как батареи, и в этом типе электричества электроны текут только в одном направлении от отрицательного к положительному.

    Постоянный ток

    Но в ваших домах и на работе будет использоваться другой тип электричества, известный как переменный ток. При переменном токе электроны меняют направление и многократно текут вперед и назад.

    Переменный ток

    Когда электричество течет по проводу, оно генерирует электромагнитное поле. Когда электроны меняют направление, магнитное поле непрерывно расширяется и сжимается. Сворачивая провод в катушку, мы генерируем гораздо более сильное электромагнитное поле.

    Обмотка проволоки

    Когда провод наматывается в катушку, мы называем это индуктором. Когда мы применяем переменный ток, магнитное поле расширяется и сжимается, каждый раз, когда оно расширяется и сжимается, северная и южная полярность катушки меняются местами.Нам нужно это расширяющееся и сжимающееся магнитное поле для создания вращения.

    Переменный ток

    Чтобы сформировать двигатель, мы наматываем провод на две катушки внутри статора, чтобы создать сильное электромагнитное поле. Если мы поместим ротор в центр этого магнитного поля, ротор выровняется с магнитным полем, а затем он застрянет. Чтобы вращать ротор, нам понадобится вращающееся магнитное поле. Если бы мы взяли несколько магнитов и тщательно рассчитали время их взаимодействия с ротором, мы могли бы добиться этого, но это не очень практично.

    Ротор застрял, нужно вращающееся магнитное поле

    В более крупных двигателях мы создаем вращающееся магнитное поле, используя большее количество фаз, потому что электроны движутся вперед и назад в разное время в двух фазах, что, таким образом, создает другое магнитное поле в разное время. Однако этот тип насоса имеет только однофазное соединение, поэтому вместо этого мы будем использовать конденсатор для создания поддельной фазы 2 и .

    Вращающееся магнитное поле

    Поэтому мы вставляем вторую катушку в статор на 90 градусов от первой катушки.Две катушки подключены параллельно, но во второй катушке есть конденсатор, подключенный последовательно с катушкой.

    Конденсатор создает поддельную вторую фазу

    Электричество не проходит через конденсаторы. Цепь разорвана внутри конденсатора, образуя две стенки. Две внутренние стенки расположены очень близко друг к другу, поэтому электроны могут накапливаться на этих стенках и выходить отсюда. Поэтому конденсатор – это что-то вроде накопительного бака или диафрагмы. Когда подача электричества движется в одном направлении, конденсатор будет накапливать электроны.Когда подача электричества меняет направление, конденсатор высвобождает электроны

    .

    Таким образом, у нас есть электроны, проходящие через разные катушки в разное время, это создаст наше вращающееся магнитное поле. Однако для этого необходимо правильно подобрать размер конденсатора.

    Мы подробно рассмотрели основы конденсаторов в предыдущей статье, проверьте это здесь.

    Обмотки многоскоростного двигателя

    Обычно у нас есть переключатель сбоку на клемме двигателя, который позволяет нам изменять скорость двигателя и, следовательно, скорость потока насоса, а также давление напора.

    Выбор скорости

    Внутри двигателя катушка хода будет иметь различные точки подключения, или даже может быть несколько разных катушек. Переключатель используется для подключения к этим различным точкам и эффективного изменения длины катушки, через которую должно проходить электричество.

    Несколько точек подключения

    Вам может быть интересно, почему при низком значении катушка длиннее, чем при высоком значении.

    Когда мы пропускаем переменный ток через индуктивную катушку, создаваемое ею магнитное поле мешает электронам, пытающимся пройти через нее.Сила, известная как индуктивное реактивное сопротивление, препятствует изменению тока.

    Индуктивное реактивное сопротивление

    Когда мы увеличиваем длину катушки, индуктивное реактивное сопротивление также увеличивается, и это затрудняет прохождение тока электронов. Таким образом, по мере уменьшения тока электромагнитное поле также уменьшается, что снижает скорость и крутящий момент двигателя.

    Максимальное индуктивное реактивное сопротивление

    По мере того, как мы переходим к минимальному значению, индуктивное реактивное сопротивление становится максимальным, ток уменьшается, и двигатель медленно вращается.

    Минимальное индуктивное реактивное сопротивление

    Когда мы переходим к высокому значению, индуктивное реактивное сопротивление минимально, поэтому ток высокий, а ротор вращается намного быстрее.

    Мы рассмотрели многоскоростные насосы и то, как читать их диаграммы насосов, в нашей предыдущей статье. Проверьте это здесь.

    Как работает циркуляционный насос?

    Итак, как работает циркуляционный насос. Прежде всего, вода из системы горячего водоснабжения поступает в насос через входное отверстие и попадает в проушину рабочего колеса, эта вода будет задерживаться между лопастями рабочего колеса внутри корпуса насоса.

    Циркуляционный насос

    Электричество поступает в клеммную коробку и проходит через обмотки двигателя, конденсатор помогает создавать вращающееся магнитное поле, и это магнитное поле заставляет ротор вращаться. К ротору прикреплен вал. Вал проходит от двигателя вниз в корпус насоса, где он соединяется с рабочим колесом.

    Вал и крыльчатка вращаются вместе с ротором. Когда крыльчатка вращается, она передает воде кинетическую энергию или скорость, и она движется наружу.
    Вода увеличивается по скорости и кинетической энергии, когда достигает края крыльчатки.

    К тому времени, когда вода достигает края крыльчатки, она достигает очень высокой скорости. Эта высокоскоростная водяная муха отлетает от рабочего колеса и попадает в спиральную камеру, где ударяется о стенку корпуса насоса.

    Этот удар преобразует скорость в потенциальную энергию или давление.
    Корпус насоса для гидравлических ударов. Кинетическая энергия преобразуется в потенциальную энергию (давление).

    Вода сталкивается с корпусом насоса

    По мере того, как вода движется наружу и от крыльчатки, она создает область низкого давления в центре, которая втягивает больше воды и, таким образом, развивается поток.Спиральный канал имеет расширяющийся диаметр, поскольку он закручивается по окружности корпуса насоса. По мере увеличения скорость воды будет уменьшаться, что приведет к увеличению давления.
    Сзади следует больше воды; скорость потока развивается. Увеличивается диаметр спирального канала; это вызывает уменьшение скорости воды, что увеличивает давление.

    Диаметр спирального канала увеличивается.

    Расширяющийся канал, таким образом, позволяет большему количеству воды присоединяться и преобразовываться в давление.

    Выходное отверстие нагнетания имеет более высокое давление

    Таким образом, выпускное отверстие нагнетания имеет более высокое давление, чем входное отверстие всасывания. Высокое давление на выходе позволяет нам заставлять воду циркулировать по трубопроводам и отводить ее, когда и где это необходимо. Хорошо, ребята, это все для этого видео, но чтобы продолжить обучение, посмотрите одно из видео на экране, и я поймаю вас там на следующем уроке. Не забывайте подписываться на нас в Facebook, Instagram, Twitter, linkedin, а также проявлять инженерный склад ума.com


    Влияние изменения режимов работы на циркуляционные насосы котловой воды

    Увеличение общей генерирующей мощности возобновляемых источников энергии, таких как ветер и солнечная энергия, приводит к тому, что традиционные угольные электростанции с базовой нагрузкой все чаще используются для отслеживания колебаний спроса на электроэнергию, также называемых пиковыми. нагрузка рабочая. Это изменение в работе оказывает влияние на оборудование электростанции, поскольку машины теперь находятся в рабочих условиях, для которых они изначально не были предназначены.

    Термин базовая нагрузка используется для обозначения установки, работающей на стабильной электрической мощности в течение длительного периода времени. Это, как правило, соответствует максимальной эффективности установки или приближается к ней. Для циркуляционного насоса котловой воды (BWCP) на установке это означает минимальные термические циклы и, следовательно, минимальные циклические термические напряжения. Оборудование может работать в стабильном, постоянном состоянии, а не часто запускаться и останавливаться или увеличивать и уменьшать кривые насоса.

    Напротив, термины «отслеживание пиковой нагрузки» или «пиковая нагрузка» означают работу, которая колеблется вверх или вниз, чтобы соответствовать краткосрочному спросу на электроэнергию в сети.

    Эта цикличность установки означает, что BWCP испытывают повышенные тепловые циклы и либо запускаются и останавливаются, либо работают с колебаниями по кривой насоса, поскольку установка изгибается, чтобы обеспечить изменяющийся спрос на электроэнергию. Колебания скорости испарения в котле и, в некоторых случаях, давления в котле влияют на работу BWCP.

    BWCP обычно используется в барабанных котлах с принудительной циркуляцией для обеспечения необходимого напора (давления) для преодоления потерь на трение в трубах котла.Это позволяет превратить воду, циркулирующую в котле, в пар для выработки электроэнергии в турбогенераторной установке.

    Изображение 1. Типичный BWCP (изображения любезно предоставлены Hayward Tyler)

    BWCP – это комбинированный двигатель и насос без сальника и без уплотнения. Между двигателем и насосом нет динамического механического уплотнения, и они имеют общий вал. Двигатель и насос рассчитаны на одинаковое давление в системе, но температура двигателя поддерживается при более низкой температуре с помощью теплового барьера и теплообменника.BWCP обычно использует мокрый статор. Типичный BWCP показан на рисунке 1. Комбинация электродвигателя и насоса, заполненного жидкостью, делает его уникальным компонентом при рассмотрении всех областей, затронутых изменением режима работы установки.

    Подшипник упорный

    Типичный BWCP поддерживается в осевом направлении с помощью гидродинамического упорного подшипника. В подшипнике используется водяной клин, образованный между упорным диском, который прикреплен к валу, и опорными упорными подушками. Упорный подшипник принимает вес ротора и дополнительные осевые нагрузки от насоса, включая соответствующий расчетный коэффициент безопасности.Когда двигатель запускается, гидравлический подъемник от рабочего колеса поднимает вращающийся узел вверх, чтобы создать водную пленку между поверхностями упорного подшипника во время стабильной работы.

    Когда BWCP отключен, ротор теряет гидравлический подъем и возвращается к обратному упорному подшипнику. Первоначально во время запуска пленка жидкости между неметаллическим подшипником и упорными подушками недостаточна, поэтому трение между подушками может вызвать небольшой износ материала.Это уменьшает толщину материала подшипника и начинает увеличивать расстояние, на которое может пройти ротор (смещение конца ротора). Это означает, что ротор перемещается дальше каждый раз, когда двигатель обесточен, что приводит к увеличению тяги.

    Длительные циклы могут привести к повреждению упорного подшипника, требующему ускоренного технического обслуживания, или – в некоторых случаях – к катастрофическому выходу из строя упорного подшипника, требующему обширного ремонта. Проверки тяги рекомендуются каждые три года. Затем пользователи должны разработать стратегию управления активами на основе фактического состояния компонентов упорного подшипника.Мониторинг производительности насоса и критических зазоров, обнаруженных в ходе проверок, позволяет пользователям лучше понимать износ, связанный с режимом работы их установки, и корректировать циклы технического обслуживания (насколько это практически возможно), чтобы максимально продлить срок службы BWCP.

    Радиальные подшипники

    Подобно упору, в радиальных подшипниках BWCP используются гидродинамические подшипники. Радиальные подшипники находятся на упорной стороне и на стороне насоса. Точная центровка радиального подшипника контролируется производственными допусками корпуса статора и корпуса двигателя.Радиальные подшипники рассчитаны на то, чтобы воспринимать нагрузки от неуравновешенного магнитного притяжения (UMP) на ротор и гидравлические колебания в насосе, создающие неуравновешенные нагрузки и безопасные динамические характеристики ротора. Когда BWCP запускается, пленка жидкости между опорной втулкой и опорной поверхностью недостаточна. Это приводит к износу колодок, что приводит к потере материала и увеличению зазоров. Износ подшипников позволяет ротору отклоняться от центральной оси статора, что увеличивает UMP, что, в свою очередь, увеличивает износ подшипников.Это позволяет ротору отклоняться от совмещения со статором, а затем повреждение распространяется из-за износа радиальных подшипников. Если зазоры подшипников становятся чрезмерными в экстремальных условиях, во время запуска UMP может вызвать контакт ротора со статором из-за изгиба ротора, что может привести к повреждению пакетов ламинирования статора и ротора, что приведет к необходимости переупаковки.

    Износное кольцо рабочего колеса

    Щелевое кольцо рабочего колеса установлено с заданным диаметральным зазором относительно корпуса насоса или щелевого кольца диффузора для контроля перепада давления на поверхности и количества рециркулируемой жидкости.Расстояние от корпуса насоса до сопрягаемой поверхности корпуса двигателя и торца рабочего колеса (известное как размер «А») контролируется, чтобы гарантировать отсутствие осевого контакта. В сценариях, когда установка быстро меняет нагрузку или полностью запускается и останавливается, двигатель обычно имеет температуру, отличную от температуры корпуса насоса и вращающегося узла. В зависимости от разницы температур рабочее колесо и корпус насоса будут увеличиваться или уменьшаться с разной скоростью. Это уменьшает зазор компенсационного кольца и может вызвать контакт.

    В тяжелых ситуациях может произойти заедание вращающегося узла со статическим компенсационным кольцом. Частые изменения нагрузки вызовут ускоренную деградацию компенсационных колец. Это увеличивает зазор и снижает эффективность, но еще более сокращает срок службы компенсационных колец и может вызвать серьезное повреждение крыльчатки и вращающегося узла. Чрезмерный контакт крыльчатки с корпусом насоса может привести к изгибу ротора, повреждению радиальных подшипников и повреждению обмоток статора из-за циркуляции мусора через двигатель.

    Корпус насоса

    Корпус насоса на BWCP вварен в трубопровод и обычно изготавливается из толстостенной отливки из углеродистой стали. Частые термоциклы на корпусе насоса из-за изменяющихся рабочих нагрузок подвергают корпус насоса термическим напряжениям, поскольку корпус насоса пытается свободно расширяться, но его сдерживают трубопроводы и соединение с двигателем. Частые циклические изменения термических напряжений могут создавать проблемы с развитием усталостных трещин в критических областях, таких как толщина, области сопел и сварные швы.Операторы должны осматривать корпуса насосов на предмет развития и распространения трещин. Если сварные швы корпуса насоса не являются частью программы технического обслуживания, связанной с «высокоэнергетической системой трубопроводов», они должны быть включены в периодический осмотр корпуса насоса.

    Изображение 2. Термические нагрузки на корпус насоса из-за разницы температур жидкости или металла.

    На изображении 2 показаны наиболее напряженные области типичного корпуса насоса, которые следует проверить в первую очередь на предмет усталостного растрескивания.

    На изображении 3 показано растрескивание, обнаруженное в корпусе насоса BWCP.В этом случае завод не смог вернуть BWCP в работу и был вынужден заказать новый корпус насоса, который имел значительное время выполнения заказа. Кроме того, они были обязаны в короткие сроки осмотреть другие корпуса насосов, что привело к незапланированным отключениям.

    Изображение 3. Трещины в корпусе насоса BWCP

    Электродвигатель

    Электродвигатель испытывает наибольшую нагрузку при запуске. Пусковой ток типичного BWCP примерно в четыре с половиной – пяти раз больше тока полной нагрузки.Большинство BWCP представляют собой блоки с мокрым статором (WSU), что означает, что ротор и статор погружены в воду. В WSU используется изоляционный материал из сшитого полиэтилена (XLPE), чтобы изолировать медный провод от воды в статоре. Этот ток вызывает нагрев медного провода, оказывая кратковременное негативное воздействие на изоляцию. Каждый раз, когда двигатель запускается, он сокращает срок службы изоляции, что приводит к повышенному риску повреждения изоляции.

    При первоначальной намотке статора кабели в пазах скрепляются между собой, чтобы они были плотно упакованы.При нормальной работе электродвигателя кабель в пазах собирается вместе и тянется к внешней стороне статора под действием магнитных сил в двигателе. Это может ослабить кабель в пазах статора, что приведет к дополнительному перемещению кабеля.

    Во время запуска двигателя кабель в конечных фазах витков оказывает магнитные силы на кабели в соседних конечных фазах витков, заставляя конечные витки двигаться и вибрировать. Внешние катушки подталкиваются к внешней стороне оболочки статора, а внутренние катушки тянутся к ротору.Концевые витки изгибаются под действием изменяющихся магнитных полей, индуцированных входящим током.

    Изображение 4. Это показывает нарушение заземления из-за механического истирания и износа изоляции.

    Со временем при большом количестве пусков двигателя это движение кабеля концевого витка в сочетании с увеличенным перемещением в пазу может привести к трению кабеля о концевую пластину статора. Если это продолжается, изоляция кабеля изнашивается до тех пор, пока не произойдет нарушение изоляции (как показано на рисунке 4). В некоторых случаях нарушение изоляции вызывает электрическую дугу, которая повреждает торцевую пластину статора и пластину статора.Это может означать, что необходима полная или частичная перемотка, а также перемотка статора, что приведет к увеличению времени простоя двигателя и значительным затратам на ремонт.

    УМП

    UMP возникает, когда осевая линия ротора не совпадает с осевой линией статора. При запуске электродвигатель действует как магнит, притягивая ротор примерно в направлении наименьшего воздушного зазора. Это может вызвать статический или динамический эксцентриситет в движении ротора. Как упоминалось ранее, в экстремальных условиях при достаточном износе подшипников может возникнуть контакт ротора со статором.

    Недостаточный NPSHa

    Во время колеблющейся нагрузки завода (МВт) или внеплановых остановов некоторые наблюдали, что BWCP может испытывать кавитацию. Это может быть вызвано несколькими разными сценариями.

    Во-первых, доступный чистый положительный напор на всасывании (NPSHa) мог уменьшиться из-за вентиляции парового барабана или давления в барабане ниже нормального. В этом случае давление на поверхность жидкости в барабане снижается.

    Это означает, что единственный NPSHa для насоса – это статическая высота жидкости над насосом за вычетом любых потерь на трение.Этого недостаточно, вызывая кавитацию на всасывании насоса.

    Во-вторых, сопротивление системы, которое складывается из накачиваемой статической высоты плюс сопротивление трубопроводной арматуры, клапанов и т. Д., Могло снизиться. Насос будет увеличивать расход до тех пор, пока его развитый напор не пересечется с кривой сопротивления новой системы. Поскольку требуемый чистый положительный напор на всасывании (NPSHr) увеличивается с потоком, может не хватить NPSHa для удовлетворения NPSHr.

    В-третьих, BWCP используются для принудительного охлаждения котла в случае утечки в трубке.Поскольку давление и температура в котле снижаются для ремонта, утечка в трубке, BWCPs остаются включенными, чтобы вызвать дополнительный поток через котел. Это приводит к падению NPSHa, которое может упасть ниже NPSHr.

    Если возникает кавитация, это может привести к повреждению основного и обратного упорного подшипников из-за потери гидравлического подъема в крыльчатке из-за попадания пара во всасывающее отверстие. Это может привести к перемещению вращающегося узла между поверхностями подшипников и повреждению. Это также, вероятно, повредит крыльчатку, что звучит как шарики, прокачиваемые через крыльчатку, и может вызвать точечную коррозию на поверхности при схлопывании пузырьков.Чаще всего повреждение связано с повышенной вибрацией, что приводит к повышенному износу радиальных и упорных подшипников.

    Изображение 5. Кривая насоса и различные кривые сопротивления системы

    Другие соображения для старых двигателей

    Нижеследующее не относится к работе завода по езде на велосипеде, но является ключевым для стратегии управления активами стареющего BWCP.

    Изменения в сопротивлении системы
    При проектировании электростанции сопротивление системы рассчитывалось на основе расчетного статического напора плюс потери на трение из-за трубопроводов, клапанов, отверстий и т. Д.Потери на трение зависят от площади потока. Насос будет работать там, где кривая насоса и кривая системы пересекаются. Кривая насоса изменяется при изменении скорости двигателя или диаметра рабочего колеса, что случается редко.

    Изменения в системе, такие как измененное расположение клапанов, изменение конфигурации или диаметра трубопроводов, ухудшение характеристик перегородок барабана и т. Д., Влияют на сопротивление системы, которое определяет, где насос работает по его кривой.

    Это может привести к тому, что насос будет работать вне своей проектной рабочей точки, что может вызвать повышенную вибрацию.Это приведет к ускоренному повреждению радиальных и упорных подшипников. Если сопротивление системы увеличилось, насос снова будет работать по кривой насоса, т.е. меньший расход, более высокий напор. Повышенный перепад давления на крыльчатке может вызвать повышенное усилие на вращающемся узле, ускоряющее износ подшипников.

    Проверка нагнетательного клапана
    BWCP имеет либо одинарный, либо двойной выпуск из корпуса насоса. В обоих случаях выпускной трубопровод имеет запорный клапан для изоляции BWCP от котла.Если выпускные клапаны не обслуживаются, они могут частично закрываться в случае непредвиденного обстоятельства. Если нагнетательный клапан частично закрыт во время работы насоса, это заставит насос снова работать по кривой насоса с большим перепадом давления на насосе. Повышенный перепад давления на крыльчатке может вызвать повышенное усилие на вращающемся узле, ускоряющее износ подшипников.

    В случае насосов с двойным нагнетанием, если один нагнетательный клапан не обслуживается и попадает в частично закрытое положение, это влияет на выравнивание рабочего колеса в корпусе насоса.Рабочее колесо и вращающийся узел будут располагаться в стороне от нагнетания при частично закрытом клапане. Нецентральное выравнивание вызывает неравномерный износ радиального подшипника, что увеличивает UMP на роторе.

    Негерметичные фланцы насоса
    Длительное пренебрежение корпусом насоса и / или шпильками крышки двигателя BWCP может привести к их коррозии и заеданию. Новые шпильки корпуса насоса имеют цинк-фосфатное покрытие для улучшения коррозионной стойкости и адгезии краски с высокотемпературным антифрикционным покрытием.Если корпус насоса или прокладка корпуса двигателя протекли, или установка подверглась затоплению, шпильки могут подвергнуться коррозии и застрять на месте.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *