Коэффициент теплопроводности плитки керамической: на что обратить внимание при выборе

Содержание

Сравнительная таблица теплопроводности современных строительных материалов

Оглавление:

  • Понятие теплопроводности
  • Факторы, влияющие на величину теплопроводности
  • Практическое применение значения теплопроводности строительных материалов
  • Теплопроводность материалов: параметры
  • Теплопроводность при строительстве

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым.

Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Коэффициент теплопроводности кирпичей.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

Зависимость теплопроводности газобетона от плотности.

  1. Пористость наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо коэффициент теплопроводности при температуре 0 °С, Вт/м*°С,

b справочная величина температурного коэффициента,

t температура.

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

Таблица теплопроводности утеплителей.

H=R/λ, (2)

где, H толщина слоя, м,

R сопротивление теплопередаче, (м2*°С)/Вт,

λ коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение,
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 Строительная климатология,
  • СНиП 23-02-2003 Тепловая защита зданий,
  • СП 23-101-2004 Проектирование тепловой защиты зданий.

Теплопроводность материалов: параметры

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Таблица 1

Материал Коэффициент теплопроводности, Вт/(м*°С). Пенобетон (0,08 0,29) в зависимости от плотности Древесина ели и сосны (0,1 0,15) поперек волокон

0,18 вдоль волокон Керамзитобетон (0,14-0,66) в зависимости от плотности Кирпич керамический пустотелый 0,35 0,41 Кирпич красный глиняный 0,56 Кирпич силикатный 0,7 Железобетон 1,29

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Теплопроводность при строительстве

Схема сравнения теплопроводности стен из газобетона и кирпича.

При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:

  • 30-40% потерь тепла приходится на поверхность стен,
  • 20-30% через межэтажные перекрытия и крышу,
  • около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами,
  • приблизительно 10% тепла уходит из помещения через плохо утепленные полы.

Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции. В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.

В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов. Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т.п.

Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.

Здесь можно различить:

Сравнение теплопроводности соломобетонных блоков с другими материалами.

  1. Каркасный вариант строительства основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев. Утеплитель укладывается в межстоечное пространство. В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.
  2. Возведение стен дома из кирпича, пористых бетонных блоков, дерева утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.

Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.

Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.

Что теплее – керамогранит или керамическая плитка?

» Статьи

» Что теплее – керамогранит или керамическая плитка?

12.08.2022

На строительном рынке большой выбор отделочных материал и из такого разнообразия фирм и коллекций трудно выбрать то, что необходимо. При выборе плитки задача усложняется, ведь нужно помнить об его различных видах, которые между собой различаются. Виды этого материала имеют в составе одинаковые компоненты и технические характеристики. Выбирая между керамической плиткой и керамогранитом, нужно знать, что теплее. Необходимо разобраться с нюансами и характеристиками этих облицовочных покрытий. Самыми известными напольными покрытиями являются керамогранит и керамическая плитка. Эти строительные материалы подходят для любых видов отделки не только полов, но и стен. При укладке этих материалов мы хотим сделать полы теплыми (обычная плитка и керамогранит холодные строительные материалы, которые необходимо утеплять).

Что теплее керамическая плитка или керамогранит? Чтобы ответить на этот вопрос необходимо разобраться, кто проводит тепло лучше.

Теплопроводность керамической плитки

Керамическая плитка как напольное покрытие имеет много преимуществ. Лучше всего ее укладывать на плиточный клей на стяжку из бетона. Такая укладка напольного покрытия хорошо будет собирать тепло и отдавать его воздуху. За короткий промежуток времени плитка греется и на долгое время воздух в помещении будет нагрет. У керамической плитки небольшой коэффициент проводимости тепла. Она хорошо аккумулирует тепло в сочетании с остальными строительными материалами.

Керамогранит и его теплопроводность

Своими свойствами керамогранит превосходит другие облицовочные материалы. Даже обычная плитка ему уступает. На его выбор влияет вес, цветовая гамма, текстура и габариты. Но основным параметром при выборе керамогранита остается все-таки коэффициент теплопроводности. Обо всех характеристиках керамогранита можно прочитать на упаковке. У керамогранита очень маленький коэффициент теплопроводности. Это напольное покрытие нагревается и очень медленно отдает свое тепло. Керамогранит как напольное покрытие лучше всего подойдет для обустройства теплых полов. Если пол облицовывают плиткой, необходимо выбирать керамическую плитку с наименьшим показателем теплопроводности. Сократить траты на обогрев можно с помощью керамогранита. По показателям теплопроводности он обходит всех соперников и керамическую плитку тоже.

При выборе напольного покрытия между керамогранитом и керамической плиткой стоит выбирать первое. Керамогранит обладает рядом достоинств, среди которых:

  • маленькая цена;
  • теплопроводность ниже, чем у керамической плитки и других строительных материалов;
  • подходит для облицовки не только полов, но и стен;
  • высокая устойчивость к износу.

При сравнении характеристик керамической плитки и керамогранита становится ясно, что керамогранит теплее.

Рекомендуем прочесть

Измерение теплопроводности керамики с помощью TLS-100

Возможность точного измерения теплопроводности материалов имеет решающее значение для определения областей применения, для которых их свойства идеально подходят. Существует множество способов проверки теплопроводности керамики, однако не все методы одинаковы. Точность каждого метода является важным решающим фактором в дополнение к более практическим соображениям, таким как длина измерения и простота настройки теста.

Портативная измерительная система Thermtest, TLS-100 (рис. 1), выполняет измерения теплопроводности и удельного сопротивления грунтов, твердых веществ и порошков в диапазоне от 0,1 до 5 Вт/мК. Измерения выполняются в соответствии со стандартом ASTM D5334 и имеют воспроизводимость 2% и точность 5%. Это оборудование является отличным и удобным выбором для использования в лаборатории и в полевых условиях и может работать в диапазоне температур от -40 до 100°C. На этой странице приложения мы продемонстрируем способность Thermtest TLS-100 измерять теплопроводность керамического стеатита и обожженного бисквитом глинозема, двух важных материалов для промышленного применения.

Рис. 1. Thermtest TLS-100 — это мощный измеритель теплопроводности в удобном портативном корпусе.

Стеатит, также известный как мыльный камень, высоко ценится за его термостойкость и изоляционные свойства. Он широко используется в электрических панелях, конструкции дровяных печей, столешниц и в качестве форм для расплавленного металла из-за его способности поглощать и медленно отдавать тепло, которому он подвергается, не становясь нестабильным или разрушаясь. Физические свойства этого материала могут различаться в разных карьерах из-за разного минерального состава и условий давления и температуры во время формирования. Как и стеатит, обожженный бисквитом глинозем используется в аэрокосмической, автомобильной и крупномасштабной промышленности благодаря своим изолирующим свойствам при высоких температурах. Это материал, который легко формуется и обрабатывается, и поэтому является удобным выбором.

Рисунок 2 . Фотография форм из стеатита, используемых для создания металлических предметов. Стеатит отлично подходит для использования в качестве форм, так как обладает высокой термостойкостью. 1

Процедура испытания теплопроводности керамики

TLS-100 работает путем введения игольчатого зонда в образец и выполняет измерения в течение установленного периода времени, когда образец нагревается и охлаждается. Эта установка приводит к минимальному повреждению образца из-за теста. Для этого конкретного испытания ученые Thermtest разрезали образцы обожженного бисквитом глинозема и стеатита на две части. Игольчатый зонд TLS-100 был покрыт тонким слоем термопасты, и две части каждого образца были зажаты вокруг зонда, обеспечивая превосходный тепловой контакт (рис. 3 и 4). Для каждого образца было проведено в общей сложности пять измерений с временем тестирования 120 секунд. TLS-100 одновременно измеряет как теплопроводность, так и удельное тепловое сопротивление.

Рисунок 3. Диаграмма, иллюстрирующая метод, используемый для размещения игольчатого датчика TLS-100 между двумя образцами обожженного оксида алюминия и стеатита.

Рис. 4. Фотографии испытательной установки, используемой для измерения теплопроводности керамического стеатита и обожженного бисквитом глинозема в лаборатории Thermtest.

Результаты измерения теплопроводности керамики

Значения теплопроводности и теплового сопротивления, измеренные прибором TLS-100, приведены в таблице 1. Средняя теплопроводность 5,077 Вт/мК была получена для обожженного бисквитом глинозема, что точно соответствует принятый диапазон теплопроводности для этого материала составляет от 5 до 5,25 Вт/мК. Значение 3,107 Вт/мК, полученное для образца стеатита, также хорошо соответствует эталонным материалам, которые обеспечивают теплопроводность стеатита 3 Вт/мК.

Таблица 1. Теплопроводность керамики: Теплопроводность и тепловое сопротивление стеатита и обожженного бисквита глинозема, полученные с использованием TLS-100 в лаборатории Thermtest.

Глинозем бисквитного обжига Стеатит
№ теста Теплопроводность (Вт/м·К) Удельное тепловое сопротивление (мК/Вт) Тест # Теплопроводность (Вт/мК) Удельное тепловое сопротивление (мК/Вт)
1 5. 005 0,199 1 3,098 0,322
2 4,953 0,201 2 3,076 0,325
3 5.137 0,194 3 3.203 0,312
4 5.181 0,192 4 3,085 0,324
5 5.108 0,195 5 3,075 0,325
Среднее 5.077 0,196 Среднее значение 3.107 0,322

 

Эти тесты демонстрируют способность Thermtest TLS-100 быстро и точно измерять теплопроводность керамики с минимальным повреждением самого образца. При поиске оборудования для измерения теплопроводности TLS-100 является отличным выбором, который можно использовать как в лаборатории, так и в полевых условиях на самых разных образцах.

 

Теплота – Теплопроводность | Характеристики тонкой керамики | Мир тонкой керамики

  • ДОМ
  • Характеристики тонкой керамики
  • Тепло – Теплопроводность

Теплопроводность легко передает тепло

Свойство, которое измеряет, насколько хорошо тепло передается через материал, называется теплопроводностью. Среди тонкой керамики (также известной как «усовершенствованная керамика») некоторые материалы обладают высоким уровнем проводимости и хорошо передают тепло, в то время как другие обладают низким уровнем проводимости и передают меньше тепла. Нитрид алюминия и карбид кремния особенно хорошо передают тепло. Нитрид алюминия используется в корпусах полупроводников, которые излучают большое количество тепла, но не должны накапливать тепло внутри. Цирконий эффективно блокирует тепло, а его коэффициент теплопроводности низкий — 1/10 от коэффициента теплопроводности нержавеющей стали. Используется для стен печей, подвергающихся воздействию высоких температур.

Применение : Материалы с высокой теплопроводностью, такие как корпуса ИС. Материалы с низкой теплопроводностью, например, стены печи.

Введение в типы тонкой керамики (материалы) и различные характеристики

Описание

Теплопроводность

Свойство, которое измеряет, насколько легко тепло передается через материал, называется теплопроводностью. Для керамики на это свойство могут влиять такие факторы, как внутренняя пористость, границы зерен и примеси. Более высокие или более низкие уровни теплопроводности могут быть достигнуты в материалах Fine Ceramic путем контроля этих факторов.

Теплопроводность тонкой керамики

Теплопроводность создается движением электронов и передачей колебаний решетки. Металлы с низким электрическим сопротивлением и кристаллы, в которых колебания решетки легко передаются (например, кристаллы с атомами или ионами близких масс в узлах решетки, и ковалентные кристаллы с сильными связями), обладают высокой теплопроводностью.

Теплопроводность при комнатной температуре

Дополнительные сведения см. в разделе «Выдержка из значений графика».

Термин «тонкая керамика» взаимозаменяем с «усовершенствованной керамикой», «технической керамикой» и «инженерной керамикой». Использование зависит от региона и отрасли.

Следующая страница Химическая устойчивость

  • Изоляция
  • Проводимость
  • Диэлектричество
  • Пьезоэлектричество
  • Магнетизм

Характеристики тонкой керамики

  • Твердость
  • Жесткость
  • Прочность
  • Удельный вес

Характеристики тонкой керамики

  • Химическая стойкость
  • Биосовместимость

Характеристики тонкой керамики

  • Оптические свойства

Характеристики тонкой керамики

Люди, которые читают эту страницу, тоже читают.

Тепло (1)

Тепло (1)

Термостойкость, чтобы выдерживать экстремальные температуры

Термостойкость, чтобы выдерживать экстремальные температуры

Характеристики тонкой керамики

Тепло (2)

Тепло (2)

Низкое тепловое расширение

Низкое тепловое расширение

Характеристики тонкой керамики

Различные виды тонкой керамики

Различные виды тонкой керамики

Широкий выбор продуктов для поддержки промышленности и общества

Широкий выбор продуктов для поддержки промышленности и общества

Введение в тонкую керамику

Если вы хотите использовать керамику в бизнесе, нажмите здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *