Оценка уровня углекислого газа в помещении с кондиционером / Даджет corporate blog / Habr
Есть прописные истины, знакомые любому человеку практически с рождения. Зимой холодно, а летом тепло. При дыхании потребляется кислород и выделяется углекислый газ. Когда в помещении скапливается много углекислого газа, то становится душно, а чтобы в помещении стало находиться комфортнее — его нужно проветрить. Но при этом большинство людей склонно недооценивать влияние повышенной концентрации CO2 на здоровье и качество жизни. Об этом я и хочу поговорить в данной статье, а также показать, как влияет кондиционер на процесс очистки воздуха. И заодно представить обзор детектора уровня CO2, который помогает держать качество воздуха в помещении под контролем.
Содержание
• 1 Что нужно знать о CO2
• 2 Техническая информация
• 3 Внешний вид и принцип действия
• 4 Измерения
• 5 Домашняя автоматизация
• 6 Выводы
1. Что нужно знать о CO2
CO2 или углекислый газ — неотъемлемая часть любой воздушной смеси, содержание которого измеряется в миллионных долях (ppm — parts per million). Условно нормальный уровень CO2 в свежем уличном воздухе принято считать за 400ppm. Эта цифра непостоянна и зависит от конкретной локации — так, в экологически чистом районе с отсутствием промышленности и малой плотностью заселенности содержание углекислого газа в атмосфере может быть ниже среднего значения, а в густонаселенном мегаполисе, да еще с промышленными предприятиями практически наверняка будет выше среднего.
Воздух в помещении считается качественным, если содержание CO2 в нем колеблется в пределах 800ppm. При достижении концентрации углекислого газа 1000ppm у многих людей уже появляется ощущение духоты и вялости, а 1400ppm — предел нормы по рекомендациям Сан-Пина.
Опасным уровнем является 30000ppm — при достижении такой концентрации CO2 у человека учащается пульс, возникает ощущение тошноты и прочие симптомы кислородного голодания. Хорошая новость заключается в том, что «надышать» такую концентрацию углекислого газа практически невозможно в офисных и жилых помещениях даже очень низкого качества. Тем не менее, даже небольшие превышения допустимой концентрации CO2 способны существенно влиять на качество жизни. Уже при 1000ppm снижается концентрация внимания, появляется ощущение вялости, мозг начинает хуже обрабатывать информацию. При концентрации CO2 выше 1400ppm в офисе становится трудно концентрироваться на работе, а дома появятся проблемы со сном. Содержание СО2 зависит, в большей степени, от количества людей, находящихся в закрытом помещении.
«Управлять можно только тем, что можно измерить», писал основоположник современной теории управления Питер Друкер. И первый шаг к управлению микроклиматом помещения заключается в начале отслеживания его объективных показателей.
В этом-то нам и поможет детектор углекислого газа от компании Даджет.
2. Техническая информация
Название модели: Детектор СО2 (Mini Monitor СО2)
Диапазон измерения CO2: 0 — 3000 ppm
Точность измерений: ±10% ppm, ±1,5°C
Вывод информации: ЖК-дисплей, светодиодные индикаторы
Потребление тока: до 200мА
Дополнительные функции: звуковой сигнал превышения концентрации CO2
3. Внешний вид и принцип действия
Детектор CO2 поставляется в картонной коробке, содержащей сведения о производителе и краткую памятку по влиянию повышенных концентраций углекислого газа на самочувствие человека.
Внутри находится сам прибор, инструкция на русском языке и USB-кабель. У детектора нет встроенного аккумулятора, поэтому работать он может только от внешнего источника питания: USB-порта компьютера или обычного зарядного устройства для смартфона.
Само устройство крупным планом. На передней панели находится экран и три индикационных светодиода, отображающих усреднённо результаты измерений: при концентрации CO2 ниже 800ppm светится зеленый светодиод, при 800-1200ppm — желтый, выше 1200ppm — красный. Значения интервалов действия индикаторов можно изменить в настройках.
Вообще, светодиодная индикация оказалась очень информативной вещью. Не нужно подходить к прибору и всматриваться в текущие значения показателей. Издалека видно, что если индикатор переключился с зеленого на желтый, то помещение можно уже и проветрить, а если он покраснел — проветривание желательно начать уже прямо сейчас.
На правом боку находится microUSB-порт и отверстие, через которое происходит забор воздуха для анализа.
Сзади отверстия для вентиляции, наклейка с технической информацией и две кнопки, которыми осуществляется настройка.
Сердцем устройства является датчик углекислого газа ZGm053UK, работающий по технологии NDIR (non-dispersive infrared radiation, недисперсионное инфракрасное излучение): в световодную трубку заходит поток воздуха и попадает под излучение инфракрасной лампы, а на другом конце трубки стоит инфракрасный детектор с соответствующим фильтром. Чем больше в воздушной смеси содержится CO2 — тем сильнее ослабевает инфракрасное свечение, что и позволяет датчику определить текущую концентрацию CO2.
Себестоимость NDIR-сенсоров выше, чем у аналогов с другим принципом работы (электрохимическим или электроакустическим), но при этом они имеют длительный срок службы и обеспечивают более точные результаты.
4. Измерения
Теперь испытаем детектор в работе. Место проведения измерений — Челябинск, двухкомнатная квартира в относительно тихом районе, окна выходят во двор.
Опыт №1. Знакомство с прибором
Первым делом я измерил концентрацию углекислого газа на улице, разместив детектор у открытого окна на 4 этаже.
Измерения показали 440ppm. Нормальный уровень содержания CO2 в атмосфере, напоминаю, составляет 400ppm. Ну что же, с поправкой на безветренную погоду и проживание в промышленном мегаполисе с традиционно проблемной экологией, 440ppm можно считать нормальным результатом.
Теперь измерим уровень CO2 в самой квартире, предварительно хорошо ее проветрив все комнаты.
Получилось 550ppm. Это отличный результат, воздух почти как на улице.
Но, забегая наперед, скажу: поддерживать такое качество воздуха на постоянной основе в квартире, не оснащенной продвинутыми системами вентиляции, практически невозможно.
Опыт №2. Длительные измерения
По ходу обзора я еще не упоминал, что детектор не только отображает моментальные значения концентрации CO2, но и способен работать в связке с компьютером.
Если установить специальную программу, то устройство будет фиксировать уровень концентрации CO2 и температуры в помещении с привязкой ко времени и строить график на основании этих показателей.
Дальнейшие измерения будем проводить при помощи этой программы.
Ночь с закрытыми окном и дверью. К утру концентрация CO2 в комнате подскакивает практически до 2000ppm.
Открываем створку окна на проветривание и смотрим на график. Примерно за 40 минут концентрация углекислого газа снижается с 2000ppm до здорового уровня 700ppm.
Вечер. Затихает естественный шум и становятся особенно слышны голоса отдыхающих во дворе компаний. Они мешают, поэтому закрываю окно.
За час концентрация CO2 повышается почти что вдвое, с 700ppm до 1300ppm.
Опыт №3. Суточный мониторинг
Теперь посмотрим, как меняется концентрация CO2 в помещении в течение одного полного дня.
Исходные данные: все та же двухкомнатная квартира, в которой одновременно находятся от одного до трех человек. Окно на кухне практически всегда открыто, окна и балконная дверь в комнатах открываются и закрываются в течение дня, межкомнатные двери закрываются на ночь.
Хорошо проветриваю комнату перед сном, закрываю окно и ложусь спать.
К полуночи концентрация CO2 уже превышена, но до пяти часов утра сохраняется на уровне, который с натяжкой можно назвать удовлетворительным. На временном промежутке с пяти до девяти утра концентрация CO2 повышается до 2000ppm. Кстати, это вполне коррелирует с личными ощущениями при сне с закрытым окном. Где-то в 5 утра я просыпаюсь в достаточно бодром состоянии, но поскольку еще слишком рано — остаюсь в кровати досыпать до звонка будильника. По звонку будильника в 7 утра просыпаюсь с тяжелой головой и в подавленном настроении, как будто и не спал всю ночь — к этому времени организм уже успевает надышаться «плохим» воздухом, что сказывается на самочувствии.
С 9 до 10 часов — проветривание. Открыты окна во всех комнатах, концентрация CO2 спадает с 2000ppm до 600ppm.
С 10 до 15 часов — окна в комнатах закрыты, на кухне открыта форточка. В квартире 1 человек. Концентрация CO2 в норме.
С 15 до 18 часов — открыты форточки во всех комнатах. В квартире 2 человека. Концентрация CO2 всё еще в норме.
С 18 до 21 часа — открыты форточки во всех комнатах. В квартире 3 человека. Концентрация CO2 начинает нарастать, форточки уже не спасают.
С 21 до 22-30 часов — проветривание с открытыми окнами. В квартире 3 человека. Концентрация CO2 приходит в норму, но начинает повышаться сразу же, стоит закрыть окна и оставить одни форточки для проветривания.
А теперь рассмотрим другой день с другим распорядком.
Ночью в комнате открыта форточка, концентрация CO2 немного превышена, но все же не растет до совсем диких величин.
С 8 до 14 часов — в квартире никого нет, межкомнатные двери открыты, во всех комнатах открыты окна. Концентрация CO2 спадает до уровня уличного воздуха.
С 14 до 18 часов — в квартире 2 человека, межкомнатные двери открыты, во всех комнатах открыты форточки. Концентрация CO2 уже не как на улице, но в пределах нормы.
С 18 часов и до утра — в квартире 3 человека, межкомнатные двери закрыты, форточки открыты. Концентрация CO2 немного превышена, но стабильна.
Вывод: если жить одному в двухкомнатной квартире, то о качестве воздуха можно практически не беспокоиться. Достаточно лишь иногда проветривать помещение. А вот при двух-трех обитателях на том же количестве квадратных метров для поддержания концентрации углекислого газа в нормальных пределах придется осуществлять проветривание практически круглосуточно.
Опыт №4. CO2 и кондиционер
Теперь посмотрим, что происходит в комнате при использовании кондиционера.
Исходные данные: проветренное помещение, но на улице жарко, а соответственно и в помещении тоже.
Закрываю окна чтобы воздух не уходил, включаю кондиционер.
В результате, за час работы кондиционера температура в комнате упала на несколько градусов, а концентрация CO2 возросла.
Подвох в том, что если не выходить из помещения на свежий воздух, то субъективно воздух в нем воспринимается как свежий и качественный просто за счет своей прохлады. И только цифры на приборе показывают реальную картину.
Кондиционирование не заменяет проветривания, поэтому сидя целый день в уютной и прохладной комнате можно незаметно для себя «надышать» концентрацию CO2 в 2000ppm, а то и больше. Особенно это актуально для офисов, где в одном небольшом помещении находятся сразу несколько человек. Широко распространено заблуждение, что раз для кондиционера монтируется отдельный воздуховод прямо на улицу, то кондиционер забирает уличный воздух, охлаждает его внутри себя и выпускает в помещение. На самом же деле воздуховод служит для выброса горячего воздуха из помещения на улицу, то есть работает как вытяжка. Причём такие кондиционеры встречаются далеко не везде. Обычная сплит система «гоняет» воздух в помещении по кругу, а по трубкам поступает охлаждённых хладагент.
Пользуясь кондиционером следует помнить о необходимости насыщать помещение свежим воздухом.
5. Домашняя автоматизация
В завершение обзора хочу отметить, что сфера применения детектора CO2 не ограничивается одним лишь проведением измерений и построением графиком на компьютере.
Это устройство можно использовать в проектах домашней автоматизации, причём сделать это можно двумя различными способами.
Первый способ — подключение силового реле к одному из индикационных светодиодов.
Принцип действия очевиден: при повышении концентрации CO2 в воздухе зеленый индикатор сменяется на желтый, при этом автоматически замыкается электронный ключ в реле, что в свою очередь включает подключенное к реле устройство (например, вентилятор приточной системы).
Второй способ — программный.
Поскольку детектор поддерживает передачу данных с датчика на компьютер по USB-протоколу, его можно внедрить в любую самодельную систему «умного дома», считывая показатели с датчика на головное устройство. А уже с головного устройства, на основании получаемых показателей, управлять другой подключенной к системе электроникой.
6. Выводы
Было интересно увидеть реальное состояние воздуха в своей квартире. С использованием детектора CO2 стало наглядно видно, что имеющаяся пассивная вентиляция малоэффективна, и если в теплое время еще можно держать окна открытыми практически круглосуточно (хотя и летом это не всегда удобно из-за уличного шума), то зимой это неосуществимо по причине быстрого остывания помещений. Появился повод задуматься о модернизации домашней вентиляции, да и о поддержании здорового микроклимата в помещении в целом. Кроме того, в ассортименте магазина имеется продвинутый монитор качества воздуха, обладающий более крупным дисплеем и позволяющий измерять помимо концентрации CO2 и температуры еще и относительную влажность воздуха. Скидка 10% предоставляется по промокоду GT-CO2 в течение 14 дней.
В одной из следующих статей будет описано, как подружить детектор СО2 с микрокомпьютером Raspberry Pi.
Автор: Дмитрий Чебанько, г. Челябинск
Блогерам и авторам
Компания «Даджет» заинтересована в публикации независимых объективных обзоров наших даджетов. Мы с радостью предоставим даджеты авторам, желающим протестировать их, написать и опубликовать обзор в нашем блоге. Даджет после написания обзора остается у автора. Подробнее.
замеры уровня CO2 в различных местах и ситуациях / Комфортная жизнь / iXBT Live
На улице, в общественном транспорте, офисе, однушке, включая кухню, и в салоне автомобиля с закрытой заслонкой. В последнем случае шанс умереть отнюдь не призрачный, а вполне реальный, и его можно легко вычислить.

В чем проблема
Вдыхаем кислород, выдыхаем углекислый газ. В выдохе его примерно 4,5%, в то время как в окружающем пространстве должно быть около 0,04%. Исследованиями доказано, что даже при достаточном количестве кислорода увеличение доли углекислого газа приводит к появлению головной боли, сонливости, сложности с концентрацией внимания, а при высоком содержании (0,5% и выше) к потере сознания.
В чем измеряется и сколько должно быть
Из-за малых величин концентрацию CO2 обычно выражают в количестве частей на миллион (ppm), что эквивалентно десятитысячным долям процента.
Ниже наименее пугающая картинка из интернета, которая расскажет как повышенная концентрация углекислого газа сказывается на самочувствии. Цифры на шкале — те самые ppm.

Важный вопрос – сколько может “надышать” человек? В интернете мне удалось найти такую цифру: за один час в закрытом помещении 20 м2 один человек поднимет уровень СО2 на 50 ppm. По моим собственным наблюдениям это вполне похоже не правду.
Ну а теперь к методике и замерам.
Чем измерялось
Все измерения проводились недорогим комнатным прибором HT-501, обзор которого я постил вот тут.

В нем установлен датчик CO2 шведской компании SenseAir. Приборчик может сохранять статистику с заданным интервалом и потом выгружать ее в специальную прогу на ПК. Делая замеры я просто носил прибор в руке или открытой сумке и потом изучал полученные данные.
Сами замеры производились в феврале.
Замеры на улице
В мегаполисе (Москве), если не подходить к дорогам с интенсивным движением, прибор показывает значения в пределах 400-450 ppm. В центре города на тротуарах оживленных улиц показатели могут подняться до 620 ppm.
Замеры в офисе
В нашем просторном опенспейсе с хорошей вентиляцией воздух был примерно как на улице — 450-500 ppm. Но в какой-то из дней вентиляция дала сбой, и типичным значением CO2 стало 950 ppm. Причем к вечеру оно поднималось до 1200 ppm.
Из личных ощущений: как только показатели уходили за 1100 ppm, у окружающих возникало коллективное желание проветрить. После короткого проветривания показатели опускались до 850 ppm.
Замеры в однушке
Если регулярно не проветривать, типичный уровень углекислого газа в квартире 28 м2 и потолками 2,5 м при нахождении в ней двух взрослых колеблется от 800 до 1300 ppm в зависимости от забортной температуры. И чем холоднее на улице, тем лучше начинает работать вентиляция (это в моем доме так, в других может быть по-другому).
Кухня 5,5 м2 с газовой плитой
Кухня — самое интересное место в плане замеров. При закрытой двери одна включенная в полсилы конфорка (на фото ниже) за 15 минут нагоняет более 2300 ppm (вентиляция при этом тянет исправно).

Тот же самый эксперимент, но с открытой дверью и выставленным на зимнее проветривание окном, дает за этот же промежуток времени цифру в 1600 ppm. Ну а если с закрытой дверью и две конфорки — через 15 минут будет 2700 ppm на столе и 3300 ppm на уровне головы в центре помещения.

Комната 15 м2
С закрытой дверью и закрытыми пластиковыми окнами двое взрослых и один ребенок за восемь часов сна поднимают уровень CO2 с 1000 до 2100 ppm. Если оставить окно на зимнее проветривание (щель), то уровень будет стабилизироваться примерно на 1350 ppm. Все то же, но с открытой дверью — 900-1200 ppm.
Почему открытие на зимнее проветривание дает такой заметный эффект? Просто воздух начинает протягиваться из щели окна через комнату и в вентиляцию. Если закрыть щель, комната становится полностью изолированным помещением.
Просто для справки: как себя чувствуешь, когда проснулся, а на датчике 2800 ppm? Духота, жара, тяжелая голова как с похмелья, хочется поскорее выйти на улицу или постоять, подышать у открытого окна.
Замеры в московском метро
Вообще в метро душновато. На станциях и переходах показатели колебались в пределах 750-1250 ppm. Причем день ото дня показатели менялись. В полупустом вагоне “Оки” (все сидячие заняты и немного стоячих) датчик фиксировал примерно 1300 ppm. А в час пик там начинался ад.
Когда люди набивались как селедка в бочку, датчик на уровне пояса стабильно фиксировал 1850 ppm. Поднять его на уровень головы и сделать замеры было уже невозможно. Думаю, он бы зашкаливал, поскольку все вокруг выдыхают именно в верхнее пространство.
Ощущение от нахождения в таких условиях: легкое головокружение, учащенное дыхание и огромное желание выйти и подышать немного. Как люди так катаются каждый день — не представляю.
В подмосковной электричке
В забитом тамбуре гуляют сквозняки, однако уровень CO2 находится примерно на отметке 1400 ppm. В самом вагоне ситуация хуже. При полностью занятых сидячих местах, но в отсутствии стоячих пассажиров, уровень углекислоты составил 2200 ppm.
В автомобиле
В качестве “тестовой площадки” выступал салон старенького Тигуана. В обычных городских поездках с одним водителем в салоне уровень CO2 колебался в пределах 400-600 ppm. В пробках можно было наблюдать примерно 650 ppm. Но самое интересное, разумеется, при включенной рециркуляции воздуха. Ровно за 15 минут CO2 подскакивал с 620 до 1780 единиц! Т.е. рост идет примерно по 80 ppm в минуту и, например, за час он мог бы скакнуть до 4800 единиц. В общем, теперь вы знаете, почему в машине нельзя спать с закрытыми окнами и оставлять в салоне детей или животных. Причем, таких смертельных случаев регистрируется достаточно много. Погуглите…
Выводы: кто виноват и что делать
Эта часть специально для тех, кто начал читать отсюда.
Начнем с общественного транспорта. В нем практически везде душновато, за исключением, пожалуй, маршруток с высокими потолками, где еще можно увидеть приемлемый уровень в 700 ppm.
Очень туго в метро в час пик и ничуть не лучше в электричках. Там зашкаливает даже когда есть сидячие места.
В офисах раз на раз не приходится. И примерно у половины населения опенспейсов возникает желание проветрить, когда уровень начинает превышать 1100 ppm.
В квартире этот уровень воспринимается по-другому, и проветрить хочется когда на датчике более 1300-1400 ppm. И главный совет всем владельцам пластиковых окон — проветривайте почаще, а лучше всегда оставляйте открытой щель зимнего проветривания (это когда ручка повернута градусов на 40 от вертикали).

Это зимой. А летом окна лучше держать открытыми.
Из прочего, самый ад — на кухне с газовыми плитами. Если включена вполсилы пара конфорок и закрыты окна и двери, то через 15 минут на уровне головы будет 3500 ppm. И это при хорошо работающей вентиляции.
Отдельный привет любителям поспать в машине с закрытыми окнами. Очень велик шанс не проснуться. То же можно сказать и про ситуацию, когда вы забыли открыть заслонку забортного воздуха после обгона чадящего грузовика. Показатели в салоне начинают шкалить очень быстро.
Пожалуй, это пока все. Единственное, где я еще хотел бы провести замеры, так это летом в лесу. Надеюсь доживу и проапдейчу данный материал.
P.S. Знаю, что измерители CO2 сейчас есть у многих. Напишите в каментах где и сколько намеряли вы. Но, по возможности, постите не только страшилки.
P.P.S. Тот измеритель CO2, каким пользуюсь я, можно найти на Ali за сумму чуть менее 6 тыс. руб (его обзор тут). Однако за эти же деньги появилась более интересная модель, которая кроме концентрации CO2 может измерять уровень летучей органики (TVOC), концентрацию формальдегида (HCHO) и крупных частиц (PM2.5).
причины повышения, нормы, контроль за концентрацией.
Углекислый газ — результат дыхательных процессов каждого живого существа на земле. Человек выдыхает его, растения используют для фотосинтеза. В замкнутых (не проветриваемых) помещениях наличие большого количества людей ускоряет процесс насыщения углекислотой. Высокий процент содержания углекислоты влияет на работоспособность и состояние организма.
Содержание страницы
Причины повышения в помещении
Причиной появления углекислоты в городах могут стать ТЭЦ и котельные. Кроме газов, поступающих через окна, большое количество диоксида углерода образуют курильщики и газовые плиты.
Такая проблема чаще встречается в домах, где находится много людей, а также в слабо проветриваемых комнатах. Школы, спортзалы, офисы — не исключение. Каждый человек в процессе дыхания образует двуокись углерода, именно поэтому воздух должен регулярно обновляться.
За 1 час взрослый человек образует около 20 л. диоксида углерода. За сутки через легкие проходит около 0,5 кубических метров CO2. При активных физических нагрузках показатель увеличивается до 35 л. в час.
Обьем выдыхаемой углекислоты:
- Сон ∼ 18 л./час
- Отдых и легкая работа ∼ 20 л./час
- Обычная работа ∼ 25 л./час
- Тяжелая работа ∼ 35 л./час
Чтобы избежать чрезмерного накопления CO2 в замкнутых пространствах, необходимы вытяжки и регулярное проветривание комнаты. Кто-то совсем не обращает внимания на вентиляцию в своей квартире, со временем решетка засоряется и не может обеспечить квартиру свежим воздухом.
Во время проведения регулярных проверок, значение на улицах России в среднем не опускалось ниже 450 ppm. Превышение углекислого газа в городах объясняется выхлопами транспорта, а также выбросами котельных и промышленности. В школах нормы превышены, и показатель составляет в среднем 1500ppm.
Неудивительно, ведь много детей в одном месте создают активный поток углекислоты. В офисах такая же ситуация, как и во многих школах, много работников в одном месте, отсутствие вытяжки и пренебрежение проветриванием.
Нормы в помещениях
Газ СО2 присутствует везде, где находятся люди. Концентрация характеризуется обозначением ppm (ppm — parts per million). Согласно документу «Здания жилые и общественные. Параметры микроклимата в помещениях», ГОСТу 30494-2011, санитарная норма углекислого газа в помещении колеблется от 600 ppm до 1000 ppm (максимально допустимая отметка — 1500 ppm).
В школах придерживаются других норм, оптимальной отметкой считается 600. Однако, не во всех учебных заведениях соблюдают эти нормы. Недавние эксперименты по всей России показали, что в среднем показатель колеблется от 1500 до 2500 единиц измерений, что является недопустимым.
Рассмотрим пример, в закрытой аудитории сидят 25 студентов и преподаватель. За полтора часа (1 час 20 минут ± 10 минут на перемены) 26 человек выдохнут 0,78 м3 углекислоты в аудиторию (0,02 м3/ч на 1 человека). Объем аудитории возьмем, к примеру, равным 280 м3. В процентном соотношении вычислим объем занимаемый газом CO2 — 0,2786 %. Переведя в количество частей на миллион получим 2786 ppm.
Результатом таких пренебрежений может стать плохая успеваемость и упадок сил. Чтобы узнать, что в школе превышено содержание, обратите внимание на здоровье ребенка. Если он чихает и болеет чаще, чем обычно, то необходимо узнать о качестве воздуха в учебном заведении.
Для офисов существуют свои правила. Предельно допустимая концентрация углекислого газа в помещении — 1500ppm. В офисах проблема актуальна в течение всего года, но особенно опасна во время зимы. В это время окна открываются на проветривание редко, а концентрация не уменьшается.
Приведем нормы концентрации:
- 400ppm = 0,04 % — за городом;
- 600ppm= 0,06 % — дом, жилое помещение;
- 1000ppm = 0,1 % — в офисе, производственном зале.
Установлено, что качество воздуха в спальне влияет на сон прямым образом. Воздух важен для сна больше, чем продолжительность.
Последствия повышенного содержания в помещении
Обращать внимание на проблему стоит при первых признаках. Первый симптом — ощущение жары. Ощущение духоты говорит о том, что содержание диоксида углерода в воздухе уже превышено.
Когда концентрация двуокиси углерода в комнате превышена, человек чувствует себя уставшим. СО2 в доме может послужить причиной головных болей и слабости. При особо высоком содержании становится токсическим.
Высокая концентрация углекислого газа в воздухе может оказывать негативное действие на человека и стать причиной патогенеза. Первый признак, что содержание превышено — усталость и вялость. Симптоматические признаки приведены в соответствии с показателями приборов.
- < 600 — хорошие показатели, отличное самочувствие и бодрость;
- 600 — 1000 — средний показатель, возникают жалобы на несвежий воздух;
- 1000 — 2500 — ощущается вялость, духота;
- 2500 — 5000 — воздух низкого качества, повышенная вялость, понижение внимания;
- 30000 – небольшое отравление, повышается пульс и увеличивается частота дыхания;
- 50000 – добавляются сильные головные боли, рвотные рефлексы, понижение восприятия окружающей действительности;
- 100000 – потеря сознания и смерть.
Читайте также: К чему приводят выбросы углекислого газа.
Понижение и контроль над концентрацией в помещениях
Не стоит бороться с повышенной концентрацией диоксида углерода методами установки кондиционера. Кондиционеры и вентиляторы только охлаждают воздух, но не уменьшают концентрацию CO2. Если вы все же решите использовать кондиционер, то обязательно открывайте окна на проветривание.
Чтобы работники чувствовали себя хорошо, а работа приносила удовольствие, за показателями содержания углекислоты в воздухе нужно следить. Это в дальнейшем окажет положительное влияние на результаты работы. Для мониторинга концентрации используются измерители CO2.

Анализатор углекислого газа
Существуют датчики и газоанализаторы, которые помогут зафиксировать результаты с минимальной погрешностью. Их приобретение поможет вам с контролем над концентрацией двуокиси углерода.
Заключение
Важно следить за показателями углекислого газа. Большие концентрации углекислого газа в воздухе оказывают негативное влияние на здоровье. Высокие доли содержания диоксида углерода вредны. Вместе с повышенной концентрацией двуокиси углерода повышается давление, и ухудшается самочувствие. Старайтесь в помещении не превышать 1500 ppm, чтобы исключить проблемы со здоровьем и препятствовать возникновению аллергии.
Нормативы содержания углекислого газа – Экобаланс
Углекислый газ- нормативы у нас и в Европе
В журнале «АВОК», № 4, 2008, была опубликована статья Ю. Д. Губернского и Е. О. Шилькрота «Сколько воздуха нужно человеку для комфорта?», которая вызвала большой интерес у специалистов. Представленный в статье материал показывает, что хотя проблеме нормирования воздухообмена по СО2 уделяется много внимания, материала для решения этого вопроса пока не достаточно. Данная статья предлагает продолжить обсуждение этой проблеммы.
Еще несколько лет назад в отечественных нормативных документах при проектировании вентиляции в помещениях с пребыванием людей СО2 учитывался только косвенно в удельных нормах воздухообмена. В зарубежных стандартах его концентрация в воздухе помещений служит индикатором содержания других более вредных загрязняющих веществ и соответствующей интенсивности вентиляции. Высокие концентрации углекислого и других газов в наружном воздухе больших городов приводят к необходимости выбора: либо интенсифицировать воздухообмен, вызывая цепную реакцию увеличения потребления энергоресурсов путем сжигания органического топлива с дополнительным загрязнением атмосферы (в том числе СО2), либо производить очистку приточного воздуха от газов. Это соответствует последним исследованиям ученых о вреде двуокиси углерода для здоровья людей при повышении концентрации в два–три раза по сравнению с чистым атмосферным воздухом.
По данным современной медицины, в составе метаболических (жизнедеятельностных) выделений организма человека выявлено несколько сотен химических соединений, из которых более двухсот веществ – с поверхности кожи и свыше ста – с выдыхаемым воздухом. Одним из наиболее интересных веществ является углекислый газ. Это относительно безвредный газ по ГОСТ 12.1.007-76 относится к 4 классу опасности, он содержится в небольших количествах в составе чистого атмосферного воздуха. По данным большинства источников, его концентрация составляет примерно 0,03 % от объема (об.), то есть в 1 м3 содержится 0,3 л, или 0,3/22,4 = 0,01339 моль (по данным БСЭ – 0,0314 % об.). Зная молекулярную массу диоксида азота 44 г/моль, легко определить его массу в 1 м3, а именно: 44 х 0,01339 = 0,589 г. Концентрация, соответственно, равна 589 мг/м3. В таких количествах углекислый газ необходим для жизнедеятельности человека. По ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая. Технические условия» [1] плотность газообразной двуокиси углерода составляет 1,839 кг/м3, то есть примерно в 1,5 раза больше воздуха. В таблице 1 приведены формулы перевода величин из одних единиц в другие. Как в отечественных нормативных документах, так и в зарубежных отсутствует норматив предельно допустимой концентрации углекислого газа в атмосферном воздухе. Очевидно, что содержание в воздухе СО2 будет различным в сельской местности, небольших и крупных городах. Фоновые концентрации определяются выбросами автотранспорта, сжиганием топлива на предприятиях теплоэнергетики и работой промышленных предприятий. Затруднение заключается в том, что мониторинг за уровнем СО2 службами Центра по гидрометеорологии не ведется. За рубежом углекислый газ, наряду с окислами азота, оксидом углерода, диоксидом серы и летучими органическими соединениями, является типичным загрязняющим веществом, которое подлежит учету при оценке наружного воздуха для проектирования систем вентиляции и кондиционирования. Европейский стандарт ЕН 13779 «Ventilation for non-residential buildings – Performance requirements for ventilation and room-conditioning systems» [2] в качестве общего базового руководства предлагает принимать концентрацию углекислого газа в сельской местности 350 ppm, в небольших городах 400 ppm, в центрах городов 450 ppm. На самом деле она может быть существенно выше. Например, измерения в центре Москвы в безветренную погоду в конце лета в районе Садового кольца показали, что при достаточно интенсивном движении транспорта уровень СО2 поднимался до 900 ppm (0,09 % об.). Погуляв несколько часов эту концентрацию и без приборов ощутит на себе каждый в виде головной боли.Таблица 1
Единицы измерения концентраций газов и их
взаимный пересчет
Сх мг/м3 % (об.) ppm,
см3/м3
(частей на миллион)
Са
мг/м3 1 8312,6•10-4СаТ / М Р 8312,6 СаТ / М Р
% (об.) 0,12•101Са
М Р/Т 1 104 Са
ppm, см3/м3
(частей на миллион) 0,12•10-3Са М Р / Т 10-4
Са 1
Примечание:
Са
– числовое значение концентрации в заданных единицах;
Сх
– числовое значение концентрации в искомых единицах;
М
– молекулярная масса газа;
Р
– общее давление газовой смеси, Па;
Т
– температура, °К.
Одним из способов, широко применяемых на Западе, для определения требуемой интенсивности воздухообмена в общественных зданиях, является использование углекислого газа в качестве индикатора качества воздуха. По его концентрации судят о содержании других веществ, выделяемых человеком, которых в относительных концентрациях (отношение фактической концентрации к ПДК) образуется меньше. При снижении уровня СО2 разбавлением приточным воздухом одновременно снижается уровень концентрации других веществ. Углекислый газ выбран из-за того, что его концентрацию легко измерить с достаточно высокой точностью и его массовое выделение значительно больше других вредных веществ.
Общеизвестно, что один человек в спокойном состоянии, например работник офиса, за один час потребляет 20–30 л кислорода с выделением 18–25 л углекислого газа, а при занятиях в фитнес- и тренажерных залах – до 36 л и более. Если во вдыхаемом воздухе содержится 0,03 % (об.) СО2, то в выдыхаемом – 3,6 % (об.), то есть возрастает более чем в 100 раз. Интенсивно выделяется углекислый газ от газовой плиты при приготовлении пищи. При возрастании содержания в воздухе значения CO2 выше определенной величины человек начинает чувствовать себя дискомфортно, может впадать в дремотное состояние, возникают головные боли, тошнота, чувство удушья. Его влияние настолько постепенное и слабое, что его трудно сразу обнаружить. Этот предел индивидуален для различных людей – мужчин и женщин, детей. Однако до недавнего времени в отечественных документах отсутствовал норматив качества воздуха помещений для углекислого газа. Лишь гигиеническими нормативами [3] в 2006 году введена максимально разовая ПДК равная 13 790 ppm (27 000 мг/м3) и среднесменная 4 597 ppm (9 000 мг/м3) для воздуха рабочей зоны производственных помещений. Для сравнения: в США эти цифры составляют 30 000 ppm (58 740 мг/м3) и 5 000 ppm (9 790 мг/м3), соответственно. В шахтах [4, 5] на рабочих местах допускается концентрация 0,5 % (об.) или 5 000 ppm. В соответствии с ГОСТ 8050-85 [1] «При концентрациях более 5 % двуокись углерода оказывает вредное влияние на здоровье человека… При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья». Напомним, что максимально разовая и среднесменная концентрация ПДК воздуха рабочей зоны определяются ГОСТ 12.1.005-88 и гигиеническими нормативами ГН 2.2.5.1313-03, ГН 2.2.5.1314-03.
Для помещений жилых и общественных зданий этот норматив по-прежнему отсутствует. Коллизия возникает в связи с тем, что в соответствии со СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» [6], СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям» [7] и др. для этих помещений норматив качества принимается равным для воздуха населенных мест (ГН 2.1.6.1338-03; ГН 2.1.6.1339-03), который, как отмечалось выше, отсутствует. Однако, в отличие от многих других загрязняющих веществ, практически не выделяющихся в помещениях, содержание двуокиси углерода интенсивно увеличивается. Интересно, что еще в справочнике Р. В. Щекина 1976 года [8, с. 37] приводится расчет требуемого воздухообмена на разбавление СО2 одним человеком.
Европейский стандарт 2004 года [2] предлагает разделять воздух в помещениях с пребыванием людей на категории качества от IDA 4 – низкое, IDA 2 и 3 – среднее, до IDA 1 – высокое. Предполагается несколько способов определения категории качества. Один из них оценивает превышение уровня СО2, как индикатора, в воздухе помещений над наружным воздухом (табл. 2).Таблица 2
Категория помещения Превышение уровня СО2 в помещении
над его
содержанием в наружном воздухе, ppm
Типичный диапазон Задаваемое значение
IDA 1
IDA 2 400–600 500
IDA 3 600–1
000 800
IDA 4 ?1000 1 200
Зная местонахождение здания (сельская местность, город) и уровень концентрации СО2 в наружном воздухе легко определить его расчетное содержание в воздухе помещения. Далее приводятся рекомендации по установке определенных классов фильтров, как правило, не менее двух ступеней, для достижения необходимой чистоты воздуха в соответствии с требуемой категорией качества IDA. Это касается не только твердых пылевых частиц, но и основных газов: NOx, SO2, полициклических ароматических углеводородов и летучих органических соединений. Стандарт гласит: «В городской среде рекомендуется использование молекулярных (газовых) фильтров». Отметим, что по представлению ассоциации АСИНКОМ европейский стандарт [2] принят без изменений как отечественный ГОСТ Р ЕН 13779-2007 «Вентиляция в нежилых зданиях. Технические требования к вентиляции и кондиционированию». ФГУП СТАНДАРТИНФОРМ объявило о том, что он вводится в действие с 1 октября 2008 года.
Допустимое приемлемое значение содержания углекислого газа в помещениях с пребыванием людей было установлено гигиенистами и принято, например, стандартом ASHRAE 62-1989 на уровне 1 000 ppm (1 958 мг/м3) или 0,1 % (об.). На эту величину опираются многие авторы при расчетах воздухообмена. Это значение фигурирует в СП 2.5.1198-03 «Санитарные правила по организации пассажирских перевозок» [9] для железнодорожных вокзалов и СанПиН 2.5.1.051-96 «Условия труда и отдыха для летного состава гражданской авиации» [10] для кабин воздушных судов. Зная выделение СО2 одним человеком в офисе – 18 л/ч (0,005 л/с) или 35 200 мг/ч по формуле (Л.2) СНиП 41-01-2003 [6] требуемый расход приточного воздуха для одного человека равен
L = 35 200 / (1 958 – 589) = 25,7 м3/ч.
В единицах л/с и ppm L = [0,005 / (1000 –
300)] х 106 = 7,14 л/с.
Первым отечественным документом, в котором предпринята попытка регламентировать содержание СО2 в наружном и внутреннем воздухе, является стандарт АВОК «Здания жилые и общественные. Нормы воздухообмена» [11]. В качестве рекомендуемой справочной предлагается предельно допустимая концентрация в наружном воздухе: сельская местность – 332 ppm (650 мг/м3), малые города – 409 ppm (800 мг/м3), большие города – 511 ppm (1 000 мг/м3). Верхний допустимый предел концентрации СО2 в помещениях жилых и общественных зданий не должен превышать концентрацию в наружном воздухе на 638 ppm (1 250 мг/м3). В этом случае требуемый воздухообмен на 1 человека составит 28 м3/ч.
В результате последних исследований, проведенных индийскими учеными в городе Калькутта [12], было выяснено, что так же, как NO2, СО2 является потенциально токсичным для человека даже в низких концентрациях, принимая во внимание его воздействие на клеточную мембрану и биохимические изменения, такие, как увеличение напряжения CO2 в крови, увеличение концентрации ионов бикарбоната в крови и моче, ацидоз и т. д. Для выявления того, как влияет уровень СО2 в воздухе на процессы в организме человека, были проведены замеры уровня бикарбоната в крови и в моче человека. Всего было исследовано 593 человек из жилого, коммерческого и промышленного районов города и контрольной зоны, находящейся в экологически чистой сельской местности. Уровень бикарбоната в сыворотке крови – биологический показатель влияния СО2 – оказался в среднем на 60 % выше у жителей Калькутты, чем у жителей сельских районов, причем самым высоким он был у жителей промышленной зоны. В городе Калькутта СО2 присутствовал в воздухе в концентрациях от 0,03 до 0,06 %. Уровень вентиляции в помещениях был адекватным почти в 75 % жилых и рабочих помещений. Принимая во внимание то, что увеличение уровня СО2 в атмосфере ведет к увеличению его концентрации в воздухе помещения, можно сказать, что он может явиться причиной увеличение уровня бикарбоната в крови.
В своих работах [13, 14], английский ученый D. S. Robertson пишет, что уровень углекислого газа в атмосфере, при котором человечество может выжить, значительно ниже, чем предполагалось, поэтому безопасный для человека уровень углекислого газа требует пересмотра. Он рассчитал максимальный безопасный для человека уровень углекислого газа в атмосфере, составляющий 426 ррm. Ученый также считает, что под влиянием углекислого газа, уровень которого выше указанной цифры, происходит снижение величины pH в сыворотке крови, что ведет к ацидозу. Симптомы начальной степени ацидоза следующие: состояние перевозбуждения и умеренная гипертензия. Далее к ним добавляются сонливость и состояние беспокойства и как следствие уменьшение желания проявлять физическую активность. Существует вероятность того, что когда концентрация углекислого газа в атмосфере достигнет 426 ppm, а это может случиться раньше, чем через два поколения, здоровье, по крайней мере, некоторой части населения Земли, ухудшится.
Финские ученые под руководством Olli Seppanen [15] провели 21 эксперимент на основе более 30 000 испытуемых по исследованию влияния концентрации углекислого газа. Если уровень углекислого газа в офисном помещении был ниже 800 ppm (0,08 % об.), такие симптомы, как воспаление глаз, заложенность носа, воспаление носоглотки, проблемы, связанные с дыхательной системой, головная боль, усталость и сложность с концентрацией внимания, которые возникали у сотрудников при более высокой концентрации СО2, значительно снижались.
В пресс-релизе ежегодной конференции Европейского респираторного общества в 2006 году были опубликованы результаты исследований, проведенных в пяти странах ЕЭС группой итальянских ученых. Исследования показали, что 68 % детей испытывают на себе негативное влияние СО2 выше уровня 1 000 ppm. У них наблюдалось тяжелое дыхание, одышка, сухой кашель и ринит чаще, чем у других детей. Были сделаны следующие выводы: у детей, находящихся в помещении с высоким уровнем СО2, в 3,5 раза выше риск возникновения сухого кашля и в 2 раза – развитие ринита. Они имеют более уязвимую носоглотку, чем их ровесники.
В исследовании корейских ученых о влиянии концентрации СО2 в помещении на приступы астмы у детей, в домах и квартирах, где живут дети больные астмой, замерялся уровень содержания веществ, которые считаются основными загрязнителями воздуха в помещении, таких как СО, NO2, аллергены и СО2. В результате данных исследований были сделаны выводы о том, что самым важным фактором, влияющим на возникновение приступов астмы у детей, является только уровень концентрации СО2.
Принимая допустимую концентрацию СО2 в наружном воздухе мегаполиса 450 ppm, а оптимальную во внутреннем воздухе 800 ppm требуемый воздухообмен на 1 человека составит
L = [0,005 / (800 – 450)] • 106 = 14,29
л/с = 51,4 м3/ч.
Реально концентрация в наружном воздухе может быть еще выше, а внутри помещения могут быть другие источники выделения СО2, например при приготовлении пищи. При разности содержания СО2 в наружном и внутреннем воздухе 100 ppm требуемый воздухообмен составит 180 м3/чел., что превышает разумные пределы.
В качестве одной из мер новый американский стандарт ANSI/ASHRAE Standard 62.1-2004 предусматривает динамическое изменение режимов работы вентиляции жилых и общественных зданий. Это реализуется средствами DCV (Demand-Controlled Ventilation, DCV), путем регулирования количества подаваемого свежего воздуха сверх минимально необходимого по мере изменения реально складывающейся обстановки, определяемой количеством людей, присутствующих внутри вентилируемого объема. Объективной предпосылкой к использованию в отечественной практике является значительное удешевление за последние годы инверторных схем управления скоростью вентилятора путем использования все более доступных частотно-регулируемых приводов. Технология DCV доступно рассмотрена в статье [16]. Однако такой мерой не всегда можно добиться эффективного результата.
О другой мере по снижению содержания вредных газов в воздухе помещений П. Оле Фангер писал в своей статье [17]: «Очистка внутреннего воздуха от газообразных загрязняющих веществ представляет собой многообещающий метод повышения качества воздуха и частичного замещения вентиляции. Разрабатываются различные методы очистки воздуха, включая сорбцию и фотокатализ. Было показано, что последний метод обладает значительной эффективностью фильтрации, которая была зафиксирована при фильтрации отдельных химических веществ, присутствующих в воздухе. Для типичной смеси из сотен химических веществ, присутствующих внутри здания в очень малых концентрациях, при использовании указанных двух методов может быть реально достижимой эффективность очистки более 80 %, то есть очистка может снизить концентрацию загрязняющих веществ и повысить качество внутреннего воздуха в пять раз. При этом очевидно, что для повышения эффективности очистки для типичных источников загрязнения внутреннего воздуха необходимы дополнительные разработки технологии очистки и проведение дальнейших исследований».
Фотокаталитическое окисление (ФКО) является очень многообещающей технологией для уменьшения летучих органических соединений (ЛОС) в воздухе помещения. Однако исследования, проведенные Национальной лабораторией Л. Беркли в 2005 и 2007 годах, показали, что метод фотокаталитического окисления уменьшает количество ЛОС в воздухе помещения, но производит формальдегид как побочный продукт. Ученые считают, что для применения данного метода необходимо провести дальнейшее изучение, с тем чтобы либо уменьшить количество формальдегидов и ацетальдегидов, получаемых в результате реакции, либо соединить эту технологию с применением газоочистителей, для того чтобы улавливать токсичные побочные продукты до того, как они попадут в помещение. К этому необходимо добавить, что ФКО не удаляет углекислый газ, а наоборот – добавляет его в помещение, так как конечными продуктами реакции должны быть СО2 и вода.
В настоящее время наиболее безопасными для очистки воздуха от газов в помещениях, где находятся люди, можно считать фильтры, основанные на методе адсорбции загрязняющих веществ в составе приточных вентиляционных установок. В качестве фильтрующего элемента используют активированный уголь и высокоэффективные материалы. Такие фильтры уже предлагаются на климатическом рынке.
Если возможность поддержания качества воздуха на высоком уровне при помощи вентиляционных систем не представляется возможным, можно удалять его избыток бытовыми адсорберами углекислого газа.
Выводы
1.
Углекислый газ является токсичным для человека даже в относительно низких концентрациях. Его нельзя рассматривать только как индикатор эффективности вентиляции. Наилучшим для человека в помещении является уровень углекислого газа, максимально приближенный к атмосферному.
2. Концентрация СО2 требует постоянного контроля в помещениях с пребыванием людей в промышленных городах и крупных мегаполисах, где промышленность и транспорт постоянно загрязняют атмосферный воздух углекислым и другими газами. Особенно это касается детских учреждений и других общественных зданий.
3.
Рост углекислого газа в атмосфере, особенно в крупных городах из-за выбросов автотранспорта, предприятий энергетики и промышленности, вызывает необходимость в увеличении воздухообмена в помещениях с пребыванием людей. Это приводит к повышенным затратам энергии и увеличению выбросов СО2 при ее выработке. Выход из ситуации заключается в достижении разумного оптимума между количеством приточного наружного воздуха и требуемой очисткой от углекислого и других газов.
Оцените статью:
[Всего голосов: 1 Средний: 5/5]Охота на душный воздух, часть 1. Сколько СО2 в Москве? / Tion corporate blog / Habr
Открываем цикл статей о том, чем дышат жители разных городов. Начали со столицы. Генеральный директор «Тион Умный микроклимат» Михаил Амелькин проехался по Москве с датчиком СО2 и лично проверил столичный воздух.Почему СО2?
Подавляющее большинство специалистов в области вентиляции сходятся во мнении: углекислый газ является индикатором состояния воздуха (авторитетный пруф из АВОК). Много СО2 — значит, много и более вредных веществ (формальдегиды и прочая ядовитая органика, PM2.5 и т.д.). Это логично: ведь если вентиляция не справляется с воздухообменом, то в помещении накапливается и выдыхаемый нами СО2, и весь остальной «воздушный коктейль». Так что вполне резонно измерять концентрацию СО2 в воздухе, чтобы оценить качество этого самого воздуха.
Является ли углекислый газ таким же загрязнителем воздуха, как автомобильные выхлопы или промышленные выбросы? Исследования на эту тему противоречивы. Есть много статей про вред СО2 (пример раз, пример два). Меньше исследований, согласно которым углекислый газ практически безвреден, но и такие есть (пример). Если вам интересна эта тема, пишите в комментариях. В будущем мы можем сделать подробный литобзор о влиянии СО2 на здоровье человека.
Наше мнение — углекислый газ однозначно влияет на самочувствие человека (вялость, утомляемость, сонливость). Вспомните, как вы чувствуете себя в душном офисе или квартире с закрытыми окнами. Усредненное влияние СО2 на человека выглядит примерно так:
Как измерить количество СО2 в воздухе?
Уровень углекислого газа в воздухе измеряется в ppm: 1 ppm = 0.0001%, то есть одна миллионная доля. Для России 1400 ppm углекислого газа в воздухе — это уже недопустимое количество (согласно ГОСТу 30494—2011). В Америке общие стандарты ASHRAE (американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха) гласят: жалобы на головную боль начинаются с 2000 ppm.
В среднем по больнице получается такая картина:
- 300 ppm – норма на улице на природе
- 500 ppm – норма на улице в современном городе
- 700-1500 ppm – норма в помещении, причем ближе к 1500 ppm уже начинаются жалобы на духоту, головную боль, вялость и т.д.
Последнее из вступительной части — название использованного датчика СО2. Это был Testo 480.
Все, заканчиваем с введением. Приступаем непосредственно к измерением. Слово Михаилу Амелькину.
Транспорт
Трип начался с самолёта. Перелет Новосибирск-Москва, около 4 часов. Самолёт полный, аэробус А316. Весь полёт концентрация СО2 около 2000 ppm! Добавьте сюда слишком высокую температуру на борту (около 28°С) и пониженное давление (786 гПа против 1007 гПа на земле), и поймете, почему нас так «колбасит» после перелетов. Для сравнения, в аэропорту прилета около 700 ppm, то есть норма. На обратном пути летел в полупустом самолёте и ситуация была гораздо лучше – весь полёт до 1000 ppm, что приемлемо.
Далее был аэроэкспресс. Оказалось, что при полном вагоне вентиляция тоже не справляется – более 1800 ppm! А вот на пути обратно вагон был пустой и вентиляция справлялась – около 500 ppm.
В метро все гораздо лучше. На самой станции под землёй 600 ppm. В старых, «дырявых» вагонах около 700 ppm. Вот в новых вагонах метро, где кондиционеры гоняют воздух по кругу, уже хуже – при неполной загрузке 1200 ppm. В набитом вагоне следует ожидать больше 2000 ppm. Но здесь стоит иметь в виду, что обычно в таких вагонах мы проводим мало времени, 10-20 минут, так что это не очень критично.
Улица
Сделал замер прямо на Красной Площади. Уровень около 450 ppm. Это выше, чем за городом, что, скорее всего, объясняется обилием транспорта, котельных и промышленности, которые активно выделяют в воздух СО2, создавая над городом «пузырь» углекислого газа. Но это не страшно. Пока.
Дом и отель
Мне повезло, и в моём номере всю ночь концентрация СО2 была меньше 600 ppm. Отлично! Я спал не в духоте. Это потому, что попросил номер с окном во двор и смог держать окно на микропроветривании, не просыпаясь от шума машин. Но вентиляции в номере нет, поэтому плата за свежий воздух тоже не малая — московский смог. Была бы вентиляшка с профессиональными фильтрами — было бы на пятерочку!
Надо сказать, что замеры в квартирах с закрытыми окнами часто показывают очень плохие результаты, пара человек в комнате запросто могут «надышать» 2000 ppm минут за 40-60. А окна обычно закрыты, чтобы не было сквозняков и шума с улицы. Вывод тот же, что и в случае с отелем – дома вентиляция must have. При этом проще и дешевле поставить компактные бризеры, чем заморачиваться с полноценной вентиляцией.
Рестораны и кинотеатры
Тут картина сильно разная, но одно очевидно (кто-то скажет, что это ясно и без приборов) – любят наши рестораторы экономить на вентиляшке! Например, у меня была деловая встреча в кофейне «Хлеб насущный» на Никольской. Место хорошее, но вот с воздухом беда – 2000 ppm! В такой атмосфере очень сложно думать и решать деловые вопросы. В «Чайхоне №1» на Пушкинской было чуть лучше, до 1500 ppm.
Но есть и хорошие места: в «Старбакс» на Площади революции и в «Пять звёзд» на Павелецкой 700 ppm и 800 ppm соответственно. А вот в самом кинозале этого замечательного кинотеатра было «не айс» — до 1500 ppm весь сеанс. При этом администрация не поскупилась на кондиционеры – в залах было прохладно и это «скрашивало» ситуацию. Но кондеи не заменяют вентиляцию! Температура – температурой, а кислород – кислородом, должно быть и то, и другое.
Пока это вся информация по Москве. Обязуюсь сделать обзорный трип в Новосибирске. Что можно сказать по итогу?
Выводы
По полученным данным однозначно можно констатировать низкое качество воздуха в транспорте, особенно когда в нем много пассажиров. Пара советов, что делать в душном самолёте.
- Используйте обдув, он есть в каждом самолёте на потолке или «в спинке впереди стоящего кресла». Оттуда воздух идет тоже с превышением по СО2 (проверено), но он хотя бы раздувает тот «пузырь» углекислого газа, который вы вокруг себя «надышали».
- Если в салоне жарко, раздевайтесь. Пусть будет чуть прохладно. Чем ниже температура тела, тем лучше кровь насыщается кислородом и выводится углекислота.
- Сведите активность к минимуму. Лучше спать или «медитировать». Постарайтесь не нервничать, не брать в уме тройные интегралы. Помните, мозг потребляет около 20% всего кислорода в крови!
- Если курите, лучше не курить за несколько часов до полёта. Это позволит очистить кровь от угарного газа и улучшит снабжение мозга кислородом. Лучше используйте никотиновые жвачки/таблетки/пластыри.
- После прилета проведите часок на улице, продышитесь, сделайте дыхательную гимнастику, нормализуйте биохимию в крови. Дайте мозгу прийти в себя!
Что касается мест отдыха, то там самое коварство — в кондиционерах. Опыт показывает, что в прохладном воздухе создается ощущение комфорта, в то время как уровень СО2 достигает критических значений. Интерьер, комфорт, «атмосфера» есть, а настоящей здоровой атмосферы может не быть. Далеко не во всех заведениях состояние воздуха бывает удовлетворительным. Воздух не видно – значит, на нём можно сэкономить. Если бы все посетители имели портативные датчики и регулярно жаловались на превышение уровня СО2, возможно, тогда владельцы заведений внимательнее относились бы к вопросам вентиляции.
В этот раз не получилось «поохотиться» на СО2 в школах, детсадах и офисах, но есть основания считать, что и там регулярно наблюдаются превышенные концентрации углекислого газа. Немного заспойлерю: уже сделали замеры СО2 в классе одной из новосибирских школ – больше 2000 ppm! А дети же там должны учиться и работать головой. А как требовать от ребенка концентрации и успеваемости, когда голова не варит просто физиологически?
Примечание Tion: скоро будет материал про наше мини-исследование в школе.
Короче, я хочу выбирать места работы и отдыха еще и по качеству воздуха. Верю, что это существенно улучшит «среднюю температуру по палате» — самочувствие моё и моей семьи.
Михаил Амелькин
Углекислый газ в атмосфере Земли — Википедия

Углеки́слый газ в атмосфе́ре Земли́ является компонентой с незначительной концентрацией в современной земной атмосфере, концентрация углекислого газа в сухом воздухе составляет 0,02—0,045 об. % (250—450 ppm). Углекислый газ составлял основу атмосферы молодой Земли наряду с азотом и водяным паром. Доля углекислого газа снижалась с момента появления океанов и зарождения жизни. Свободный кислород в атмосфере появился лишь 2 млрд лет назад. Начиная с середины XIX века отмечается устойчивый рост количества этого газа в атмосфере, с ноября 2015 года его среднемесячная концентрация стабильно превышает 400 ppm[1].
Роль углекислого газа (CO2, или диоксид углерода) в жизнедеятельности биосферы состоит прежде всего в поддержании фотосинтеза, который осуществляется растениями. Являясь парниковым газом, диоксид углерода в воздухе влияет на теплообмен планеты с окружающим пространством, эффективно блокируя переизлучаемое тепло на ряде частот, и таким образом участвует в формировании климата планеты[2].
В связи с активным использованием человечеством ископаемых энергоносителей в качестве топлива происходит быстрое увеличение концентрации этого газа в атмосфере. Кроме того, по данным МГЭИК ООН, до 20 % антропогенных выбросов CO2 являются результатом обезлесения[3][4]. Впервые антропогенное влияние на концентрацию диоксида углерода отмечается с середины XIX века. Начиная с этого времени, темп его роста увеличивался и в конце 2000-х годов происходил со скоростью 2,20±0,01 ppm/год или 1,7 % за год. Согласно отдельным исследованиям, современный уровень CO2 в атмосфере является максимальным за последние 800 тыс. лет и, возможно, за последние 20 млн лет[5][6].

Основным источником парникового эффекта в атмосфере Земли является водяной пар[7]. При отсутствии парниковых газов в атмосфере и значении солнечной постоянной, равной 1368 Вт⁄м2, средняя температура на поверхности должна составлять -19,5 °C. В действительности средняя температура поверхности Земли составляет +14 °C, то есть, парниковый эффект приводит к её увеличению на 34 °C[8]. При относительно небольшой концентрации в воздухе, CO2 является важной компонентой земной атмосферы, поскольку он поглощает и переизлучает инфракрасное излучение на различных длинах волн, включая длину волны 4,26 мкм (вибрационный режим — за счёт асимметричного растяжения молекулы) и 14,99 мкм (изгибные колебания молекулы). Данный процесс исключает или снижает излучение Земли в космос на этих длинах волн, что приводит к парниковому эффекту[2].
Кроме инфракрасных свойств диоксида углерода, имеет значение тот факт, что он тяжелее воздуха. Так как средняя относительная молярная масса воздуха составляет 28,98 г/моль, а молярная масса CO2 — 44,01 г/моль, то увеличение доли углекислого газа приводит к увеличению плотности воздуха и, соответственно, к изменению профиля его давления в зависимости от высоты. В силу физической природы парникового эффекта, такое изменение свойств атмосферы приводит к увеличению средней температуры на поверхности[9]. Так как при увеличении доли этого газа в атмосфере его бо́льшая молярная масса приводит к росту плотности и давления, то при одной и той же температуре рост концентрации CO2 приводит к увеличению влагоёмкости воздуха и к усилению парникового эффекта, обусловленного бо́льшим количеством воды в атмосфере[10][11][12]. Увеличение доли воды в воздухе для достижения одного и того же уровня относительной влажности — в силу малой молярной массы воды (18 г/моль) — снижает плотность воздуха, что компенсирует увеличение плотности, вызванное наличием повышенного уровня углекислого газа в атмосфере.
Комбинация перечисленных факторов в целом приводит к тому, что увеличение концентрации с доиндустриального уровня 280 ppm до современного 392 ppm (413,8 – 414 ppm на февраль 2020 [13] ) эквивалентно дополнительному выделению 1,8 Вт на каждый квадратный метр поверхности планеты[14]. Отличительной особенностью парниковых свойств диоксида углерода по сравнению с другими газами является его долговременное воздействие на климат, которое после прекращения вызвавшей его эмиссии остаётся в значительной степени постоянным на протяжении до тысячи лет. Другие парниковые газы, такие как метан и оксид азота, сохраняются в свободном состоянии в атмосфере не так долго[15][16][17].
Теория глобального потепления не может объяснить тот факт, что содержание углекислого газа было когда то многократно выше (особенно до появления кислорода) но жизнь возникла и процветала, венерианский сценарий не реализовался. Это предполагает наличие отрицательной обратной связи. Таким “охлаждающим” эффектом могут служит облака, отражающие солнечную радиацию и возникающие при ещё большем содержании углекислого газа, чем есть сейчас. Оба явления, – потепления и похолодания, таким образом являются стабилизирующими механизмами для условий жизни на Земле. [18]


К естественным источникам диоксида углерода в атмосфере относятся вулканические извержения, сгорание органических веществ в воздухе и дыхание представителей животного мира (аэробные организмы). Также углекислый газ производится некоторыми микроорганизмами в результате процесса брожения, клеточного дыхания и в процессе гниения органических остатков в воздухе. К антропогенным источникам эмиссии CO2 в атмосферу относятся: сжигание ископаемых и неископаемых энергоносителей для получения тепла, производства электроэнергии, транспортировки людей и грузов. К значительному выделению CO2 приводят некоторые виды промышленной деятельности, такие, например, как производство цемента и утилизация попутных нефтяных газов путём их сжигания в факелах.
Растения преобразуют получаемый углекислый газ в углеводы в ходе фотосинтеза, который осуществляется посредством пигмента хлорофилла, использующего энергию солнечного излучения. Получаемый газ, кислород, высвобождается в атмосферу Земли и используется для дыхания гетеротрофными организмами и другими растениями, формируя таким образом цикл углерода.
Естественные источники[править | править код]
Большинство источников эмиссии по данным 98−го года РФ CO2 являются естественными. Перегнивание органического материала, такого как мёртвые деревья и трава, приводит к ежегодному выделению 220 млрд тонн диоксида углерода, земные океаны выделяют 330 млрд[14]. Пожары, возникающие в том числе по естественным причинам, из-за самого процесса горения в атмосфере и — в случае выгорания лесных массивов — за счет обезлесения приводят к эмиссии, которая сравнима с антропогенной. Например, в ходе индонезийских лесных и торфяных пожаров 1997 года (англ.)русск. было выделено 13—40 % от среднегодовой эмиссии CO2, получаемой в результате сжигания ископаемых топлив[19][20]. Вулканическая активность была главным источником углекислого газа во времена молодой Земли, в современный геологический период вулканическая эмиссия составляет около 130–230 млн тонн в год или менее 1 % от антропогенной[21][22].
В обычном состоянии эти естественные источники находятся в равновесии с физическими и биологическими процессами, удаляющими диоксид углерода из атмосферы — часть CO2 растворяется в морской воде и часть удаляется из воздуха в процессе фотосинтеза. Так как обычно в ходе данного процесса поглощается 5,5⋅1011 т диоксида углерода в год, а его общая масса в земной атмосфере составляет 3,03 ⋅1012 т, то в среднем весь атмосферный CO2 участвует в углеродном цикле раз в шесть лет[14]. Из-за наличия антропогенных выбросов поглощение CO2биосферой превосходило его выделение на ≈17 млрд тонн в середине 2000-х годов, скорость его поглощения имеет устойчивую тенденцию к увеличению вместе с ростом атмосферной концентрации[14][23].
Антропогенная эмиссия[править | править код]

С наступлением промышленной революции в середине XIX века происходило поступательное увеличение антропогенных выбросов диоксида углерода в атмосферу, что привело к нарушению баланса углеродного цикла и росту концентрации CO2. В настоящее время около 57 % производимого человечеством углекислого газа удаляется из атмосферы растениями и океанами[24]. Соотношение увеличения количества CO2 в атмосфере ко всему выделенному CO2 составляет постоянную величину порядка 45 % и претерпевает короткопериодические колебания и колебания с периодом в пять лет[23].
Сжигание ископаемых топлив, – таких как уголь, нефть и природный газ, является основной причиной эмиссии антропогенного CO2. Вырубка лесов является второй по значимости причиной. В 2008 году в результате сжигания ископаемого топлива в атмосферу было выделено 8,67 млрд тонн углерода (31,8 млрд тонн CO2), в то время как в 1990 году годовая эмиссия углерода составляла 6,14 млрд тонн[25]. Сводка лесов под землепользование привела к увеличению содержания атмосферного диоксида углерода, эквивалентное сжиганию 1,2 млрд тонн угля в 2008 году (1,64 млрд тонн в 1990)[25]. Суммарное увеличение за 18 лет составляет 3 % от ежегодного естественного цикла CO2, что достаточно для выведения системы из равновесия и для ускоренного роста уровня CO2[26]. Как результат, диоксид углерода постепенно аккумулируется в атмосфере, и в 2009 году его концентрация на 39 % превысила доиндустриальное значение[27].
Таким образом, несмотря на то, что (по состоянию на 2011 год) суммарное антропогенное выделение CO2 не превосходит 8 % от его естественного годового цикла, наблюдается увеличение концентрации, обусловленное не только уровнем антропогенных выбросов, но и постоянным ростом уровня выбросов со временем.
Изменение температуры и углеродный цикл[править | править код]
К другим факторам, увеличивающим содержание CO2 в атмосфере, следует отнести рост средней температуры в XX веке, что должно было отражаться в ускорении перегнивания органических остатков и, в силу прогрева океанов, в снижении общего количества диоксида углерода, растворяемого в воде. Увеличение температуры происходило в том числе по причине исключительно высокой солнечной активности в этот период и в XIX веке (см., например, событие Кэррингтона, 1859 г.)[28].
При переходе от условий холодного к теплому климату в течение последнего миллиона лет, естественное изменение концентрации атмосферного CO2 оставалось в пределах 100 ppm, то есть суммарное увеличение его содержания не превосходило 40 %[29]. При этом, например, средняя температура планеты в период климатического оптимума 9000—5000 лет до н. э. была приблизительно на 1—2 °C выше современной, а из-за более сильно выраженного парникового эффекта в условиях тёплого климата среднегодовая аномалия температуры в субарктических широтах достигала 9 °C[30].
Влияние вулканизма[править | править код]

Современный вулканизм в среднем приводит к выделению 2⋅108 тонн CO2 в год, что составляет величину менее 1 % от антропогенной эмиссии[21]. Основное отличие этого вида эмиссии от антропогенной состоит в том, что при сжигании ископаемых энергоносителей в воздухе происходит замещение молекул кислорода молекулами углекислого газа, то есть суммарное увеличение массы атмосферы соответствует массе сожжённого углерода, тогда как при вулканических извержениях происходит увеличение массы атмосферы на величину, равную массе выделенного газа.
Углекислый газ — второй по количеству (после водяного пара) газ, выделяемый вулканами. Большинство газа, выделяемого подводными вулканами, оказывается растворённым в воде[31]. Изотопный состав выделяемого диоксида углерода примерно соответствует изотопному составу атмосферного CO2, получаемого в результате сжигания ископаемых энергоносителей, что затрудняет точное определение объёма вулканической эмиссии CO2[31].
Крупные вулканические извержения могут приводить к значительному выделению диоксида углерода в атмосферу, но такие извержения происходят редко — несколько событий за столетие — и в среднем не оказывают заметного влияния на уровень эмиссии этого газа в атмосферу. Например, при извержении вулкана Лаки 1783 года выделилось примерно 90 млн тонн CO2, при извержении Тамбора в 1815 году около 48 млн тонн[31]. Отдельные исследования указывают на несколько бо́льшее выделение диоксида углерода при упомянутых выше извержениях (Лаки 1783 г, ≈6,5⋅108 т), но относительная редкость подобных событий делает их влияние на содержание углекислого газа несущественным и в этом случае[31].
Последним извержением категории VEI 6 было извержение вулкана Пинатубо 1991 года. Его основное воздействие на содержание углекислого газа в атмосфере состояло в выделении аэрозолей в стратосферу и, как следствие, в нарушении баланса углеродного цикла из-за снижения на 0,5 °C средней температуры на планете по причине антипарникового эффекта. Увеличение амплитуды сезонных колебаний на графике Килинга в этот период времени указывает на некоторое улучшение условий для осуществления фотосинтеза растениями в начале 1990-х годов. Последнее объясняется эффектом рассеяния солнечного излучения на частицах стратосферного аэрозоля, что и привело к увеличению потребления атмосферного CO2 растительностью[32].
Современная концентрация углекислого газа в атмосфере[править | править код]

В современный период времени концентрация углекислого газа сохраняет устойчивый рост, в 2009 году средняя концентрация CO2 в земной атмосфере составляла 0,0387 % или 387 ppm, в сентябре 2016 года превысила 400 ppm[33][34].
Вместе с годовым ростом 2,20±0,01 ppm, в течение года наблюдается периодическое изменение концентрации амплитудой 3—9 ppm, которое следует за развитием вегетационного периода в Северном полушарии. Потому как в северной части планеты располагаются все основные континенты, влияние растительности Северного полушария доминирует в годовом цикле концентрации CO2. Уровень достигает максимума в мае и минимума в октябре, когда количество биомассы, осуществляющей фотосинтез, является наибольшим[35].
Весной 2016 года австралийские ученые установили, что концентрация диоксида углерода в атмосфере в районе острова Тасмания достигла 400 ppm[36].
В 2017 году Всемирная метеорологическая организация сообщила, что концентрация диоксида углерода в атмосфере Земли достигла самого высокого уровня за последние 800 тысяч лет уровня: 403,3 ppm[37].
В апреле 2018 года по данным Погодной обсерватории на Мауна-Лоа, средняя концентрация CO2 достигла значения 410,26 ppm (или 0,041026 % углекислого газа в воздухе)[38]. На апрель 2018 года, такой среднемесячный показатель наблюдался впервые за всю историю человеческой цивилизации[39].
11 мая 2019 года, зафиксирован новый рекорд концентрации CO2 в атмосфере: 415,28 ppm (или 0,041528 % углекислого газа в воздухе)[40][41].
Наиболее достоверным способом измерения концентраций атмосферного диоксида углерода в период времени до начала прямых измерений является определение его количества в пузырьках воздуха, заключенных в ледяных кернах из материковых ледников Антарктиды и Гренландии. Наиболее широко в этих целях используются антарктические керны, согласно которым уровень атмосферного CO2 оставался в пределах 260—284 ppm до начала промышленной революции в середине XIX века и на протяжении 10 тыс. лет до этого момента времени[42]. Отдельные исследования, основанные на изучении ископаемой листвы, указывают на гораздо более существенные изменения уровня CO2 в этот период (~300 ppm), но они подвергаются критике[43][44]. Также керны, взятые в Гренландии, указывают на бо́льшую степень изменения концентрации углекислого газа по сравнению с результатами, полученными в Антарктиде. Но при этом исследователи гренландских кернов предполагают, что бо́льшая вариативность здесь обусловлена локальными осадками карбоната кальция[45]. В случае низкого уровня пыли в образцах льда, взятого в Гренландии, данные по уровням CO2 в течение голоцена хорошо согласуются с данными из Антарктики.
Наиболее продолжительный период измерений уровней CO2 на основании изучения ледяных кернов возможен в Восточной Антарктиде, где возраст льда достигает 800 тыс. лет, и который показывает, что концентрация диоксида углерода изменялась в пределах 180—210 ppm во время ледниковых периодов и увеличивалась до 280—300 ppm в более теплые периоды[5][29][46].

На более продолжительных интервалах времени содержание атмосферного CO2 определяется на основании определения баланса геохимических процессов, включая определение количества материала органического происхождения в осадочных породах, выветривание силикатных пород и вулканизм в изучаемый период. На протяжении десятков миллионов лет в случае любого нарушения равновесия в цикле углерода происходило последующее уменьшение концентрации CO2. Потому как скорость этих процессов исключительно низка, установка взаимосвязи эмиссии диоксида углерода с последующим изменением его уровня в течение следующих сотен лет является сложной задачей.
Для изучения концентрации углекислого газа в прошлом также используются различные косвенные (англ.)русск. методы датирования. Они включают определение соотношения изотопов бора и углерода в некоторых типах морских осадочных пород и количество устьиц в ископаемой листве растений. Несмотря на то, что эти измерения менее точны, чем данные по ледяным кернам, они позволяют определить очень высокие концентрации CO2 в прошлом, которые 150—200 млн лет назад составляли 3 000 ppm (0,3 %) и 400—600 млн лет назад — 6 000 ppm (0,6 %)[6].
Снижение уровня атмосферного CO2 прекратилось в начале пермского периода, но продолжилось, начиная примерно с 60 млн лет назад. На рубеже эоцена и олигоцена (34 миллиона лет назад — начало формирования современного ледяного щита Антарктиды) количество CO2 составляло 760 ppm[47]. По геохимическим данным было установлено, что уровень углекислого газа в атмосфере достиг доиндустриального уровня 20 млн лет назад и составлял 300 ppm.
Взаимосвязь с концентрацией в океане[править | править код]

В земных океанах диоксида углерода в сто раз больше, чем в атмосфере — 36⋅1012 тонн в пересчёте на углерод. Растворенный в воде CO2 содержится в виде гидрокарбонат- и карбонат-ионов. Гидрокарбонаты получаются в результате реакций между скальными породами, водой и CO2. Одним из примеров является разложение карбоната кальция:
- CaCO3+CO2+h3O⟷Ca2+ + 2HCO3−{\displaystyle {\ce {CaCO3 + CO2 + h3O <-> Ca^{2+}\ +\ 2HCO3-}}}.
Реакции, подобные этой, приводят к сглаживанию колебаний концентрации атмосферного CO2. Так как правая часть реакции содержит кислоту, добавление CO2 в левой части уменьшает pH, то есть приводит к закислению океана. Другие реакции между диоксидом углерода и некарбонатными породами тоже приводят к образованию угольной кислоты и его ионов.
Данный процесс обратим, что приводит к образованию известняковых и других карбонатных пород с высвобождением половины гидрокарбонатов в виде CO2. В течение сотен миллионов лет этот процесс привёл к связыванию в карбонатных породах бо́льшей части первоначального диоксида углерода из протоатмосферы Земли. В конечном итоге большинство CO2, полученного в результате антропогенной эмиссии, будет растворено в океане, но скорость, с которой будет происходить этот процесс в будущем, остается не до конца определённой[48].
Влияние концентрации CO2 в атмосфере на продуктивность растений (фотосинтеза)[править | править код]
По способу фиксации CO2 подавляющее большинство растений относятся к типам фотосинтеза С3 и С4. К группе С3 принадлежит большинство известных видов растений (около 95% растительной биомассы Земли это С3-растения). К группе С4 принадлежат некоторые травянистые растения, в том числе важные сельскохозяйственные культуры: кукуруза, сахарный тростник, просо.
С4-механизм фиксации углерода выработался как приспособление к условиям низких концентраций CO2 в атмосфере. Практически у всех видов растений рост концентрации CO2 в воздухе приводит к активизации фотосинтеза и ускорению роста.
У С3-растений кривая начинает выходить на плато при концентрации CO2 более 1000 ppm.
Однако у С4-растений рост скорости фотосинтеза прекращается уже при концентрации CO2 в 400 ppm. Поэтому современная его концентрация, составляющая на данный момент более 400 молекул на миллион (ppm), уже достигла оптимума для фотосинтеза у С4-растений, но всё еще очень далека от оптимума для С3-растений.
По экспериментальным данным, удвоение текущей концентрации CO2 приведет (в среднем) к ускорению прироста биомассы у С3-растений на 41 %, а у С4 — на 22 %.
Добавление в окружающий воздух 300 ppm CO2 приведет к росту продуктивности у С3-растений на 49 % и у С4 – на 20 %, у фруктовых деревьев и бахчевых культур — на 24 %, бобовых — на 44 %, корнеплодных — на 48 %, овощных — на 37 %.
С 1971 по 1990 г., на фоне роста концентрации CO2 на 9 %, отмечалось увеличение содержания биомассы в лесах Европы на 25–30 %[49].
- ↑ Mauna Loa CO2 monthly mean data (англ.). Earth System Research Laboratory. Дата обращения 16 мая 2018.
- ↑ 1 2 (англ.) Petty, G. W.: A First Course in Atmospheric Radiation, pages 229—251, Sundog Publishing, 2004
- ↑ http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter7.pdf IPCC Fourth Assessment Report, Working Group I Report «The Physical Science Basis», Section 7.3.1.2 (p. 514-515)
- ↑ www.un.org: Изменение климата.
- ↑ 1 2 (англ.) Deep ice tells long climate story, BBC News (4 сентября 2006). Дата обращения 28 апреля 2010.
- ↑ 1 2 (англ.) Climate Change 2001: The Scientific Basis Архивная копия от 27 апреля 2007 на Wayback Machine
- ↑ Подрезов А. О., Аламанов С. К.; Лелевкин В. М., Подрезов О. А., Балбакова Ф. Изменение климата и водные проблемы в Центральной Азии. Учебный курс для студентов естественных и гуманитарных специальностей. Москва – Бишкек, 2006 (неопр.) (недоступная ссылка) 18. Дата обращения 16 июня 2012. Архивировано 12 июля 2012 года.
- ↑ Calculating Planetary Energy Balance & Temperature | UCAR Center for Science Education (неопр.). scied.ucar.edu. Дата обращения 29 июня 2019.
- ↑ ПРИРОДА ПАРНИКОВОГО ЭФФЕКТА Архивная копия от 1 мая 2009 на Wayback Machine, Объединенный Научный Совет РАН по проблемам Геоинформатики
- ↑ (англ.) An Introduction to Air Density and Density Altitude Calculations, 1998 – 2012 Richard Shelquist
- ↑ Абсолютная и относительная влажность
- ↑ (англ.) Humidity 101 Архивировано 16 апреля 2013 года., World Water Rescue Foundation
- ↑ Концентрация со2 в воздухе, данные за последнюю неделю (рус.). The World Only. Дата обращения 10 февраля 2020.
- ↑ 1 2 3 4 Изменение климата, торговля углеродом и биоразнообразие, World Bank Group: Хабиба Гитай
- ↑ (англ.) Irreversible climate change due to carbon dioxide emissions — PNAS
- ↑ (англ.) WMO statement on the globa climate in 2010 Архивная копия от 11 мая 2011 на Wayback Machine
- ↑ (англ.) Bundle Up, It’s Global Warming, JUDAH COHEN, 25.12.2010
- ↑ (англ.) Impact of decadal cloud variations on the Earth’s energy budget
- ↑ (англ.) Indonesian Wildfires Accelerated Global Warming
- ↑ (англ.) Massive peat burn is speeding climate change – 06 November 2004 – New Scientist
- ↑ 1 2 (англ.) Gerlach, T. M., 1992, Present-day CO2 emissions from volcanoes: Eos, Transactions, American Geophysical Union, Vol. 72, No. 23, June 4, 1991, pp. 249, and 254–255
- ↑ (англ.) U.S. Geological Survey, “Volcanic Gases and Their Effects”, volcanoes.usgs.gov
- ↑ 1 2 Keeling et al., 1995
- ↑ (англ.) Abstract, Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks.
- ↑ 1 2 (англ.) Global carbon budget 2008 Архивная копия от 12 января 2016 на Wayback Machine, lgmacweb.env.uea.ac.uk Архивная копия от 5 марта 2016 на Wayback Machine
- ↑ (англ.) US Global Change Research Information Office, “Common Questions about Climate Change”
- ↑ (англ.) Carbon Budget 2009 Highlights Архивная копия от 16 декабря 2011 на Wayback Machine, The Global Carbon Project.
- ↑ (англ.) Usoskin, Ilya G.; Usoskin, Ilya G.; Solanki, Sami K. (англ.)русск.; Schüssler, Manfred; Mursula, Kalevi; Alanko, Katja. A Millennium Scale Sunspot Number Reconstruction: Evidence For an Unusually Active Sun Since the 1940’s (англ.) // Physical Review Letters : journal. — 2003. — Vol. 91. — P. 211101. — doi:10.1103/PhysRevLett.91.211101.
- ↑ 1 2 (англ.) Vostok Ice Core Data, ncdc.noaa.gov
- ↑ (англ.) V.L. Koshkarova and A.D. Koshkarov. Regional signatures of changing landscape and climate of northern central Siberia in the Holocene (англ.) // Russian Geology and Geophysics : journal. — 2004. — Vol. 45, no. 6. — P. 672—685.
- ↑ 1 2 3 4 (англ.) Volcanic Carbon Dioxide, Timothy Casey
- ↑ (англ.) Mount Pinatubo as a Test of Climate Feedback Mechanisms, Alan Robock, Department of Environmental Sciences, Rutgers University
- ↑ (англ.) Tans, Pieter. Globally averaged marine surface monthly mean data (неопр.). NOAA/ESRL. Дата обращения 19 февраля 2014.
- ↑ (англ.) Current atmospheric CO2 concentration at http://co2unting.com (неопр.) (недоступная ссылка). Дата обращения 21 июня 2019. Архивировано 12 июля 2012 года.
- ↑ (англ.) Carbon Dioxide Information Analysis Center (CDIAC) — Frequently Asked Questions
- ↑ ТАСС: Наука — Австралийские ученые: уровень углекислого газа в мировой атмосфере достиг точки невозврата
- ↑ Концентрация CO2 в атмосфере выросла до максимума за 800 тыс. лет (неопр.) (недоступная ссылка). Дата обращения 30 октября 2017. Архивировано 7 ноября 2017 года.
- ↑ Mooney C. Earth’s atmosphere just crossed another troubling climate change threshold // The Washington Post. 2018-05-03.
- ↑ Farand C. dioxide levels in Earth’s atmosphere reach ‘highest level in 800,000 years // The Independent. 2018-05-05.
- ↑ CO2 in the atmosphere just exceeded 415 parts per million for the first time in human history (англ.). TechCrunch. Дата обращения 1 августа 2019.
- ↑ Animation of Keeling Curve History Updated to Include 2019 Milestone (англ.). The Keeling Curve (4 June 2019). Дата обращения 1 августа 2019.
- ↑ (англ.) Historical CO2 record derived from a spline fit (20 year cutoff) of the Law Dome DE08 and DE08-2 ice cores (неопр.). Дата обращения 12 июня 2007. Архивировано 12 июля 2012 года.
- ↑ (англ.) Wagner, Friederike; Bent Aaby and Henk Visscher. Rapid atmospheric O2 changes associated with the 8,200-years-B.P. cooling event (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2002. — Vol. 99, no. 19. — P. 12011—12014. — doi:10.1073/pnas.182420699. — PMID 12202744.
- ↑ (англ.) Indermühle, Andreas; Bernhard Stauffer, Thomas F. Stocker. Early Holocene Atmospheric CO2 Concentrations (англ.) // Science : journal. — 1999. — Vol. 286, no. 5446. — P. 1815. — doi:10.1126/science.286.5446.1815a.
- ↑ (англ.) Smith, H. J.; M Wahlen and D. Mastroianni. The CO2 concentration of air trapped in GISP2 ice from the Last Glacial Maximum-Holocene transition (англ.) // Geophysical Research Letters (англ.)русск. : journal. — 1997. — Vol. 24, no. 1. — P. 1 — 4. — doi:10.1029/96GL03700.
- ↑ (англ.) Chemical & Engineering News: Latest News – Ice Core Record Extended
- ↑ (англ.) New CO2 data helps unlock the secrets of Antarctic formation September 13th, 2009
- ↑ (англ.) Archer, D. (2005). Fate of fossil fuel CO2 in geologic time. J. Geophys. Res., 110.
- ↑ Реакция растений на рост концентрации углекислого газа в атмосфере, Акатов П. В.
Обеспечение требуемого состава шахтного воздуха
Качественный состав шахтного воздуха определяется объемной долей кислорода, которая не должна быть ниже 20%, объемной долей вредных и ядовитых (токсичных) газов и запыленностью воздуха – содержанием угольно-породной пыли в воздухе горных выработок.
Снижение содержание кислорода в воздухе приводит к уменьшению степени насыщения крови кислородом, что при содержании кислорода ниже 17% уже не компенсируется частотой дыхания и вызывает гипоксию – выраженное кислородное голодания клеток коры головного мозга, приводящее при содержании кислорода ниже 12% к необратимым изменениям в коре головного мозга или смертельному исходу. Причинами уменьшения содержания кислорода в шахтном воздуха являются окислительные процессы, растворение кислорода шахтными водами, дыхание людей, поступление в воздух добавочных количеств азота, замещение кислорода выделяющемся метаном СН4 или диоксидом углерода СО2 (в дальнейшем также углекислого газа), в том числе аварийное при газодинамических явлениях, приводящее к гипоксии[1], а также снижение кислорода при взрывах метана и угольной пыли и в процессе пожара в результатате протекания экзотермических реакций окисления[2].
На газовых шахтах требование к максимально допустимым концентрациям метана обусловлено предотвращению создания взрывоопасных метановоздушных смесей[3].
Углекислый газ в небольших количествах необходим для стимуляции дыхания. Вдыхание воздуха, содержащего 6% углекислого газа, вызывает одышку и слабость, при 10% возможно обморочное состояние и только при 20-25% – смертельное отравление и (или) удушающее действие – проявление гипоксии. Содержание углекислового газа не должно превышать: на рабочих местах и в исходящих струях участков и тупиковых выработках – 0,5%, в выработках с исходящей струей крыла, горизонта и шахты в целом – 0,75%, а при проведении выработки по завалу – 1%.
В шахтном воздухе могут содержаться следующие ядовитые газы: оксид углерода СО, образующийся при взрывных работах, работе дизельных двигателей, взрывах и пожарах, окислы азота NO, NO2, N2O4 и N2O5, образующиеся при взрывных работах; сернистый ангидрид SO2, выделяется из горных пород, образуется при взрывных работах и пожарах; сероводород H2S, выделяется из горных пород и минеральных источников, образуется при гниении, пожарах и взрывных работах; аммиак NH3, образуется при взрывных работах и тушении горящего угля водой; пары мышьяка As, ртути Hg, цианистого водорода HCN, могут образовываться при взрывных работах; акролеин и альдегиды, образуются при работе дизельных двигателей, а также компрессорные газы пневмосети.
Содержание основных ядовитых газов в действующих выработках шахт не должно превышать предельно допустимых концентаций (ПДК), приведенных в таблице 4.1.
Таблица 4.1 – Предельно допустимая концентрация ядовитых газов
Вредные газа | Предельно допустимая концентрация газа в действующих выработках | |
---|---|---|
По объему, % | мг/м3 | |
Оксид углерода (СО) | 0,00170 | 20 |
Оксиды азота (в перерасчете на NО2) | 0,00025 | 5 |
Диоксид азота (NO2) | 0,00010 | 2 |
Сернистый ангидрид (SO2) | 0,00038 | 10 |
Сероводород (H2S) | 0,00071 | 10 |
При ведении взрывных работ для пересчета ядовитых газов на условный оксид углерода 1 л диоксида азота принимается эквивалентным 6,5 л оксида углерода и каждый 1 л сернистого ангидрида или сероводорода – 2,5 л оксида углерода. Перед допуском людей в забой после взрывных работ объемная доля ядовитых газов не должна превышать 0,008% при пересчете на условный оксид углерода. Такое разрежение ядовитых газов должно достигаться не более чем за 30 мин после взрывания.
В химически зараженных районах, в особенности на шахтах Центрального района Донбасса, возможно проникновение в горные выработки сильнодействующих ядовитых веществ. Заражение горных выработок обусловлено, главным образом, двумя процессами природного и техногенного происхождения: накоплением токсичных веществ в геологических структурах шахтного поля и переносом свободно содержащихся в трещинах и порах и сорбированных на поверхности пор токсичных веществ подземными водами, приток которых обычно возрастает при образовании трещин сдвижения пород после подработки и надработки. В местах выхода зараженных вод в горные выработки возможно испарение ряда токсичных веществ. Как показывает негативный опыт работы некоторых шахт Центрального района, это может вызвать насыщение рудничного воздуха до концентраций, превышающих ПДК.
Главным способом обеспечения нормального качества воздуха является проветривание горных выработок, обеспечивающее снижение концентрации газов и вынос их из рабочих мест в общеисходящие струи и на поверхность. Необходимый расход воздуха для проветривания определяется в соответствии с Руководством по проектированию вентиляции угольных шахт (ДНАОП 1.1.30-6.09.-93).
Контроль за содержанием вредных и опасных газов осуществляется службой ВТБ, инженерно техническим персоналом и ГВГСС в соответствии с Инструкцией по контролю состава рудничного воздуха, определению газообильности и установлению категорий шахт по метану (ДНАОП 1.1.30-5.19.-96).
Для измерения наличия и объемной доли метана и диоксида углерода применяются шахтные интерферометры ШИ-10, ШИ-11 и ШИ-12.
Экспресс анализ газового состава атмосферы на СО, СО2, NO+NO2, SO2, H2S выполняется при помощи химических трубок-газоопределителей типа ГХ-4. Для определения содержания кислорода применяют трубку ГХ-М, влажности воздуха трубку ГХ (Н2О), а для концентрации токсичных веществ органического ряда (бензола, метанола и др.) трубки ГХ-О. Определение осуществляется путем калибровочного протягивания воздуха сильфонным аспиратором АМ-5.
Для непрерывного контроля за микроконцентрациями оксида углерода с записью на ленте самописца применяется стационарная автоматическая аппаратура «Сигма СО».
Более точное определение состава воздуха, в том числе на другие газы и вредные вещества производится ГВГСС при плановом контроле и в аварийном режиме с помощью портативных приборов непосредственно в горных выработках или по отбираемым пробам воздуха в лабораторных условиях.
Борьба с пылью на шахтах ведется в двух направлениях: комплексного обеспыливания воздуха с целью предупреждения заболеваниями пылевой этиологии, а на шахтах опасных по взрывчатости угольной пыли также для предупреждения взрывов метана и угольной пыли.
Нормируются предельно допустимые концентрации (ПДК) угольно-породной пыли в зависимости от содержания свободного диоксида кремния SO2 (таблица 4.2).
Таблица 4.2 – Предельно допустимые концентрации пыли угольных шахт
Качественная характеристика пыли | Содержание свободного диоксида кремния в пыли, % | Предельно допустимая концентрация, мг/м3 по общей массе) |
---|---|---|
Породная, углепородная | От 10 до 70 | 2 |
Углепородная, угольная | От 5 до 10 | 4 |
Антрацитовая | До 5 | 6 |
Пыль каменных углей | До 5 | 10 |
Для отбора проб воздуха при определении его запыленности весовым методом применяется аспиратор АЭРА. Отбираемая проба воздуха, фиксируемого количества, просасывается через стеклянную пылевую трубку-алонж, заполненную гигроскопичной ватой с последующим взвешиванием трубки для определения массы пыли. По массе пыли и количеству просасываемого воздуха производится расчет его запыленности.
[1] Более подробно об аварийном снижении содержание кислорода при ГДЯ и особенностях проявления гипоксии рассмотрено в подразделе 22.2.
[2] Некоторые аспекты взрывного горения пылеметановоздушных смесей рассматриваются в подразделах 19.1 и 19.2.
[3] Основные требования к газовому режиму изложены в подразделе 19.3.