Как проверить циркуляцию в системе отопления: Что делать, если нет циркуляции в системе отопления

Как проверить циркуляционный насос отопления: причины нарушения работоспособности

От автора: здравствуйте, дорогие читатели! Циркуляционный насос играет очень важную роль в отопительной системе практически любого частного дома. Без этого устройства теплоноситель идет по трубопроводу с весьма небольшой скоростью, вследствие чего происходят значительные потери тепловой энергии впустую. Результатом становится неравномерно прогретый дом и опасность промерзания труб, расположенных в нежилых помещениях — на чердаке, в подвале и т. д.

Циркуляционное устройство с легкостью предотвращает упомянутые проблемы. Оно повышает скорость тока теплоносителя, тем самым давая жидкости возможность быстро пробежать по маршруту и донести необходимое количество тепла всем радиаторам и прочему подобному оборудованию. Естественно, для качественного выполнения данной функции прибор должен работать безукоризненно. Вот почему каждый домовладелец должен знать, как проверить циркуляционный насос отопления.

Как известно, вовремя выполненная диагностика позволяет обнаружить неисправность еще в зачатке развития, поэтому профилактический осмотр поможет уберечь прибор от возможных серьезных поломок. Приятным является то, что выполнение проверки не отнимет у вас много времени и сил, да и с необходимым ремонтом может справиться практически любой хозяин. Конечно, для этого необходимо владеть кое-какой информацией — и вы сможете получить из сегодняшней статьи.

Элементы конструкции насоса

Содержание статьи:

Основа любого прибора — это его конструкция. Циркуляционный насос является не слишком сложным устройством. Он состоит из нескольких элементов:

  • корпус. Представляет собой изделие цилиндрической формы, для изготовления которого может быть использована латунь, бронза, нержавеющая сталь или чугун. Любой из этих металлов отлично противостоит коррозийным процессам, что крайне важно, учитывая близость жидкости к прибору.
    Кроме того, долговечность этих материалов также на высоте. Особенное уважение, в плане длительности срока эксплуатации, вызывает чугун — он может служить более полувека. Но его проблема заключается в неустойчивости к перепадам температур. В принципе, учитывая автономность отопительной системы частного дома, можно понадеяться на их отсутствие, поскольку режим работы контролируется хозяевами жилища. Но все же случаются форс-мажоры, и они могут привести к растрескиванию чугуна. У других вышеперечисленных металлов такой проблемы нет. Конечно, их стоимость немного выше, зато можно не опасаться внезапного возникновения трещин на корпусе насоса;
  • электродвигатель с ротором. Он располагается внутри цилиндрического корпуса и является, по сути, сердцем прибора. Мощность двигателя у разных моделей различается. Вообще, она является главным критерием подбора циркуляционного насоса. Показатель мощности прибора должен соответствовать потребностям конкретной отопительной системы, в которую будет установлено устройство.
    В противном случае, оно может не справиться с возложенными на него обязанностями. Говоря о роторе, следует отметить, что он может быть «сухим» или «мокрым». Разница заключается в его расположении. «Сухой» ротор помещен в отдельный блок насоса, где он надежно защищен от прямого воздействия жидкости. «Мокрый», напротив, помещается прямо в теплоноситель. При выборе конкретного устройства важно знать, что «сухие» разновидности обладают гораздо более высокой производительностью, их КПД примерно на треть выше, чем у «мокрых». Но у них есть очень важный недостаток — высокий уровень шума. Гул, издаваемый в процессе работы такого ротора, может доставлять людям значительные неудобства даже в дневное время. Что уж говорить о ночи, когда звуки разносятся в разы лучше. В общем, такой прибор не рекомендуется размещать рядом с жилыми комнатами, поскольку дискомфорт людей будет очень уж велик. Циркуляционные насосы с «сухим» ротором могут быть установлены в отдельной котельной, которая размещается подальше от спален.
    Если же нет возможности обустроить такое помещение, или габариты дома не позволяют серьезно разграничить расстоянием жилую и нежилую часть здания, то лучше установить в систему насос с «мокрым» ротором. Он будет потреблять больше ресурсов в связи с меньшим КПД, зато не будет действовать на нервы постоянным сильным шумом;
  • рабочее колесо с лопастями. Именно за счет последних и происходит движение теплоносителя. Колесо, расположенное на роторе и изготовленное из прочных нержавеющих материалов, при включении электромотора начинает вращаться. При этом лопасти раскидывают жидкость по стенкам цилиндра, откуда она затем уходит в трубопровод под воздействием центробежной силы. При этом резко снижается уровень давления, следствием чего является поступление новой порции жидкости.

Как видите, и конструкция циркуляционного насоса, и общий принцип его действия не составляют особых сложностей для понимания. Все довольно просто. Благодаря этому многие виды работ с данным оборудованием, такие как профилактика и ремонт, можно осуществлять даже без наличия какого-то опыта.

Профилактический осмотр

Для того чтобы эксплуатация циркуляционного насоса была беспроблемной, необходимо регулярно производить проверку состояния оборудования. Профилактический осмотр поможет выявить негативные факторы, способные привести в дальнейшем к серьезным поломкам. Их своевременное устранение позволит избежать форс-мажорных ситуаций и сложных ремонтных процедур.

Стандартный осмотр включает в себя несколько простых шагов:

  • проверка герметичности соединений. Необходимо тщательно осматривать все фитинги, с помощью которых насос прикреплен к системе отопления. Некоторые разновидности соединительных элементов могут ослабевать со временем, поэтому их необходимо подтягивать. Кроме того, могут возникнуть проблемы с разрушением резьбы или уплотнителя — в таком случае, нужно раскрутить фитинг, нарезать дополнительные витки или намотать новый слой ФУМ-ленты, а затем собрать элемент заново;
  • добавление смазки. Внутри прибора находятся подшипники, которые должны быть хорошо смазаны. В противном случае они будут хуже работать, что приведет к перегреву устройства;
  • очистка фильтра. Сетчатый элемент постепенно забивается грязью даже в том случае, если вы используете очень качественный теплоноситель. Поэтому необходимо своевременно удалять частицы ржавчины и накипи, застревающие в фильтре.

Собственно, это и есть базовый набор действий, которые необходимо выполнять для профилактики. Кроме того, следует соблюдать некоторые правила эксплуатации циркуляционного насоса:

  • не допускать «сухого хода». Включение насоса должно производиться только в том случае, если в отопительной системе присутствует необходимое количество теплоносителя. Работающее «всухую» оборудование очень быстро перегорит, да еще и может утянуть за собой некоторые другие электроприборы;
  • не допускать длительного простаивания. Во многих регионах система отопления работает в сезонном режиме — с сентября по май.
    Понятно, что запускать ее в тридцатиградусную жару нет смысла. Но при таком долгом простаивании некоторые элементы циркуляционного насоса могут выйти из строя. Поэтому его необходимо включать хотя бы раз в месяц на четверть часа. Согласитесь, времени занимает немного, зато поможет избежать возможных проблем в дальнейшем;
  • изначально приобретать насос, характеристики которого полностью соответствуют потребностям вашей отопительной системы. Бывает так, что хозяева, в попытках сэкономить, покупают маломощный прибор и пытаются использовать его в системе с большим объемом теплоносителя. В результате, устройство постоянно работает на пределе своих возможностей и, конечно, очень быстро выходит из строя. Вот почему важно заранее произвести расчеты параметров, на которые следует ориентироваться при покупке. О том, как это сделать, вы можете найти информацию на нашем портале;
  • предусмотреть наличие датчиков перегрева и «сухого хода». Эти регуляторы есть не на всех моделях, но желательно найти и приобрести прибор именно с ними.
    Самостоятельно вы можете не сразу заметить возникшую проблему. Например, если в системе произошла утечка теплоносителя, то пока вы ее обнаружите, насос будет работать вхолостую и может просто сгореть. А датчик среагирует мгновенно, автоматически отключив оборудование, и тем самым предотвратит поломку.

Возможные причины неполадок

Если при очередном профилактическом осмотре вы обнаружили, что циркуляционный насос работает «как-то не так», то это повод произвести более глубокую проверку с применением некоторых специализированных инструментов. Самые часто встречающиеся неполадки: отсутствие вращения ротора, перегрев насоса и плохой ток теплоносителя. У каждой из них может быть несколько причин. Давайте подробно разберем каждую возможную неисправность:

  • отсутствие вращения ротора при включенном в сеть насосе. Как правило, это говорит о каком-то сбое в доставке электропитания к оборудованию. Первым делом вам нужно осмотреть все элементы, напрямую отвечающие за эту функцию: электрический провод, выключатель устройства и т. д. Если вы обнаружили любой дефект — например, даже мельчайшее нарушение изоляции — необходимо безотлагательно заменить поврежденную деталь на новую. Пока дефект не будет устранен, использовать устройство нельзя, так как это чревато замыканиями и прочими неприятностями. После проверки внешних элементов осмотрите пластиковый предохранитель. При частых перепадах напряжения в электросети он начинает плавиться и постоянно размыкает цепь. Если вы видите, что он уже откровенно деформировался, его нужно заменить. Следующий элемент, который необходимо проверить — это обмотка электрического мотора. Для этого вам пригодится мультиметр, с помощью которого измеряется уровень сопротивления. При нормальном состоянии обмотки показатель может варьироваться от 10 до 15 Ом или же от 35 до 40 Ом, в зависимости от конкретной модели ротора. Если мультиметр выдает бесконечность или значение, близкое к нулю, то это свидетельствует о необходимости замены обмотки;
  • перегрев насоса. Обычно это происходит в тех случаях, когда циркуляционное оборудование по какой-то причине вынуждено работать с повышенной нагрузкой. Обнаружить перегрев довольно просто — если насос горячее, чем труба, то это явно свидетельствует о неполадках. В случае, когда это происходит с только что установленным новым оборудованием, есть смысл проверить правильность проведенного монтажа. Неправильное размещение прибора может провоцировать его неправильную работу. Если вы обнаружили какие-то недочеты, то необходимо заново произвести установочные процедуры, внеся соответствующие корректировки. Еще одной частой причиной перегрева является забивание элементов конструкции грязью. Большую роль в этом играют ржавчина и накипь. Они образуются в каких-либо участках трубопровода, а затем по кусочкам отваливаются и идут вместе с теплоносителем, засоряя все оборудование, куда попадают. Так происходит и с циркуляционным насосом. Наличие посторонних частиц внутри конструкции сужает путь, по которому идет теплоноситель. Таким образом, для продвижения жидкости насосу приходится применять больше усилий. Поэтому и происходит перегрев. Решением проблемы в данном случае служит очистка засоренных элементов. Про третью причину перегрева уже говорилось выше — в качестве нее может послужить недостаточное количество смазки на подшипниках, расположенных внутри насоса. Четвертой причиной может быть слишком низкое — ниже 220 В — напряжение в сети. Этот показатель вам необходимо проверить с помощью вольтметра и при обнаружении проблем исправить их;
  • плохой ток теплоносителя. Имеются в виду ситуации, когда жидкость циркулирует с недостаточной скоростью. Причиной этому может послужить неправильное подключение, если в вашем доме используется сеть с напряжением 380 В. Проверьте правильность подсоединения электропровода к фазе — вполне возможно, что его нужно подключить к другой. Второй причиной плохого тока может послужить все то же засорение внутренних элементов конструкции, о котором говорилось выше. Это решаемо путем очистки элементов.

Разборка конструкции

В некоторых случаях недостаточно ограничиться лишь внешними работами, и приходится добираться до внутренних элементов конструкции. При этом важно знать, как правильно разобрать насос, чтобы не нанести ущерба работоспособности его деталей.

Вообще, процесс не представляет особых сложностей. Главное, запаситесь средством, которое называется «жидкий ключ». При длительной эксплуатации прибора его элементы намертво склеиваются накипью, поэтому разъединить их не так уж просто. Применять обычную грубую силу здесь нежелательно, так как можно повредить деталь без возможности последующего восстановления.

Функция «жидкого ключа» состоит в размягчении накипи, вследствие чего разборка соединений станет осуществляться гораздо легче. Применяется он просто — нанесите средство в нужное место, подождите в течение времени, которое указан на упаковке, а затем приступайте к разъединению элементов. Кроме «жидкого ключа», вам понадобится крестовая отвертка и шестигранник. Эти инструменты есть в наборе почти каждого домашнего мастера.

Рекомендуем также в процессе разборки держать рядом фотоаппарат или смартфон с камерой. Если вы будете фотографировать каждую операцию, то впоследствии вам будет значительно легче собрать циркуляционный насос в первоначальное состояние. Особенно советуем делать так тем, кто впервые сталкивается с данным процессом.

Итак, приступаем к работе.

  1. Отсоедините прибор от сети. Это важнейшее требование техники безопасности при работе с электрическим оборудованием. Работа с устройством под напряжением несет опасность для здоровья и жизни.
  2. Перекройте все запорные вентили, участвующие в обвязке циркуляционного насоса. Это поможет избежать потопа при отсоединении устройства. Если в системе присутствует байпас для обхода насоса, то перекройте краны и на нем.
  3. Отсоедините циркуляционный насос от того места, где он закреплен. Для этого аккуратно раскрутите соответствующие фитинги и снимите оборудование.
  4. Теперь оцените состояние болтов, которые фиксируют крышку цилиндрического корпуса. Если они «приросли» к своему месту, воспользуйтесь «жидким ключом». После обработки и выжидания в течение нужного времени выкрутите болты и снимите крышку. Проверьте состояние резьбы крепежей — если она окажется истертой, то эти элементы впоследствии лучше заменить на новые.
  5. После снятия крышки вы увидите внутри корпуса электродвигатель с ротором. Он удерживается на месте с помощью либо болтов, либо специальных крепежных элементов. В любом случае, вам нужно выкрутить фиксаторы и вытащить ротор наружу. Если накипь мешает это сделать, то снова воспользуйтесь «жидким ключом».
  6. После того как достали ротор, произведите осмотр его внешнего состояния. Также обследуйте и другие элементы, которые расположены внутри цилиндрического корпуса. при обнаружении каких-либо внешних дефектов — например, трещин — замените соответствующую деталь на новую.

После полной разборки вы можете произвести тщательную диагностику, а затем снова собрать прибор, заменив при этом вышедшие из строя элементы на новые. Впрочем, иногда бывает так, что проще и дешевле заменить насос целиком. Если его работа вас, в целом, устраивала, то можете отправиться в магазин вместе со старым прибором и приобрести новый, с такими же параметрами.

Если же устройство по каким-то критериям не соответствовало вашим требованиям, то нужно заново производить подбор. О том, какие характеристики и нюансы при этом стоит учесть, вы можете узнать из соответствующей статьи на нашем портале. Успехов!

VALTEC | Мифы «гравитационки»

Несмотря на то что отопительная техника с каждым годом совершенствуется и дополняется новыми прогрессивными техническими решениями и высокоэффективным оборудованием, системы водяного отопления с естественной циркуляции теплоносителя продолжают занимать весьма существенную долю в теплоснабжении. Они широко и успешно применяются как в индивидуальном жилищном и коттеджном строительстве, так и при сооружении объектов в районах, где электроснабжение либо отсутствует, либо осуществляется с перебоями.

Гравитационная система водяного отопления, принцип действия которой показан на рис. 1,  была изобретена еще в 1777 г. французским физиком Боннеманом (Bonneman) для обогрева инкубатора.

Рис. 1.  Принцип действия гравитационной системы отопления.

Начиная с 1818 г., системы отопления Боннемана стали широко применяться в Европе, правда, в основном для теплиц и оранжерей. Основы методики теплового и гидравлического расчета систем с естественной циркуляцией были разработаны англичанином Гудом (Hood) в 1841 г. Именно он теоретически доказал пропорциональность скоростей циркуляции теплоносителя квадратным корням из разницы высот центра нагрева и центра охлаждения, то есть перепада высот междукотлом и радиатором. Естественная циркуляция воды в системах отопления была достаточно хорошо изучена и имела мощную теоретическую поддержку. Однако споявлением насосных отопительных систем интерес ученых к «гравитационке» постепенно угасал. Теорию естественной циркуляции бегло и поверхностно освещаютв институтских курсах. При устройстве таких систем монтажники в основном пользуются советами «бывалых» да теми скупыми требованиями, которые изложены внормативных документах. Но нормативные документы лишь диктуют требования, но не дают объяснения причин появления того или иного «постулата». В связи с этим в кругу специалистов циркулирует достаточно много мифов, которые и хотелось бы немного развеять.

Рис. 2. Пример двухтрубной системы отопления с естественной циркуляцией

Для этого используем пример классической двухтрубной гравитационной системы отопления (рис. 2), со следующими исходными данными: первоначальный объем теплоносителя в системе – 100 л; высота от центра котла до поверхности нагретого теплоносителя в баке Н = 7 м; расстояние от поверхности нагретого теплоносителя в баке до центра радиатора второго яруса h1 = 3 м, расстояние до центра радиатора первого яруса h2 = 6 м.

Температура на выходе из котла – 90 °С, на входе в котел – 70 °C. Действующее циркуляционное давление для радиатора второго яруса можно определить поформуле:

Δp2 = (ρ2ρ1) · g · (Hh1) = (977 – 965) · 9,8 · (7 – 3) = 470,4 Па.

Для радиатора первого яруса оно составит:

Δp1 = (ρ2 ρ1) · g · (Hh1) = (977 – 965) · 9,8 · (7 – 6) =117,6 Па.

При более точных расчетах учитывается также остывание воды в трубопроводах.

Миф 1. Трубопроводы должны прокладываться с уклоном по направлению движения теплоносителя. Не спорим, так было бы не плохо, но на практике это требование не всегда удается выполнить. Где-то балка покрытия мешает, где-то потолки устроены в разных уровнях и т.п. Что же будет, если выполнить подающий трубопровод с контруклоном (рис. 3)?

Рис. 3. Пример выполнения верхнего розлива с контруклоном

Если грамотно подойти к решению этого вопроса, то ничего страшного не произойдет. Циркуляционное давление если и снизится, то на ничтожно малую величину (несколько паскалей), за счет паразитного влияния остывающего в верхнем розливе теплоносителя. Воздух из системы придется удалять с помощью проточного воздухосборника и воздухоотводчика. Пример этого устройства показан на рис. 4. Дренажный кран служит для выпуска воздуха в момент заполнения системы теплоносителем. В «крейсерском» режиме этот кран закрыт. Такая система останется полностью работоспособной.

Рис. 4. Пример устройства для выпуска воздуха из верхнего розлива

Миф 2. В системах с естественной циркуляцией охлажденный теплоноситель вверх двигаться не может. Это вовсе не так. Для циркуляционной системы понятие «верха» и «низа» очень условны. Если обратный трубопровод на каком-то участке поднимается, то где-то он на эту же высоту и опускается. То есть гравитационные силы уравновешиваются.Все дело лишь в преодолении дополнительных местных сопротивлений на поворотах и линейных участках трубопровода. Все это, а также возможное остываниетеплоносителя на участках подъема должно учитываться в расчетах. Если система грамотно рассчитана, то схема, представленная на рис. 5, вполне имеет право на существование. Мало того, в начале прошлого века такие схемы достаточно широко применялись, несмотря на свою слабую гидравлическую устойчивость.

Рис. 5. Схема с верхним расположением обратного трубопровода

Миф 3. В гравитационных системах подающий трубопровод должен проходить над всеми ярусами радиаторов. Это тоже совсем не обязательно. Расположение подающего трубопровода с надлежащим уклоном под потолком верхнего этажа или на чердаке позволяет удалять воздух из системы через открытый расширительный бак. Однако проблему удаления воздуха можно решить и с помощью автоматических воздухоотводчиков (рис. 6) или отдельной воздушной линии.

Рис. 6. Схема с нижним расположением подающей линии

Миф 4. При естественной циркуляции теплоносителя радиаторы обязательно должны располагаться выше центра теплогенератора (котла). Это утверждение справедливо только при расположении отопительных приборов в один ярус. При количестве ярусов два и более, радиаторы нижнего яруса можно располагать и ниже котла, что, естественно, должно быть проверено гидравлическим расчетом. В частности, для примера, показанного на рис. 7, при H = 7 м, h1 = 3 м, h2 = 8 м, действующее циркуляционное давление составит:

g · [H  · (ρ2 ρ1)  – h· (ρ2ρ1)  – h· (ρ2ρ3)] = 9,9 · [ 7· (977 – 965) – 3 · (973 – 965) – 6 · (977 – 973)] = 352,8 Па.

Здесь: ρ1 = 965 кг/м3 – плотность воды при 90 °С; ρ2 = 977 кг/м3 – плотность воды при 70 °С; ρ3 = 973 кг/м3 – плотность воды при 80 °С.

Циркуляционного давления вполне достаточно для работоспособности такой системы.

Рис. 7. Однотрубная гравитационная система с расположением радиаторов ниже котла

Миф 5. Гравитационную систему отопления, рассчитанную на водяной теплоноситель, можно безболезненно перевести на незамерзающий теплоноситель. Без расчета такая замена может привести к полному отказу системы отопления. Дело в том, что этилен- и полипропиленгликолевые растворы обладают значительно большей вязкостью, чем вода. Кроме того, удельная теплоемкость этих смесей несколько ниже, чем у воды, что требует, при прочих равных условиях, ускоренной циркуляции теплоносителя. Эти два фактора вместе взятые существенно увеличивают расчетное гидравлическое сопротивление системы, заполненной теплоносителями с низкой температурой замерзания.

Миф 6. В открытый расширительный бак необходимо постоянно доливать теплоноситель, т.к. он интенсивно испаряется. Да, это действительно большое неудобство, но его можно легко устранить. Для этого используется воздушная трубка и гидравлический затвор, устанавливаемый, как правило, ближе к нижней точке системы, рядом с котлом (рис. 8). Такая трубка служит воздушным демпфером между гидравлическим затвором и уровнем теплоносителя в баке, поэтому, чем больше ее диаметр, тем лучше. Тем меньше будет уровень колебаний уровня в бачке гидрозатвора. Некоторые умельцы умудряются закачивать в воздушную трубку азот или инертные газы, тем самым предохраняя систему от проникновения кислорода.

Рис. 8. Воздушная трубка с гидрозатвором

Миф 7. Насос, установленный на байпасе главного стояка, не создаст эффекта циркуляции, т.к. установка запорной арматуры на главном стояке междукотлом и расширительным баком запрещена. Можно поставить насос на байпасе обратной линии, а между врезками насоса установить шаровой кран. Такое решение не очень удобно, т.к. каждый раз перед включением насоса надо не забыть перекрыть кран, а после выключения насоса – открыть. Установка обычного пружинного обратного клапана невозможна из-за его значительного гидравлического сопротивления. Домашние мастера пытаются препарировать обратные клапаны, снимая с них пружинки совсем или устанавливая их «наоборот» (превращая клапан в нормально открытый). Такие переделанные клапаны создадут в системе неповторимые звуковые эффекты из-за постоянного «хлюпанья» с периодом, пропорциональным скорости теплоносителя.Есть гораздо более эффективное решение: на главном стояке между врезками байпаса устанавливается поплавковый обратный клапан для гравитационных систем VT.202 (рис. 9), который скоро появится в ассортименте VALTEC. Поплавок клапана в режиме естественной циркуляции открыт и не мешает движению теплоносителя. При включении насоса на байпасе клапан перекрывает главный стояк, направляя весь поток через байпас с насосом.

Рис. 9. Установка поплавкового нормально отрытого обратного клапана

Водяные системы отопления с естественной циркуляцией окутаны еще многими мифами, которые предлагаем вам развеять самостоятельно:

  • расширительный бак можно врезать только над главным стояком;
  • в таких системах нельзя ставить мембранный расширительныйбак;
  • регулировать тепловой поток от радиаторов в гравитационных системах нельзя;
  • естественная циркуляция не работает в межсезонье;
  • байпасы перед радиаторами в таких системах недопустимы;
  • водяные теплые полы в гравитационных системах работать не будут.

Автор: В.И. Поляков

© Правообладатель ООО «Веста Регионы», 2010
Все авторские права защищены. При копировании статьи ссылка на правообладателя и/или на сайт www.valtec.ru обязательна.

Постоянная циркуляция для систем водяного отопления

Опубликовано: 18 июня 2014 г.

Категории: Горячее водоснабжение

Вопрос, заданный на Стене: «Что нужно учитывать при работе системы горячего водоснабжения с постоянной циркуляцией? ”

Марк Эзертон отвечает: 

Он должен быть встроен в систему с самого начала. Дело не только в том, чтобы постоянно подключать насос. Это европейский дизайн, который включает в себя некоторые неэлектрические технологии с некоторыми электронными технологиями, а также некоторые гидравлические устройства управления (либо байпас, активируемый давлением, либо циркуляционные насосы с регулируемой скоростью), и у вас есть «система».

Должен быть основной датчик управления помещением, наблюдающий за худшим сценарием (комната, выходящая на север, с большим количеством стекла), чтобы определять температуру подачи и требования к потоку (эта зона называется эталонной зоной и является единственной действительно «свободной» зоной). ).

Все остальные зоны ограничены неэлектрическим термостатическим приводом либо в месте использования (панельные радиаторы), либо с помощью выносного регулятора на колпачке (большие излучающие поверхности).

Установлена ​​базовая программа сброса наружного блока, которая либо замещается, либо занижается в зависимости от того, что внутренний контур обратной связи отправляет обратно на главный ПИД-регулятор. Не всякая логика управления способствует работе в постоянном цикле. Некоторые люди считают его более простым и дешевым способом управления своей системой по сравнению с зональным клапаном 9.0017, и это не является целью этого проекта. Основной целью этой конструкции является обеспечение наивысшего уровня комфорта при наименьшем паразитном потреблении энергии при сохранении минимально возможной рабочей температуры.

Две возможные логики, совместимые с этой теорией работы, – это два крупных немецких производителя котлов, Buderus и Viessmann. Элементы управления Tekmar могут применяться знающими людьми, и я уверен, что есть и другие, которые также можно настроить для работы.

Одним заметным недостатком этой системы является то, что из-за своей простоты она не так благоприятна для новых веб-систем управления, посредством которых человек может включать и выключать отдельные комнаты из удаленного места. Как правило, у вас есть возможность сместить кривую сброса назад на заданную величину (скажем, на 20 градусов по Фаренгейту), что приведет к тому, что все термостатические радиаторные клапаны широко откроются и не достигнут большинства своих целей. За несколько дней до того, как вы будете готовы снова занять это место, вы пошлете сигнал логике, вернув ее кривую возврата в занятое положение.

Непрерывная циркуляция с управлением сбросом наружного воздуха подходит не всем, а только тем, кто понимает принцип его работы и готов мириться с нюансами, связанными с его работой (медленная реакция сброса, отсутствие электронного интерфейса и т. д.).

Если вы не используете насос WILO Stratos, вам потребуется предусмотреть некоторые средства защиты насоса от холостого хода (читай байпас, активируемый давлением), потому что, кроме главного контроллера, между зонами и насосом нет связи.

Это требует совершенно иного склада ума, чем логика управления BANG-BANG в Северной Америке, но в конечном итоге потребляет меньше энергии и обеспечивает более высокий уровень внутреннего комфорта.

В качестве примечания: однажды я установил контрольную зону с PAB, чтобы избежать полного свободного потока в этой зоне и короткого замыкания в других зонах. Это сработало довольно хорошо. Когда все другие подзоны вызывали, поток через контрольную зону был незначительным или вообще отсутствовал, что заставляло логику повышать температуру подачи, тем самым быстрее отключая другие подзоны, и когда они были удовлетворены, байпас начинал происходить в опорную зону и это тоже удовлетворило. Сначала я подумал, что эталонная зона может слишком сильно остыть, но за шесть лет эксплуатации у меня не было ни одной жалобы на привередливых жильцов.

Майк Тайс отвечает:

Постоянная циркуляция с TRV. Объясняется это так же просто, как при включенном котле циркуляционный насос гонит горячую воду по петлям, питающим радиаторы?

Не совсем так, но если вы скажете: «Когда сооружению требуется тепло, циркуляционный насос приводит в движение нагретую воду», вы очень близки. Однако, к сожалению, реальность не так проста.

Далее я имею в виду ТОЛЬКО системы, использующие TRV или FHV (это может показаться элементарным, но сначала вы должны понять, как работают TRV и что они могут и чего не могут делать).

TRV — это двухходовые клапаны. Жидкость входит в одну сторону и выходит обратно с любой скоростью между «полным включением» и «полным выключением». Другими словами, TRV — это просто пропорциональный клапан потока. Работа привода TRV заключается в регулировании потока. Привод измеряет температуру (обычно комнатного воздуха) и имеет регулируемую шкалу. Он регулирует степень открытия корпуса клапана TRV, пытаясь поддерживать фактическую комнатную температуру на уровне настройки комнатной температуры.

Если датчик определяет, что фактическая температура воздуха падает ниже установленной, клапан приоткрывается; если он обнаруживает превышение заданного значения, клапан несколько закрывается. Обратите внимание, что обычно он не полностью открывает или закрывает клапан; он перемещает настройку пропорционально отклонению между фактическим и желаемым. Обычно требуется разница примерно плюс/минус 4 градуса по Фаренгейту, чтобы клапан полностью закрылся/открылся.

Итак, первое правило, касающееся TRV, заключается в том, что они регулируют поток. Они ТОЛЬКО способны регулировать поток. Хотя может показаться, что они регулируют температуру, они могут делать это ТОЛЬКО путем регулирования потока.

Второе правило TRV заключается в том, что, поскольку они способны только регулировать поток и стремятся поддерживать желаемую настройку, пропорционально регулируя этот поток, они «хотят» получать постоянно циркулирующую воду, нагретую, по крайней мере, до такой степени, чтобы удовлетворить нагрузки в любое время, когда в конструкции требуется тепло. Остановите поток воды или дайте ему упасть слишком низко, и настройка, которую они так стараются поддерживать, больше не может быть достигнута. Температура в помещении упадет, и когда снова будет достаточно тепла, оператор будет вынужден широко открыть вентиль. Без этой постоянной циркуляции адекватно нагретой воды TRV и их приводы начинают напоминать типичные двухпозиционные термостаты и все меньше и меньше имеют свой пропорциональный характер.

Третье правило TRV состоит в том, что они полностью автономны. Они не могут ни получать информацию от котла, ни передавать информацию в него. Они не могут сказать котлу «я доволен», а также не могут прямо сказать котлу «мне нужно тепло» или «мне тепло не нужно». ВСЕ, что они могут сделать, это регулировать поток, и снова от «полного включения» до «полного отключения». Это отличает TRV от более распространенных форм «зонирования», таких как двухпозиционные клапаны или двухпозиционные циркуляционные насосы, которые обеспечивают связь между котлом и зональным контроллером (обычно настенным термостатом).

Многие остановятся здесь и скажут: “Это все правила или, по крайней мере, все, что вам нужно знать”. Но это не ВСЕ истории.

В то время как TRV не могут обеспечить прямое управление между котлом и излучателями, они МОГУТ обеспечивать косвенное управление, и не только котлом, но и друг другом! Как они это делают? Регулируя поток через систему в целом, а также регулируя то, как каждый TRV распределяет доступный поток. ОДНАКО, этот метод хорошо работает только при использовании настоящей постоянной циркуляции нагретой воды! ВСЕГДА, КОГДА сооружению требуется тепло, циркуляционный насос должен работать с каждым* эмиттером, управляемым TRV. (* Тщательно спроектированные излучающие панели, такие как полы в ванных комнатах, являются заметным исключением при условии, что температура подачи использует сброс.)

Таким образом, TRV обеспечивают пропорциональное регулирование расхода, нуждаются в постоянной циркуляции достаточно нагретой воды, не имеют прямой связи с котлом, но обеспечивают косвенную связь с нагрузкой на систему.

Теперь вы спросите: “Как мне использовать постоянную циркуляцию с TRV?”

ГЛАВНОЕ ПРАВИЛО!!! Независимо от того, что вы делаете, все или почти все TRV могут быть полностью закрыты во время обеспечения циркуляции. Сопротивление потоку (напор) сильно возрастет, и циркулятор не будет работать. В лучшем случае его жизнь значительно сократится. Решением является простое устройство, называемое перепускным клапаном перепада давления. Это трехходовой клапан отводного типа, устанавливаемый после циркуляционного насоса, приводящего в действие контур, содержащий ТРВ. Путь отвода обходит эмиттеры, и вода направляется прямо обратно в циркуляционный насос. В обычном режиме переадресации нет. Если поток падает достаточно, а напор достаточно поднимается, он начинает открываться и направлять воду обратно в циркулятор. Как и в случае самих TRV, это работа с пропорциональным потоком. Он отклонит любой объем потока, необходимый для поддержания максимальной потери напора (перепада давления). Если вы использовали TRV на каждом эмиттере в контуре, он ДОЛЖЕН иметь перепускной клапан перепада давления!

Как вы управляете котлом и циркуляционным насосом?

Один довольно распространенный метод был упомянут Марком Эзертоном (выше). Вы оставляете один излучатель без TRV (предпочтительно в пространстве с относительно низким уровнем излучения — часто в области с высокими потерями, большим количеством окон и т. д., и не подверженной сильному солнечному усилению). Установите в этой комнате настенный термостат и подключите его к котлу или контроллеру котла. Лично я нахожу этот метод грубым. Это не позволяет обеспечить постоянную циркуляцию нагретой воды. Например, всякий раз, когда это помещение удовлетворяется, горелка и/или циркуляционный насос останавливаются. Это устраняет (или, по крайней мере, уменьшает) «косвенное» управление ТРВ как по отношению к котлу, так и между собой, и, как следствие, затрудняет достижение понижения комнатной температуры за счет голодания температуры подачи.

Если необходимо использовать настенный термостат, я предпочитаю использовать TRV на ВСЕХ излучателях и устанавливать термостат во внутреннем коридоре, где нет радиатора. Если такого места нет, попробуйте комнату с относительно слабым излучением, но с TRV на излучателе. Для «нормальной» работы такой термостат будет установлен несколько выше желаемой температуры в помещении. Это обеспечивает постоянную потребность в тепле, что обеспечивает постоянную циркуляцию нагретой воды.

Если настенный термостат не используется (и ваш котел не Viessmann Vitodens), как вы даете команду котлу нагреваться? Простой! Перепрыгните соединения Т-Т (термостата)!

Почему это не требуется для Vitodens? Потому что нет подключения термостата! И да, вы МОЖЕТЕ сделать это с любым котлом, включая мод-коны. Однако вы ДОЛЖНЫ ПОЛНОСТЬЮ отключить любую функцию «форсирования», потому что ПОСЛЕДНЯЯ вещь, которую вы хотите, чтобы котел продолжал повышать температуру подачи, пока продолжается запрос тепла. Вы делаете непрерывный запрос тепла в любое время, когда конструкции требуется тепло. Это ваша цель!

В трех случаях, описанных выше, “управление радиатором”, “главный термостат” или “перескакивающий Т-Т”, я советую настроить систему на отключение в теплую погоду. Просто используйте простой контроллер заданного значения с дистанционным считыванием, с датчиком НА УЛИЦЕ, и используйте его сухие контакты для отключения всей системы, когда наружная температура поднимается выше определенного значения. Хотите верьте, хотите нет, но 55 градусов по Фаренгейту часто является хорошим выбором для точки отключения. В схеме «управляющий радиатор» или «главный термостат» просто поставьте его последовательно с настенным термостатом. В схеме «T-T jumped» он просто заменяет термостат.

Так как же контролировать температуру этой нагретой воды, которая постоянно циркулирует в любое время, когда сооружению требуется тепло?

С обычным бойлером технически можно использовать только аквастат. Однако это НЕ рекомендуется, поскольку поток через систему будет изменяться прямо пропорционально нагрузке на систему. В мягкую погоду поток системы будет ОЧЕНЬ низким. TRV будут едва открыты – скорость через их отверстие будет высокой, и вы получите чрезмерный износ и шумы.

ГОРАЗДО лучше использовать открытый сброс. При повышении наружной температуры уставка температуры подачи падает. Однако при использовании обычного котла вы ДОЛЖНЫ помнить о возможном повреждении из-за конденсации дымовых газов. В то время как старые оригинальные гравитационные системы практически невосприимчивы, более современные системы – нет! Термостатический байпасный клапан ESBE типа TV [вероятно] обеспечивает наилучшую (недорогую, простую, надежную) защиту.

Если газ является вашим топливом, надеюсь, вы использовали конденсационный котел (чем ниже температура, тем лучше) и плавное регулирование (регулируйте огонь в зависимости от нагрузки). Именно здесь полностью действующая система TRV с постоянной циркуляцией действительно сияет. Кроме того, здесь вы можете максимально эффективно использовать возможности косвенного управления TRV.

С мод-коном я бы предложил TRV на всех эмиттерах. Подсоедините блок управления отключением в теплую погоду к соединениям Т-Т, возможно, последовательно с вашим «главным» термостатом. Управление отключением в теплую погоду также должно отключать вторичный (эмиттерный) циркуляционный насос, если используется первичный/вторичный трубопровод. Если вы используете Vitodens от Viessmann, соединения Т-Т отсутствуют; если GB от Buderus, используйте контроллер RC-10, так как это тип системы, для которого он разработан.

Когда мод-кон управляет полностью системой TRV, есть термин, который вы должны знать. «Тепловое управление»

«Управление по теплу» имеет ВСЕ отношение к TRV, поскольку описывает количество доступного постоянно циркулирующего тепла. «Тепловой авторитет» также ОЧЕНЬ связан как с эффективностью, так и с регулируемостью.

Значение 1,0 органа управления по нагреву означает, что температура (и, следовательно, энергия) в точности равна температуре, необходимой для поддержания заданного значения всеми TRV. Выше 1 означает, что температура выше, чем необходимо; меньше 1 означает, что это меньше, чем нужно.

С мод-коном авторитет тепла 1.0 по определению является наиболее эффективным из возможных. Однако это сделало бы невозможным повышение температуры в космосе. В конце концов, это ПРОСТО адекватно! В действительности авторитет теплоснабжения обычно выше 1,0. Насколько выше, зависит от предпочтений и образа жизни. Чтобы получить больше тепла с помощью мод-кона, все, что вам нужно сделать, это увеличить кривую сброса. Чем больше авторитет тепла, тем быстрее вы сможете поднять температуру в помещении, но будет некоторый «удар» в отношении эффективности. При условии, что пассажир имеет доступ к кривой, он или она полностью контролирует как эффективность, так и «скорость» и может сбалансировать их для своего образа жизни.

Включите JavaScript, чтобы просматривать комментарии на базе Vanilla.

Комментарии от Vanilla

Как идентифицировать трубы моей системы отопления?

Перейти к содержимому

Как идентифицировать трубы моей системы отопления?

  • обнаружение подачи и возврата
  • обнаружение горячей и холодной воды
  • циркуляционная линия
  • газопровод

В общем, большие работы по системе отопления лучше доверить специалисту. Небольшой ремонт также может быть выполнен ссудодателем после небольшого исследования. В зависимости от проекта обычно можно найти множество инструкций и полезных советов в Интернете. Иногда не хватает определенных базовых знаний, которые предполагаются. Например, какая труба на самом деле какая. Это именно те знания, которыми мы хотим поделиться сегодня.

Как распознать поток и возврат?

В идеале все было отмечено при установке и поиск окончен. Однако, поскольку это почти никогда не бывает, приходится прибегать к другим возможностям. Распознать приток и обратку легко, потому что приток всегда теплее обратки. Если вы не можете непосредственно почувствовать разницу температур, вы можете полностью включать и выключать обогрев. Первая линия, которая нагревается, – это линия подачи. Кроме того, вы можете увидеть обратный поток в расширительном баке. Расширительный бак представляет собой небольшую округлую ванну, которая предназначена для предотвращения повреждения системы из-за изменения объема воды.

Как отличить горячую и холодную воду?

Самый простой метод такой же, как для распознавания потока и возврата. Как следует из названия, линия горячей воды теплее, чем линия холодной воды. Но есть и другой способ различить две линии. А именно, группа безопасности всегда присоединяется к входу холодной воды в резервуар для воды. Следовательно, линия с группой безопасности является и линией холодной воды. В качестве альтернативы вы также можете запустить горячую воду из крана, и самое позднее после этого линия горячей воды должна стать теплой.

Как распознать циркуляционную трубу?

Циркуляционная труба помогает обеспечить подачу горячей воды непосредственно тогда, когда это необходимо. Для работы циркуляционной трубы также необходим циркуляционный насос, обеспечивающий необходимую мощность для циркуляции излишков воды. И именно так можно узнать циркуляционную трубу. Труба, на которой установлен циркуляционный насос – это циркуляционная труба. Это также самая тонкая труба, подсоединенная к баку с горячей водой.

Как узнать газовую магистраль?

Die Gasleitung führtgradewegs zum Gaszähler, somit ist es möglich die Leitung zu verfolgen.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *