Насосная группа с трехходовым смесителем: Насосные группы быстрого монтажа купить в Москве по низкой цене – Оптсантех

Содержание

Насосная группа Uni-Fitt 1″ 492W2500 с трёхходовым смесителем и насосом Wilo Star RS 25/6

ПроизводительUni-Fitt
Серия492
Артикул492W2500
Типнасосная группа
Назначениедля систем с регулированием температуры подачи
Мощностьдо 31 кВт
Теплоносительвода или растворы гликолей (до 40%)
Рабочее давлениедо 10 бар
Температура рабочей средыдо +110°C
Диаметр подключения к системе отопления1″ В
Диаметр подключения к коллектору1″ В
Диаметр подключения к насосу1 1/2″ НГ
Диапазон шкалы термометраот 0°C до +110°C
Материал корпусалатунь CW617N, CW614N
Материал теплоизоляциивспененный полипропилен EPP
Смесительтрёхходовой смесительный клапан
Пропускная способность kvs
трёхходового смесительного клапана
7 м3/час
Сервоприводнет
Укомлпектована насосомWilo Star RS 25/6-180
Потребляемая мощность93 Вт
Частота вращения насоса1900 оборотов в минуту
Максимальный напор6 м
Номинальный ток0,43 А
Материал корпуса насоосасерый чугун (EN-GJL-200 / 5. 1300)
Материал рабочего колесасинтетический материал (полипропилен – 40% GF)
Материал вала насосанержавеющая сталь
Материал подшипниковуглерод с металлической пропиткой
Степень пылевлагозащитыIP44
Монтажная длина циркуляционного насоса180 мм
Высота насосной группы380 мм
Ширина насосной группы250 мм
Межосевое расстояние125 мм
Официальная гарантия производителя3 года
Страна производстваИталия
Страна-родина брендаИталия

Насосная группа с трехходовым смесителем 1″ MK Meibes ME 66831

Седьмое поколение насосных групп Meibes представляет собой универсальные модули для отопительных контуров с различными типами теплогенераторов. Стилистическое исполнение всех деталей несмотря обширный набор выполняемых функций отражает единую дизайнерскую концепцию.

Группы пригодны к сбалансированному обслуживанию контуров трех типов:

  • Без смесителя. Эта Meibes-группа подает теплоноситель из нагревателя, без смешивания с рабочей средой из обратной ветки. Она может работать в контурах бойлеров и системах радиаторного отопления, не предусматривающих терморегулирование подачи. Комплектуется крепежами, съемной EPP изоляцией, несколькими шаровыми кранами один из которых оснащен обратным клапаном, парой термометров.
  • С трёхходовым смесителем со ступенчатым байпасом. Модули Meibes используются в регулируемых контурах отопительных систем замкнутого типа и при обустройстве теплых полов. При подаче возможно добавление теплоносителя из обратного контура и осуществление температурного контроля. Комплект состоит из двух контактных термометров, ЕРР изоляции, вмонтированного в обратную ветку обратного клапана, термостат под теплые полы, трехходовый смеситель с байпсом. По желанию комплект дополняется перепускным клапаном.
  • Разделительный контур. Данная группа находит применение в системах отопления, где используются два разных теплоносителя, один из которых внутри системы, а второй – в котельном обогревательном контуре. При наличии разделительного контура монтируется теплообменник, оснащенный разделительным насосом. В комплект поставки входит два термометра, встроенный обратный клапан, изоляция ЕРР.
Технические Характеристики:
Контур со трехходовой смесительом/без насоса
Материал сталь, латунь, EPP-изоляция
Подключение 1″ ВР / 1 1/2″ НР
Рабочее давление 6 бар
Рабочая температура 110 °С
Шкала термометра 0-120°С
Показатель KVS 6,2 м3/час
Межосевое расстояние 125 мм
Размер (высота) 420 мм
Размер (ширина) 250 мм
Размер (глубина) 246 мм
Уплотнения: EPDM, PTFE (тефлон)

Насосная группа MK 1″ (контур с трехходовым смесителем) (арт.

ME 66731 EA)

Область применения: регулируемый контур отопления, контур теплого пола.

Комплект поставки насосной группы: вся необходимая запорная арматура в соответствии с российскими нормами проектирования систем теплоснабжения, контактные термометры в запорных узлах подающей и обратной линий, встроенный обратный клапан в запорном узле обратной линии, трехходовой смеситель со ступенчатым байпасом, блочная, негорючая термоизоляция.

Посадочное место насоса для всех типоразмеров – 180 мм. При выборе насосной группы следует руководствоваться напорными диаграммами для правильного подбора насоса и его режима работы.

Внимание! При установке в группу насосов напором свыше 6 м.вод.ст. требуется дорабатывать термоизоляцию на месте.

Опционально группы могут быть укомплектованы перепускным клапаном.

Насосные группы Майбес Поколения 7 предназначены для монтажа на распределителях Майбес или на стене (в комплект поставки входит крепежный набор).

* При указании в артикуле насосной группы МК Поколения 7 буквы L перед номером, Вы заказываете группу с подающей линией слева, что позволяет подключать насосные группы к нижним парам подключений распределителя Майбес без смещения подающей и обратной линий (в силу зеркального соответствия верхних и нижних отводов распределителя).

Технические характеристики
Ду25
Верхнее подключение1″ ВР
Нижнее подключение1 1/2 НР
НасосБез насоса
Межосевое расстояние125 мм
МатериалыСталь, латунь, EPP изоляция
УплотненияPTFE (без асбеста), EPDM
Шкала термометра0 – 120 oC
Рабочая температурадо 110 oC
Показатель KVS6.2 м3/ч
Рабочее давление6 бар
Размер (высота)420 мм
Размер (ширина)250 мм
Размер (глубина)246 мм

460

Моторизуемые смесительные клапаны Barberi® позволяют смешивать две жидкости (например, горячую и холодную воду) для достижения желаемой температуры. Они используются в системах отопления и охлаждения, системах центрального отопления, теплогенераторах (настенные котлы, твердотопливные генераторы, тепловые насосы). Смешивание достигается за счет профилированного ротора, который регулирует прохождение жидкостей. Этот ротор может быть сектор или бабочка, в зависимости от типа клапана. Ротационные смесительные клапаны можно регулировать вручную или с помощью электрического привода.Если требуется регулировка в отводном режиме, 3-ходовые смесительные клапаны можно использовать как отводные (арт. 460, 461, 475, V60). Примечание: как 3-ходовые, так и 4-ходовые клапаны могут использоваться для повышения температуры возврата к генератору в качестве защиты от конденсации. устройства (в твердотопливных или дизельных генераторах).

Диапазон рабочих температур (пики): -20 (см. Подходящие жидкости) –130 ° C

Диапазон рабочих температур: 0 (без инея) –110 ° C

Максимальное рабочее давление: 10 бар

Момент вращения обтуратора:

Угол поворота: 90 °

Утечка:

Подходящие жидкости: вода для тепловых систем, растворы гликоля (макс. 50%)

Резьбовые соединения: с внутренней резьбой EN 10226- 1 (V60, V50: ISO 228-1) с наружной резьбой ISO 228-1

CODICE_ARTICOLO размер Kv NPS NPC
x
46001500MN Rp 1/2 1,6 1 10
46001500MA Rp 1/2 2,5 1 10
46002000MB Rp 3/4 4 1 10
46002000MC Rp 3/4 6 1 10
46002500MD Rp 1 8 1 10
46002500ME Rp 1 12 Rp 1 12 10
46003200MF Rp 1 1/4 15 1 10
46003200MG Rp 1 1/4 18 1
10
46004000ML Rp 1 1/2 26 1 8
46005000MM Rp 2 40 1 8

Опции насосной системы Palmer

Насос третьей части Эта опция обеспечивает Прецизионный дозирующий насос постоянного напряжения для трехкомпонентного фенолуретана Приложения.
Насос Hastalloy
Обеспечивает увлажненный герметичный шестеренчатый насос из стали Hastalloy-C для кислотного катализатора Приложения. Эта опция включает в себя шаровой кран с пневматическим приводом из ПВХ.
Ryton Pump Обеспечивает увлажненный Герметичный шестеренчатый насос из армированного стекловолокном Ryton корпус насоса и шестерни из композитного материала для кислотных катализаторов. Этот опция включает в себя шаровой кран с пневматическим приводом из ПВХ.
Насос из нержавеющей стали Обеспечивает увлажненный уплотнение шестеренчатого насоса из нержавеющей стали для кислоты применения катализаторов.Эта опция включает воздухозаборник из нержавеющей стали. шаровой кран с приводом. Это более дешевый вариант, чем Опция насоса Hastalloy-C, но не будет совместима с большинством кислоты.
Isoset Pumping Система Это обновление состоит из все необходимые компоненты для использования с Isoset или сопоставимой смолой система.Он включает в себя насос из нержавеющей стали и шаровой кран в качестве а также сплошная полость, насос без сдвига 2 и пневматический зажим набор клапанов. Обратите внимание, что эта система настроена на рециркуляцию жидкие компоненты.
2-й насос для активатора Этот вариант работает хорошо для производственных цехов, требующих двух разных скоростей установки пресс-форм со связующей системой, требующей различных активаторов для разные скорости настройки. Этот параметр обычно используется с фенольные смолы сложноэфирного отверждения, силикаты натрия и другие связующие системы где количество активатора не влияет на время полоски так сильно, как химический состав.
2-й кислотный насос Этот вариант работает хорошо для производственных цехов, требующих двух разных скоростей установки пресс-форм с фурановой или другой связующей системой на основе кислоты, которая требует разные активаторы для разных скоростей настройки.Этот вариант может быть используется с насосами Ryton, нержавеющей стали или Hastalloy-C.
Циркуляционные насосы Опция заменяет двухходовые шаровые краны с пневматическим приводом в стандартной комплектации система с трехходовыми клапанами.Насосы для смолы работают непрерывно и трехходовые шаровые краны переходят в смесительную камеру при вызове на. Эта система помогает поддерживать температуру смолы и когда использование расходомеров для измерения и контроля расхода жидкости.
Насосы с магнитной связью Этот вариант заменяет стандартные насосы системы на насосы с магнитной муфтой, микро шестеренчатые насосы. Насосы с приводом от постоянного тока, идентичны стандартному насосу, но работают в рециркуляционный способ. Магнитная муфта обеспечивает работу без уплотнений, что исключает необходимость обслуживания связанных с заменой сальника вала насоса. Также с этой опцией входят рециркуляционные переключающие клапаны для каждый насос.
Пробная насосная система Этот вариант идеально подходит для литейные заводы, которые регулярно проводят испытания или заменяют системы связующих. Изображенная стандартная насосная система легко заменяется и возможность обновления.Полное описание элементов управления и см. раздел «Модернизация насосной системы» настоящего Веб-сайт.

AFRISO представляет новый узел теплового насоса | impeller.net

PrimoTherm 180, проверенный на практике узел теплового насоса AFRISO, представляет собой универсальный узел для решения множества задач по установке: системный узел для контуров системы отопления доступен в двух размерах с тремя версиями для каждого.

Узел теплового насоса AFRISO PrimoTherm® 180-2 DN 25 KVS Vario предлагает не только привод, который может быть установлен без инструментов, но и еще одно усовершенствование: 3-ходовой смесительный клапан с регулируемым коэффициентом расхода Kvs. (Источник изображения: AFRISO-EURO-INDEX GmbH)

Он удовлетворяет широкий спектр требований с максимальной эффективностью и надежностью. Доступны три версии с номинальным размером DN 25 – все они предварительно собраны, испытаны на герметичность и теплоизолированы. Они доступны с дополнительными высокоэффективными насосами.Теперь ассортимент становится еще более мощным: новый 3-ходовой смесительный клапан ARV 325 для узла теплового насоса PrimoTherm 180-2 DN 25 KVS Vario обеспечивает максимальную гибкость вплоть до строительной площадки и упрощает гидравлическую балансировку.

Коэффициент расхода является важным параметром в установках водяного отопления и играет ключевую роль в обеспечении оптимальной подачи тепла на поверхности нагрева. До сих пор смесительные клапаны в установках должны были быть правильно рассчитаны, прежде чем они будут установлены и настроены на требуемый коэффициент расхода Kvs системы.В случае ошибок планирования или изменений конструкции клапан обычно не проектируется должным образом. Простая оценка коэффициента расхода Kvs часто приводит к сбоям в работе.

Смесительный клапан, который неправильно рассчитан или не рассчитан вообще, обычно приводит к частым циклам включения и выключения теплогенератора, который становится неэффективным, а также к нежелательному шуму в трубопроводе подачи горячей воды.

Регулировка коэффициента расхода Kvs без опорожнения системы
С новым 3-ходовым смесительным клапаном ARV 325 в качестве основного компонента насосного агрегата такие проблемы теперь остались в прошлом.Четкая, легко читаемая шкала позволяет в любое время установить коэффициент расхода Kvs в диапазоне от 2,5 до 12 м 3 / ч – даже без опорожнения системы. Для первоначального монтажа коэффициент расхода Kvs также можно настроить с помощью стандартной шлицевой отвертки на задней стороне смесителя. Благодаря легкому регулированию коэффициента расхода Kvs, неправильный рейтинг уходит в прошлое. Обработка столь же проста, вплоть до мельчайших деталей: адаптер на смесительном клапане используется для крепления привода AFRISO ARM ProClick в правильном положении без инструментов.

Более высокая эффективность – от складирования до установки
Оптимальная адаптация к соответствующим требованиям управления системой влечет за собой длительные преимущества: меньший скачок объема / меньшая, минимальная управляемая мощность, больший авторитет клапана и полное использование всего диапазона управления смесителем ( От 0 до 100%). Гидравлическая балансировка также значительно упрощается, поскольку мощность, необходимая для нагрева поверхностей нагрева, доступна и может быть использована. Гибкость 3-ходового смесительного клапана также имеет практические преимущества как для оптовиков, так и для профессионалов в области систем отопления: уменьшается разнообразие насосных агрегатов, что упрощает логистику хранения.

Мощные системные узлы в трех версиях
Таким образом, новый трехходовой смесительный клапан успешно дополняет функциональность и разнообразие системных узлов PrimoTherm. Версии PrimoTherm DN 25 приспособлены к широкому диапазону требований: версия 180-1 используется в контурах отопления без смешивания, особенно для заправки накопительного бака. Версия 180-2 была специально разработана для смешанных отопительных контуров. С помощью 3-ходового смесителя и привода температуру подачи можно отрегулировать до желаемой температуры путем добавления воды из обратной линии.Полезно знать: PrimoTherm 180-2 также можно использовать с твердотопливными котлами для повышения температуры обратной магистрали *. Версия 180-3 автоматически регулирует температуру обратной воды системы к теплогенератору до значения, установленного в клапане. Все версии оснащены отключаемым гравитационным тормозом, встроенным в шаровой кран.

Установка по отдельности или бок о бок на коллекторах котлов AFRISO
Система является модульной, так что подающую линию можно монтировать слева или справа.Каждый насос в сборе поставляется с высококачественным монтажным комплектом для настенного монтажа. Благодаря тонкой конструкции на коллекторах котлов AFRISO можно также установить несколько насосных агрегатов рядом друг с другом.

Все циркуляционные насосы, предлагаемые AFRISO, соответствуют требованиям Европейской директивы по экодизайну (стадия 2 с 2015 года). Универсальная изоляция позволяет устанавливать практически любой стандартный насос без переделки изоляции. Насосные агрегаты AFRISO также внесены в список BAfA * – ключевое преимущество для небюрократических субсидий.Например, частным лицам, компаниям или муниципалитетам возвращается 30% чистых инвестиционных затрат через «Федеральное финансирование эффективных зданий – оптимизация отопления». Благодаря узлам PrimoTherm и новому смесительному клапану профессионалы в области систем отопления находятся в идеальном положении для решения самых разнообразных задач монтажа.

* Требуется контроль

Методы смешивания с системами лучистого отопления –


Джордж Кэри

При проектировании системы лучистого отопления становится очевидным, что эта система имеет характеристики, отличные от обычных отопительных систем типа плинтусов.Одно быстрое отличие – это температура воды, циркулирующей по трубке. Большинство излучающих систем можно разделить на два типа.

Первый – это «мокрая система», в которой трубы устанавливаются в бетон.

Второй тип – это «сухая система», при которой трубы либо скрепляются скобами из-под пола, либо укладываются на черный пол, а последний настил укладывается поверх него.

Средняя температура воды составляет 110–120 ° F для бетона и 130–140 ° F для скрепления; конечно, есть исключения, когда может потребоваться более горячая или более холодная вода.К сожалению, большинство котлов, работающих на жидком топливе, не могут работать при таких низких температурах без проблем с дымовыми газами. Лучшим способом преодоления этой проблемы является использование смесительного устройства определенного типа, которое снижает температуру подачи в излучающую зону (зоны), позволяя контуру котла поддерживать температуру, достаточно высокую для удовлетворения его требований. Доступны многочисленные методы смешивания.

Проблемы смешивания
Вот некоторые общие проблемы, касающиеся
смешивания:

Что такое смешивание?
Смешивание – это когда вы берете более холодную возвратную воду и «смешиваете» ее с некоторым количеством горячей котловой воды для получения воды с температурой ниже температуры котла, но более теплой, чем возвратная вода.

Существуют ли разные методы для смешивания?
Вы можете использовать двухходовой клапан, трехходовой клапан, четырехходовой клапан или циркуляционный насос. Все четыре устройства могут использоваться для подачи воды смешанной температуры.

Как работает каждый из этих методов?
1. Двухходовой клапан работает по принципу впрыска. Есть котловой контур с циркуляционным насосом и излучающий контур с собственным циркуляционным насосом. Эти два контура связаны между собой подающей и обратной трубой, которые расположены близко друг к другу.Двухходовой клапан расположен на подающей трубе и имеет контроллер, который измеряет температуру подаваемой воды в радиационном контуре. Контроллер будет циклически открывать и закрывать клапан в зависимости от температуры воды в зоне излучения. Когда клапан открывается, он нагнетает горячую воду в излучающий контур. Там он смешивается с прохладной возвратной водой из лучистой зоны.

2. Трехходовой клапан смешивает холодную возвратную воду с горячей котловой водой для обеспечения «смешанной» температуры.Он имеет три порта: один для обратной воды из излучающей зоны, один для горячей воды из контура котла и смешанный порт для подачи в излучающую зону. Эти клапаны можно настроить вручную на поддержание фиксированной температуры или они могут иметь привод, который изменяет положение клапана в соответствии с нагрузкой.

3. Четырехходовой клапан очень похож на трехходовой, за исключением того, что у него четыре порта вместо трех. Два порта идут в котел, а два порта – в зону излучения. Этот клапан можно настроить вручную или использовать с приводом для регулирования температуры воды в зависимости от нагрузки зоны.

4. Последний метод – с ТНВД. Этот метод используется с начала 1960-х годов. Тогда контроллер включал и выключал насос, чтобы нагнетать горячую воду в зону излучения. Сегодня существуют управляющие компании, которые будут контролировать скорость насоса с мокрым ротором с водяной смазкой и защитой по сопротивлению. Вместо включения и выключения насоса система управления увеличивает или уменьшает скорость насоса.

Как выбрать
Вот некоторые общие рекомендации по смешиванию:

Один метод смешивания предпочтительнее других?
Не совсем, все эти методы работают, но каждый метод имеет свои преимущества, а также свои ограничения.
1. Например, двухходовые клапаны следует использовать только для небольших нагрузок, когда количество нагнетаемого потока составляет небольшой процент от общего расхода излучающей зоны, обычно менее 25%.
2. Трехходовые автономные термостатические клапаны относительно недороги, но могут обеспечивать только одну фиксированную температуру. Это заставляет термостат зоны включать и выключать насос зоны. Этот тип работы подходит для небольшой зоны излучения, но не рекомендуется, когда зоны становятся больше.
3. Впрыскивание с регулятором скорости стало популярным в последние несколько лет. Этот метод смешивания, в котором используются обычные циркуляционные насосы с мокрым ротором, обеспечивает множество преимуществ для излучающих систем, таких как полная модуляция температуры и защита возврата котла от холодной воды. Она ограничена только мощностью насоса с мокрым ротором, которая обычно составляет около 35–40 галлонов в минуту. В типичной излучающей системе этот расход составляет приблизительно 1 000 000 БТЕ / ч.
4. Трехходовые и четырехходовые клапаны, при использовании с приводными двигателями, в течение многих лет очень успешно устанавливались во многих излучающих системах. Привод регулирует положение клапана для подачи соответствующей температуры смешанной воды в зависимости от тепловой нагрузки зоны. Единственное реальное ограничение этого метода – по сравнению со стоимостью циркуляционного насоса с мокрым ротором – состоит в том, что клапан и привод более дороги, чем нагнетательный насос.

Что произойдет, если я использую только один насос со смесительным устройством?
Будет только одна точка смешивания, которая будет контролировать температуру подаваемой воды в зону излучения, но не температуру воды, возвращающейся в котел.Кроме того, скорость потока через котел будет изменяться, что снизит эффективность котла.

Почему я должен использовать два насоса?
С двумя насосами и смесительным устройством вы создаете две точки смешивания. Это позволяет вам контролировать температуру воды, возвращающейся в котел, а также в излучающую зону. Кроме того, второй насос обеспечивает постоянный поток через котел, увеличивая эффективность котла.

Почему меня должна беспокоить температура воды, возвращающейся в котел?
Большинство котлов, работающих на жидком топливе, относятся к неконденсатному типу.Это означает, что важно, чтобы дымовые газы, выделяемые в процессе сгорания, выводились из котла. Когда вода в котле имеет температуру ниже точки росы этих дымовых газов, газы снова конденсируются в воду внутри котла. Результаты могут быть очень разрушительными. В коммерческих применениях тепловой удар котла – еще одна важная причина для контроля температуры обратной воды.

Есть ли предпочтительный способ прокладки смесительных устройств и двух насосов?
Предпочтительный метод – использовать первичный-вторичный насос.Этот метод, который применяется с 1950-х годов, предотвращает последовательную перекачку насосов друг с другом и предотвращает затруднения открытия или закрытия клапанов по сравнению с насосами с высоким напором. Эта технология трубопроводов также позволяет подбирать клапаны и нагнетательные насосы в соответствии с нагрузками, которые они предназначены для управления.

Что такое первичная-вторичная перекачка?
Это метод откачки, который прост как в теории, так и в применении. Он основан на простом правиле, которое гласит: когда два контура соединены между собой, поток в одном не вызовет потока в другом, если устранено падение давления в трубопроводе, общем для обоих.

Как устранить падение давления в общем трубопроводе?
Это достигается за счет очень близкого расположения подающего и обратного тройников вторичного контура! (Максимум четыре диаметра трубы). Это означает, что вы можете соединить два контура между собой (например, контур котла и контур излучающего тепла, каждый со своим собственным насосом), но насосы из каждого контура не будут вызывать поток в другом контуре.

Как правильно выбрать размер смесительного устройства?
Размер насоса или клапана зависит от требуемого расхода из высокотемпературного контура.Затем этот расход будет смешиваться с частью более холодной возвратной воды, чтобы обеспечить желаемую температуру «смешанной» воды. Это пример расчета необходимого расхода:

1. Нагрузка на излучающую зону = 100 000 БТЕ / ч, рассчитанная с перепадом температуры 20 ° F.


2. Расчетный расход излучающей зоны = 10 галлонов в минуту
3. Излучающая расчетная температура подачи = 120 ° F
4. Температура обратной линии = 100 ° F.
5. Температура подачи котлового контура = 180 ° F
6. Разница температур между подачей котлового контура и излучающим обратным контуром составляет 80 ° F.Для расчета необходимого расхода; разделите нагрузку в БТЕ / час излучающей зоны на разницу температур (дельта Т) x 500. 100 000/80 x 500 = 2,5 галлона в минуту.
7. Требуемый расход составляет всего 2,5 галлона в минуту для котловой воды 180 ° F. Эта вода будет смешиваться с 7,5 галлонами в минуту (10–2,5 галлона в минуту) излучаемой возвратной воды 100 ° F для обеспечения расчетной температуры воды 120 ° F или 10 галлонов в минуту. Следовательно, регулирующий клапан или впрыскивающий насос должен быть рассчитан на расход 2,5 галлона в минуту.

Если у вас есть какие-либо вопросы или комментарии, напишите мне по адресу [адрес электронной почты защищен], позвоните мне по телефону FIA 1-800-423-7187 или подпишитесь на меня в Twitter по адресу @Ask_Gcarey.

ICM Смотрите другие похожие статьи в категории «Факты о котле».

Распылительное оборудование и калибровка – Публикации

Давление распыления колеблется от 0 до более 300 фунтов на квадратный дюйм (PSI), а нормы внесения могут варьироваться от менее 1 до более 100 галлонов на акр (GPA). Все опрыскиватели имеют несколько основных компонентов: насос, бак, систему перемешивания, узел контроля потока, манометр и распределительную систему (рис. 1) .

Рис. 1. Типовая сельскохозяйственная система опрыскивания.

Следует ожидать, что правильно примененные пестициды принесут прибыль. Неправильное или неточное нанесение обычно очень дорогое и приводит к потерям химикатов, незначительной борьбе с вредителями, чрезмерному уносу или повреждению урожая.

Сегодня сельское хозяйство находится под сильным экономическим и экологическим давлением. Высокая стоимость пестицидов и необходимость защиты окружающей среды являются стимулами для тех, кто занимается внесением пестицидов.

Исследования показали, что многие ошибки при нанесении связаны с неправильной калибровкой опрыскивателя. Исследование, проведенное в Северной Дакоте, показало, что 60 процентов аппликаторов применяли пестициды больше или меньше, более чем на 10 процентов от запланированной нормы. Некоторые ошибались на 30 и более процентов. Исследование, проведенное в другом штате, показало, что четыре из пяти опрыскивателей имели ошибки калибровки, а один из трех – ошибки смешивания.

Специалисты по нанесению пестицидов должны знать правильные методы нанесения, химическое воздействие на оборудование, калибровку оборудования и правильные методы очистки.Необходимо периодически откалибровать оборудование для компенсации износа насосов, форсунок и систем измерения. Сухие текучие материалы могут изнашивать наконечники форсунок и вызывать увеличение нормы внесения после распыления всего на 50 акров.

Неправильно используемые сельскохозяйственные пестициды опасны. Чрезвычайно важно соблюдать меры предосторожности, носить защитную одежду при работе с пестицидами и следовать указаниям для каждого конкретного химического вещества. Обратитесь к руководству оператора для получения подробной информации о конкретном опрыскивателе.

Насос и регуляторы потока

Опрыскиватель часто используется для нанесения различных материалов, таких как довсходовые и послевсходовые гербициды, инсектициды и фунгициды. Может потребоваться замена форсунок, что может повлиять на объем распыления и давление в системе. Тип и размер необходимого насоса определяется используемым пестицидом, рекомендуемым давлением и скоростью подачи форсунки. Насос должен иметь достаточную мощность для работы гидравлической системы перемешивания, а также для подачи необходимого объема к форсункам.Насос должен иметь производительность, по крайней мере, на 25 процентов больше, чем максимальный объем, необходимый для форсунок. Это приведет к перемешиванию и потере производительности из-за износа насоса.

Насосы должны быть устойчивы к коррозии от пестицидов. Материалы, используемые в корпусах и уплотнениях насосов, должны быть устойчивы к используемым химическим веществам, включая органические растворители. Также следует учитывать начальную стоимость насоса, требования к давлению и объему, простоту заливки и доступный источник питания.

Насосы, используемые на сельскохозяйственных опрыскивателях, обычно бывают четырех основных типов:

• Центробежные насосы
• Роликовые или роторные насосы с вращающимися лопатками
• Поршневые насосы
• Мембранные насосы

Центробежные насосы и устройства управления

Центробежные насосы являются наиболее популярным типом для опрыскивателей большого объема низкого давления.Они прочны, просты в конструкции и могут легко обрабатывать смачиваемые порошки и абразивные материалы. Из-за высокой производительности центробежных насосов (130 галлонов в минуту [GPM] или более) гидравлические мешалки можно и нужно использовать для перемешивания растворов для опрыскивания даже в больших резервуарах.

Давление до 80 фунтов на квадратный дюйм создается центробежными насосами, но объем нагнетания быстро падает выше 30-40 фунтов на квадратный дюйм. Такая «крутая кривая производительности» является преимуществом, поскольку позволяет контролировать производительность насоса без предохранительного клапана.Производительность центробежного насоса очень чувствительна к скорости (рис. 2) , и колебания давления на входе могут приводить к неравномерной производительности насоса в некоторых рабочих условиях.

Рисунок 2. Производительность центробежного и роликового насоса.

Центробежные насосы должны работать со скоростью от 3000 до 4500 оборотов в минуту (об / мин). При движении с ВОМ трактора необходим механизм ускорения. Простой и недорогой метод увеличения скорости – с помощью ремня и шкива.Другой способ – использовать планетарную зубчатую передачу. Шестерни полностью закрыты и установлены непосредственно на валу отбора мощности. Центробежные насосы могут приводиться в действие напрямую подключенным гидравлическим двигателем и регулированием расхода, работающим от гидравлической системы трактора. Это позволяет использовать ВОМ для других целей, а гидравлический двигатель может поддерживать более равномерную скорость и производительность насоса с небольшими изменениями скорости двигателя. Насосы также могут приводиться в действие бензиновым двигателем с прямым соединением, который будет поддерживать постоянное давление и мощность насоса независимо от частоты вращения двигателя транспортного средства.

Центробежные насосы должны располагаться под расходным баком для облегчения заливки и поддержания заливки. Кроме того, для центробежных насосов не требуется предохранительный клапан. Правильный способ соединения компонентов опрыскивателя с помощью центробежного насоса показан на рис. 3 . Сетчатый фильтр, расположенный в нагнетательном трубопроводе защищает сопла от засорения и исключает ограничение на входе насоса. В нагнетательной линии насоса используются два регулирующих клапана: один в линии перемешивания, а другой – в штанге опрыскивателя.Это позволяет контролировать поток перемешивания независимо от потока в сопле. Подача центробежных насосов может быть полностью перекрыта без повреждения насоса. Давление распыления можно регулировать с помощью дроссельного клапана, исключая предохранительный клапан с отдельной байпасной линией. Отдельный дроссельный клапан обычно используется для управления потоком перемешивания и давлением распыления. Дроссельные клапаны с электрическим управлением широко используются для дистанционного управления давлением и устанавливаются в дополнительной байпасной линии, как показано на , рис. 3, .

Рисунок 3. Система опрыскивания с центробежным насосом.

Запорный клапан штанги позволяет выключить штангу опрыскивателя, пока насос и система перемешивания продолжают работать. Электрические электромагнитные клапаны исключают необходимость прокладки шлангов с химическими веществами через кабину транспортного средства. Блок переключателей, управляющий электрическим клапаном, установлен в кабине транспортного средства. Это обеспечивает безопасную зону оператора в случае разрыва шланга.

Для настройки на опрыскивание с помощью центробежного насоса (Рис. 3) откройте запорный клапан штанги, запустите опрыскиватель и откройте дроссельный клапан до тех пор, пока давление не поднимется на 10 фунтов на квадратный дюйм по сравнению с желаемым давлением распыления.Затем отрегулируйте клапан управления перемешиванием до тех пор, пока в резервуаре не будет наблюдаться хорошее перемешивание. Если давление в штанге немного упало в результате перемешивания, отрегулируйте главный регулирующий клапан, чтобы довести давление до 10 фунтов на квадратный дюйм выше давления распыления. Затем откройте перепускной клапан, чтобы снизить давление в штанге до желаемого давления распыления. Этот клапан можно открывать или закрывать по мере необходимости, чтобы компенсировать изменения давления в системе, чтобы поддерживать постоянное давление в штанге. Обязательно проверьте равномерность потока из всех форсунок.

Роликовые насосы и органы управления

Роликовые насосы состоят из ротора с упругими роликами, которые вращаются внутри эксцентрикового корпуса. Роликовые насосы популярны из-за их низкой начальной стоимости, компактных размеров и эффективной работы на оборотах ВОМ трактора. Это поршневые насосы прямого вытеснения и самовсасывающие. Более крупные насосы способны перемещать 50 галлонов в минуту и ​​могут развивать давление до 300 фунтов на квадратный дюйм. Роликовые насосы имеют тенденцию к чрезмерному износу при перекачивании абразивных материалов, что является ограничением для этого насоса.

Варианты материалов для роликовых насосов включают чугун или коррозионностойкие корпуса из никелевого сплава; ролики из нейлона, полипропилена, тефлона или резины Buna-N и уплотнения из Viton, Buna-N или кожи. Нейлоновые валики используются для всестороннего распыления; они подходят для удобрений и химикатов для борьбы с сорняками и насекомыми, включая суспензии. Валики Буна-Н используются для перекачивания абразивных суспензий и воды.

Полипропиленовые ролики отлично зарекомендовали себя при работе с водой и обладают одобренными характеристиками износа.Тефлоновые ролики также продемонстрировали универсальную способность к работе с химическими веществами. Роликовые насосы должны иметь уплотненные шарикоподшипники с заводской смазкой, валы из нержавеющей стали и сменные уплотнения вала.

Рекомендуемое подключение для роликовых насосов показано на Рис. 4 . Регулирующий клапан помещается в линию перемешивания, так что байпасный поток регулируется для регулирования давления распыления. Системы с роликовыми насосами содержат предохранительный клапан (Рисунок 5) . Эти клапаны имеют подпружиненный шар, диск или диафрагму, которые открываются при увеличении давления, поэтому избыточный поток отводится обратно в бак, предотвращая повреждение компонентов опрыскивателя при отключении штанги.

Рисунок 4. Система опрыскивания с роликовым насосом.

Рисунок 5. Клапан сброса давления.

Клапан управления перемешиванием должен быть закрыт, а запорный клапан штанги должен быть открыт для регулировки системы (Рисунок 4) . Запустите распылитель, убедившись, что поток из всех распылительных форсунок является равномерным, и отрегулируйте предохранительный клапан до тех пор, пока манометр не покажет примерно на 10–15 фунтов на квадратный дюйм выше желаемого давления распыления.Медленно открывайте дроссельный регулирующий клапан, пока давление распыления не снизится до желаемой точки. Замените насадку мешалки на сопло с большим отверстием, если давление не упадет до желаемой точки.

Используйте насадку для перемешивания меньшего размера, если перемешивание оказывается недостаточным при правильном давлении распыления и закрытом предохранительном клапане. Это увеличит перемешивание и позволит более широко открыть регулирующий клапан для того же давления.

Поршневые насосы и органы управления

Поршневые насосы представляют собой поршневые насосы прямого вытеснения, мощность которых пропорциональна скорости и не зависит от давления.Поршневые насосы хорошо подходят для смачиваемых порошков и других абразивных жидкостей. Они доступны с резиновыми или кожаными манжетами поршня, что позволяет использовать насос для жидкостей на водной или нефтяной основе и широкого спектра химикатов. Смазка насоса обычно не представляет проблемы из-за использования герметичных подшипников.

Использование поршневых насосов для опрыскивания сельскохозяйственных культур частично ограничивается их относительно высокой стоимостью. Поршневые насосы имеют долгий срок службы, что делает их экономичными при непрерывном использовании.Поршневые насосы большего размера имеют производительность от 25 до 35 галлонов в минуту и ​​используются при давлении до 600 фунтов на квадратный дюйм. Это высокое давление полезно для очистки под высоким давлением, опрыскивания домашнего скота или опрыскивания насекомыми и фунгицидами сельскохозяйственных культур. Поршневой насос требует расширительного бачка на выходе из насоса, чтобы уменьшить характерную пульсацию линии.

Схема подключения поршневого насоса показана на Рисунок 6 . Он похож на роликовый насос, за исключением того, что на выходе насоса установлен расширительный бачок. В штоке манометра используется демпфер для уменьшения эффекта пульсации.Клапан сброса давления должен быть заменен разгрузочным клапаном (Рисунок 7) , когда используется давление выше 200 фунтов на квадратный дюйм. Это снижает давление насоса, когда стрела отключена, поэтому требуется меньше энергии. Если в системе используется мешалка, на поток перемешивания может влиять разгрузка клапана.

Откройте дроссельный регулирующий клапан и закройте клапан штанги, чтобы настроить опрыскивание (Рисунок 6) . Затем отрегулируйте предохранительный клапан так, чтобы он открывался при давлении на 10–15 фунтов на квадратный дюйм выше давления распыления.Откройте регулирующий клапан штанги и убедитесь, что поток из всех форсунок является равномерным. Затем отрегулируйте дроссельный регулирующий клапан до тех пор, пока манометр не покажет желаемое давление распыления.

Рисунок 6. Система опрыскивания с поршневым или диафрагменным насосом.

Рисунок 7. Разгрузочный клапан.

Мембранные насосы и органы управления

Мембранные насосы

популярны на сельскохозяйственном рынке, поскольку они могут перекачивать абразивные и коррозионные химикаты при высоком давлении.Они эффективно работают при частоте вращения ВОМ трактора 540 об / мин и допускают широкий выбор скоростей потока. Они способны создавать как высокое давление (до 850 фунтов на кв. Дюйм), так и большой объем (60 галлонов в минуту), но цена диафрагменных насосов относительно высока. При применении некоторых пестицидов, таких как фунгициды, требуется высокое давление и объемы. Мембранные насосы отлично подходят для этой работы. Подключение системы распыления для мембранных насосов такое же, как для поршневых насосов (Рисунок 6) . Убедитесь, что органы управления и все шланги достаточно большие, чтобы выдерживать высокий поток, а все шланги, сопла и фитинги должны выдерживать высокое давление.

Давление в распылительной системе

Тип пестицида и используемая насадка обычно определяют давление, необходимое для распыления. Это давление обычно указано на упаковке химреагентов. Низкое давление от 15 до 40 фунтов на квадратный дюйм может быть достаточным для распыления большинства гербицидов или удобрений, но высокое давление до 400 фунтов на квадратный дюйм или более может потребоваться для распыления инсектицидов или фунгицидов.

Форсунки

предназначены для работы в определенном диапазоне давления. Давление выше рекомендованного увеличивает скорость подачи, уменьшает размер капель и может исказить рисунок распыления.Это может привести к чрезмерному сносу распыления и неравномерному покрытию. Низкое давление снижает скорость подачи распыляемого материала, и распыляемый материал может не формировать картину распыления по всей ширине, если форсунки не предназначены для работы при более низком давлении.

Всегда следуйте рекомендациям производителей форсунок по давлению, приведенным в каталогах продукции.

Избегайте использования слишком маленьких сопел для работы. Чтобы удвоить скорость распыления из форсунок, давление необходимо увеличить в четыре раза.Это может вызвать чрезмерную нагрузку на компоненты распылителя, увеличить износ форсунок и вызвать образование капель, подверженных сносу.

Манометр должен иметь общий диапазон, вдвое превышающий максимальное ожидаемое показание. Манометр должен точно показывать давление распыления. Во время калибровки рекомендуется измерять скорость нагнетания при определенном давлении на манометре. Установите протектор манометра или демпфер, чтобы предотвратить повреждение.

Баки для опрыскивателей

Бак должен быть изготовлен из коррозионно-стойкого материала.Подходящие материалы, используемые в баках опрыскивателя, включают нержавеющую сталь, полиэтиленовый пластик и стекловолокно. Пестициды могут вызывать коррозию определенных материалов. Следует проявлять осторожность, чтобы избежать использования несовместимых материалов. Не следует использовать алюминиевые, оцинкованные или стальные резервуары. Некоторые химические вещества вступают в реакцию с этими материалами, что может привести к снижению эффективности пестицида или к ржавчине или коррозии внутри резервуара.

Содержите резервуары в чистоте и не допускайте появления ржавчины, окалины, грязи и других загрязнений, которые могут повредить насос и форсунки.Кроме того, загрязнение может скапливаться в сопле и ограничивать поток химикатов, что приводит к неправильной форме распыления и неправильной скорости нанесения. Мусор может забить фильтры и ограничить поток спрея через систему.

Промойте резервуар чистой водой после завершения распыления. Резервуар со сливным отверстием на дне около одного конца помогает обеспечить полный слив. Еще одна отличная альтернатива – резервуар с небольшим поддоном на дне. Достаточно большое отверстие в верхней части для внутреннего осмотра, чистки и обслуживания – необходимость.

Для добавления правильного количества пестицида необходимо знать емкость резервуара. У большинства новых резервуаров есть метки вместимости сбоку. Если ваш резервуар непрозрачный, в нем должен быть смотровой щуп для индикации уровня жидкости. Внизу смотрового указателя должен быть запорный вентиль, позволяющий закрыть его в случае повреждения. На резервуарах из пластика и стекловолокна метки могут быть нанесены сбоку резервуара. Ваш опрыскиватель должен находиться на ровной поверхности при считывании количества галлонов, оставшихся в баке. Неправильные показания объема приводят к добавлению неправильного количества пестицида, что может привести к плохой борьбе с вредителями, травмам урожая или увеличению стоимости пестицидов.

Мешалки для резервуаров

Мешалка в баке необходима для равномерного перемешивания распыляемого материала и удержания химикатов в суспензии. (Рисунки 8 и 9) .

Рисунок 8. Струйные мешалки.

Необходимость перемешивания зависит от типа применяемого пестицида. Жидкие концентрации, растворимые порошки и эмульгируемые жидкости требуют небольшого перемешивания. Для удержания смачиваемых порошков в суспензии требуется интенсивное перемешивание, поэтому требуется отдельная мешалка гидравлического или механического типа.Гидравлический тип струи управляется линией давления зацепили в систему распыления непосредственно за насосом. Гидравлическую мешалку следует располагать в резервуаре, чтобы обеспечить перемешивание по всему резервуару. Расход от 5 до 6 галлонов в минуту на каждые 100 галлонов емкости бака обычно достаточен для струйной мешалки с отверстиями. Доступны несколько типов мешалок с всасыванием Вентури, которые помогают перемешивать жидкость с меньшим потоком. С их помощью поток перемешивания от насоса может быть уменьшен до 2 или 3 галлонов в минуту на емкость бака 100 галлонов.

Не устанавливайте струйную мешалку на байпасной линии регулятора давления, так как низкое давление и прерывистый поток жидкости обычно приводят к плохим результатам. Они будут перемешивать опрыскивающий раствор только при отключенной штанге опрыскивателя.

Механическая мешалка с валом и лопастями отлично справляется с поддержанием однородности смеси, но обычно стоит дороже, чем струйная мешалка. Механические мешалки должны приводиться в действие отдельным приводом, гидравлическим двигателем или электродвигателем на 12 В.Они должны работать от 100 до 200 об / мин. Более высокие скорости могут вызвать вспенивание распыляемого раствора. Регулируемые мешалки желательны для сведения к минимуму пенообразования, которое может возникнуть при интенсивном перемешивании некоторых пестицидов при уменьшении объема в резервуаре. Перемешивание следует начинать с частично заполненным резервуаром и до того, как в резервуар будут добавлены пестициды. С смачиваемыми порошками и текучими материалами продолжайте взбалтывать при наполнении бака и во время поездки в поле. Не позволяйте пестицидам оседать, так как смесь для опрыскивания должна быть однородной, чтобы избежать ошибки концентрации.Это особенно важно для смачиваемых порошков, потому что они не растворяются, они обычно намного тяжелее воды, и их чрезвычайно трудно получить во взвешенном состоянии после того, как они осядут в резервуаре и шлангах.

Фильтры

Забитая форсунка – одна из самых неприятных проблем, с которыми сталкиваются аппликаторы при работе с распылителями. Правильно выбранные и расположенные сетчатые фильтры и сетки в значительной степени предотвратят засорение сопла и уменьшат износ сопла.

На сельскохозяйственных опрыскивателях обычно используются три типа сетчатых фильтров: сетчатые фильтры для наполнения резервуаров, линейные сетчатые фильтры и сетки для сопел.Номера фильтров (например, 20, 50 или 100) указывают количество отверстий на дюйм. Сетчатые фильтры с большим количеством отверстий имеют меньшие отверстия, чем сетчатые фильтры с низким количеством.

Сетчатые фильтры грубой очистки, установленные в заливном отверстии резервуара, предотвращают попадание мусора в резервуар во время его заполнения. Ситечко для наполнителя резервуара с ячейками 16 или 20 также удерживает комки смачиваемого порошка до тех пор, пока они не разобьются, помогая обеспечить равномерное перемешивание в резервуаре.

Линейный сетчатый фильтр является наиболее важным сетчатым фильтром опрыскивателя (Рисунок 10) .Обычно он имеет размер сетки от 16 до 80 меш, и его можно разместить между резервуаром и насосом, между насосом и регулятором давления или рядом со стрелой, в зависимости от типа используемого насоса. Роликовые и другие объемные насосы должны иметь линейный сетчатый фильтр (с размером ячеек 40 или 50), расположенный перед насосом для удаления материала, который может повредить насос. Напротив, вход центробежного насоса не должен быть ограничен. Линейный сетчатый фильтр (обычно с ячейками 50) должен быть расположен на стороне нагнетания насоса для защиты распылительных и перемешивающих форсунок.Обязательно регулярно чистите этот экран.

Рисунок 10. Сетевой фильтр.

Для опрыскивателей доступны самоочищающиеся сетчатые фильтры. Однако этим установкам требуется дополнительная пропускная способность насоса, чтобы непрерывно промывать часть жидкости через сетку и переносить захваченный материал обратно в бак для опрыскивания. На рис. 11 показан разрез самоочищающегося фильтра.

Рисунок 11. Самоочищающийся сетчатый фильтр линии.

Сопла – третье место с экранами.Форсунки малой емкости должны иметь сетки для предотвращения засорения. Обычно используются сита от 50 до 100 меш (Рисунок 12) . Использование экрана меньшего размера, чем само отверстие сопла, дает мало преимуществ. Как правило, фильтры с размером ячеек от 80 до 100 рекомендуются для большинства форсунок с расходом ниже 0,2 галлона в минуту, а фильтры с размером ячеек 50 ячеек – для форсунок с расходом от 0,2 до 1 галлона в минуту. Размер фильтра может зависеть от используемого пестицида или производителя сопла; например Для смачиваемых порошков используется сито 50 меш или больше.При скорости потока выше 1 галлона в минуту сетчатый фильтр для форсунки обычно не требуется, если используется хороший линейный сетчатый фильтр. Фильтры форсунок иногда используются с жидкостями, содержащими взвешенные твердые частицы.

Рисунок 12. Сетчатый фильтр и сетка сопла.

Распылительная система

Опрыскиватель не будет работать должным образом без соответствующих шлангов и элементов управления для подключения бака, насоса и форсунок, поскольку они являются ключевыми компонентами системы опрыскивания.

Выберите шланги и фитинги для работы с химическими веществами при выбранном рабочем давлении и количестве.Часто встречаются пиковое давление выше среднего рабочего давления. Эти пиковые давления обычно возникают, когда штанга опрыскивателя отключена. Выбирайте компоненты по составу, конструкции и размеру.

Шланг должен быть гибким, прочным и устойчивым к солнечному свету, маслу, химикатам и обычным злоупотреблениям, таким как скручивание и вибрация. Два широко используемых химически стойких материала – это этиленвинилацетат (EVA) и этиленпропилендионовый мономер (EPDM).

Всасывающие шланги должны быть герметичными, неразборными, как можно короче и такими же большими, как всасывающее отверстие насоса.Сдавленный всасывающий шланг может ограничить поток и «истощить» насос, что приведет к снижению потока и повреждению насоса. Если вы не можете поддерживать давление распыления, проверьте линию всасывания, чтобы убедиться, что она не ограничивает поток.

Другие трубопроводы, особенно между манометром и форсунками, должны быть как можно более прямыми, с минимумом ограничений и фитингов. Их правильный размер зависит от размера и мощности опрыскивателя. Во всей системе должна поддерживаться высокая, но не чрезмерная скорость жидкости.Слишком большие линии уменьшают скорость жидкости настолько, что некоторые пестициды, такие как сухие текучие или смачиваемые порошки, могут оседать, забивать систему и уменьшать количество применяемого пестицида. Если линии слишком малы, произойдет чрезмерное падение давления. Рекомендуется скорость потока от 5 до 6 футов в секунду. Предлагаемые размеры шлангов для различных скоростей потока насоса перечислены в Таблица 1 . Некоторые химические вещества вступают в реакцию с пластиковыми материалами. Проверьте совместимость в документации производителей распылителей и химикатов.

Устойчивость штанги важна для достижения равномерного распыления. Стрела должна быть относительно жесткой во всех направлениях. Раскачивание вперед-назад или вверх-вниз нежелательно. Копирующие колеса, установленные рядом с концом стрелы, будут поддерживать одинаковую высоту стрелы. Высота стрелы должна регулироваться от 1 до 4 футов над целью.

Форсунки

Функции

Форсунка – важная часть любого опрыскивателя. Форсунки выполняют три функции:

1.Регулировка потока
2. Распылить смесь на капли
3. Распылить спрей желаемым образом.

Форсунки

обычно лучше всего подходят для определенных целей и менее желательны для других. Как правило, гербициды наиболее эффективны при нанесении в виде
капель размером приблизительно 250 микрон, фунгициды наиболее эффективны при размере от 100 до 150 микрон, а инсектициды – при размере примерно 100 микрон.

В таблице Таблица 2 сравниваются различные форсунки, размер их капель и их эффективность при распределенном распылении. В таблице 3 сравниваются характеристики форсунок для ленточного или направленного распыления.

Форсунки

определяют скорость распределения пестицидов при определенном давлении, скорости движения и расстоянии между форсунками. Снос можно свести к минимуму, выбрав форсунки, которые производят капли наибольшего размера, обеспечивая при этом достаточный охват при предполагаемой скорости нанесения и давлении. Насадки изготавливаются из нескольких видов материалов. Наиболее распространены латунь, пластик, нейлон, нержавеющая сталь, закаленная нержавеющая сталь и керамика.Латунные сопла наименее дорогие, но они мягкие и быстро изнашиваются. Нейлоновые сопла устойчивы к коррозии, но некоторые химические вещества вызывают разбухание термопласта. Сопла из более твердых металлов обычно стоят дороже, но обычно изнашиваются дольше. Прочность сопел из различных материалов по сравнению с латунью показана на рисунке Рисунок
13 . Сопла изнашиваются в зависимости от использования и расхода. Важно регулярно проверять и заменять изношенные форсунки, потому что изношенные форсунки могут увеличить стоимость внесения пестицидов и вызвать повреждение урожая, недопустимые нормы расхода или остатки.Например, увеличение скорости потока на 10 процентов может быть незаметным; однако опрыскивание 150 акров пестицидом, который стоит 10 долларов за акр по повышенной ставке, будет стоить дополнительно 1 доллар за акр или на 150 долларов больше для поля.

Рисунок 13. Скорость износа форсунок из различных материалов.

На каждую форсунку опрыскивателя следует наносить максимальное количество пестицида. Если одно сопло применяет большее или меньшее количество сопел, чем соседние сопла, могут возникнуть полосы. Расходы через форсунки необходимо контролировать, регулярно собирая поток из каждой форсунки в рабочих условиях и сравнивая выходную мощность.Если расход из форсунки отличается более чем на 10 ПРОЦЕНТОВ выше или ниже среднего значения для всех форсунок, замените его.

Не смешивайте форсунки из разных материалов, типов, углов нагнетания или емкости в галлонах на одном распылителе. Любое смешивание форсунок приведет к неравномерному распылению.

При очистке забитых форсунок необходимо соблюдать осторожность. Форсунку следует снять с корпуса форсунки и очистить щеткой для чистки форсунок с мягкой щетиной. Выдувание грязи сжатым воздухом также является отличным методом.Не используйте тонкую проволоку или наконечник складного ножа для очистки отверстия сопла, так как оно легко повреждается.

Расход

Расход через сопло зависит от размера отверстия и давления. В каталогах производителей указаны значения расхода через форсунки при различных давлениях и расходах на акр при различных скоростях движения. Как правило, при повышении давления расход увеличивается, но не в соотношении один к одному. Чтобы удвоить скорость потока, вы должны увеличить давление в четыре раза. Многие системы управления распылением используют этот принцип для управления производительностью.Они увеличивают давление для поддержания правильной нормы внесения с увеличением скорости. Будьте осторожны при изменении скорости, поскольку может потребоваться, чтобы давление в системе распыления превышало рекомендуемые рабочие диапазоны форсунок, что приводит к чрезмерному сносу мелких частиц.

Размер капли

Когда распыляемый материал покидает отверстие сопла, можно измерить только размер и количество капель, а также их скорость. Размер капель измеряется в микронах. Микрон составляет одну миллионную метра, или 1 дюйм содержит 25 400 микрон.Чтобы представить себе это в некоторой степени перспективно, рассмотрим, что человеческий волос имеет диаметр примерно 56 микрон.

Все гидравлические форсунки производят капли различного размера – от нескольких крупных до множества мелких. Размер выражается как средний диаметр объема (VMD). Другими словами, 50 процентов объема состоит из капель меньшего размера, чем VMD, а 50 процентов объема – из более крупных капель. VMD не следует путать с NMD (числовой средний диаметр), который обычно представляет собой меньшее число.NMD – это средний размер, который делит спектр капель на равное количество меньших и больших капель. Конструкция сопла влияет на размер капель и является полезной функцией для определенных приложений. Крупные капли менее склонны к сносу, но мелкие капли могут быть более желательными для лучшего покрытия. Давление влияет на размер капель – при более высоком давлении образуются капли меньшего размера.

Размер распыляемой капли может иметь прямое влияние на эффективность применяемого химического вещества, поэтому выбор правильного типа форсунки для контроля размера распыляемой капли является важным управленческим решением.Когда средний диаметр капель уменьшается до половины от первоначального размера, из одного потока может быть получено в восемь раз больше капель. Сопло, производящее мелкие капли, теоретически может покрыть большую площадь заданным потоком. Это работает до определенного размера капли. Чрезвычайно маленькие капли могут не попасть на цель, так как испарение уменьшает их размер во время движения к цели, а воздушные потоки на пути падения могут прервать движение капли и унести ее от цели. Условия окружающей среды: относительная влажность и воздушные потоки (ветер) могут иметь большое влияние на осаждение капель на цели, когда маленькие капли используются для внесения пестицидов.

Водочувствительную бумагу можно использовать для оценки размера и плотности капель. Опыт показал, что для распыления небольшого объема с каплями среднего размера инсектициды должны иметь плотность не менее 20-30 капель / см 2 , гербициды 20-40 капель / см 2 и фунгициды 50-70 капель / см. см 2 . Количество и размер капель можно оценить с помощью ручной линзы.

Обратные клапаны сопел

Некоторые сетчатые фильтры для форсунок оснащены обратными клапанами, которые обеспечивают быстрое перекрытие и предотвращают попадание капель на форсунку во время поворотов или транспортировки.Мембранные обратные клапаны (Рисунок 14) лучше всего подходят для остановки подтекания форсунки. Шаровые обратные клапаны более подвержены коррозии, чем мембранные обратные клапаны, и не так безотказны. Обратные клапаны вызывают падение давления от 5 до 10 фунтов на квадратный дюйм, в зависимости от давления пружины в клапане. Обратные клапаны позволяют заменять форсунки без утечки материала из стрелы.

Рисунок 14. Мембранный обратный клапан.

Форсунки распыления

Каждый рисунок распыления имеет две основные характеристики: угол распыления и форму рисунка.Большинство сельскохозяйственных насадок имеют угол от 65 до 120 градусов. Узкие углы создают более проникающую струю; Широкоугольные сопла могут быть установлены ближе к цели, дальше друг от друга на штанге или обеспечивать перекрывающуюся зону охвата (Рисунок 15) .

Рис. 15. Основные углы распыления и форма распыления.

Несмотря на то, что существует множество форсунок, существует только три основных типа распыления: плоский веер, полый конус и полный конус.Каждый из них имеет определенные характеристики и области применения.

Плоскоструйные форсунки

Плоскоструйные форсунки широко используются для разбрызгивания гербицидов и некоторых инсектицидов. Они производят распыление с плоской веерной струей с конической кромкой. По краям рисунка распыления наносится меньше материала, поэтому рисунки соседних форсунок должны перекрываться, чтобы обеспечить равномерное покрытие по всей длине штанги. Для максимальной однородности перекрытие должно составлять от 30 до 50 процентов расстояния между соплами (Рисунок 16) на заданном уровне.Нормальное рабочее давление варьируется в зависимости от используемого сопла.

Рис. 16. Правильное перекрытие с соплом с плоским веером при расстоянии между соплами 20 дюймов.

При более низком давлении образуются более крупные капли, что снижает потенциал сноса, в то время как при более высоком давлении образуются мелкие капли для максимального покрытия растений, но мелкие капли более восприимчивы к сносу. Доступны более новые форсунки с расширенным диапазоном, которые будут работать в диапазоне от 15 до 60 фунтов на квадратный дюйм, не оказывая значительного влияния на ширину рисунка распыления.Эти форсунки производят такую ​​же скорость потока и форму распыления, что и обычная форсунка с плоским веером, при том же давлении. При более низком рабочем давлении образуются более крупные капли и снижается потенциал сноса, в то время как более высокое давление дает мелкие капли с более высоким потенциалом сноса. Форсунки с расширенным диапазоном работают в более широком диапазоне давления и хорошо работают с автоматическим управлением распылением.

Плоские форсунки доступны с несколькими углами распыления. Наиболее часто используемые форсунки перечислены в Таблица 4 .Правильная высота штанги опрыскивателя зависит от угла выброса форсунки и измеряется от цели до форсунки. Для послевсходовых пестицидов целью является растущая культура, а не поверхность почвы (Рисунок 17) .

Рисунок 17.

Другая плоская форсунка, разработанная как форсунка, уменьшающая снос, была недавно представлена ​​несколькими производителями. Это сопло имеет камеру перед последним отверстием, которая эффективно снижает количество диспергированных мелких капель, которые подвержены сносу.Он содержит внутреннюю камеру, которая снижает рабочее давление на внешнем отверстии, уменьшая образующиеся мелкие частицы.

Недавно представленная форсунка называется форсунка Turbo Teejet с плоским вентилятором от Spraying Systems Co. Она содержит конструкцию с предварительным отверстием, которая создает большой устойчивый к дрейфу перепад в широком рабочем диапазоне давления 15-90 фунтов на кв. пожары. Это сопло предназначено для использования с колпачками, на которые устанавливаются стандартные плоские веерные сопла.

Плоскоструйные форсунки «Равномерные»

«Ровные» форсунки с плоским веером обеспечивают равномерное покрытие по всей ширине факела распыления (Рисунок 18) .Их следует использовать для нанесения пестицидов по ряду, и они должны работать при давлении от 30 до 40 фунтов на квадратный дюйм. Эту насадку нельзя использовать для вещания. Ширина полосы зависит от высоты сопла над заданным значением и давления распыления, как показано в таблице .

Рис. 18. Схема слива «Равномерной» форсунки.

Форсунка с вентилятором

Распылительные форсунки создают широкоугольный, плоский рисунок распыления и используются для внесения гербицидов и смесей гербицидов и жидких удобрений.Расстояние между соплами для внесения гербицидов должно быть не более 60 дюймов. Эти форсунки наиболее эффективны для уменьшения сноса, когда они работают в диапазоне давления от 10 до 25 фунтов на квадратный дюйм. Ширина факела распыла струйных форсунок изменяется больше при изменении давления, чем это происходит с плоскими форсунками. Кроме того, распределение не такое равномерное, как у обычного плоского сопла. Наилучшее распределение достигается, когда сопло устанавливается на такой высоте и под углом, чтобы обеспечить перекрытие не менее 100% (двойное покрытие).Когда установлено 100-процентное перекрытие, изменение давления в форсунке
искажает картину распыления.

Новая форсунка под названием «turbo floodjet» от Spraying Systems Company обеспечивает более крупные капли и более однородный рисунок распыления, чем стандартный распылительный наконечник. Он разработан для уменьшения сноса и обеспечивает равномерное нанесение с перекрытием от 30 до 50 процентов вместо 100 процентов, требуемых стандартными форсунками. Насадка с турбонаддувом разработана для использования с гербицидами, внесенными в почву, и жидкими удобрениями и должна работать при давлении в диапазоне 10-20 фунтов на квадратный дюйм.

Форсунки

могут быть установлены таким образом, чтобы они распыляли прямо вниз, прямо назад или под любым углом между (Рисунок 19) . Исследования показывают, что наиболее однородный рисунок получается, когда струя направлена ​​прямо назад, но это дает наибольшую вероятность сноса мелких капель. Направление струи прямо вниз минимизирует возможность сноса, но дает наиболее неравномерный рисунок струи. Лучшее положение для компромисса – установить сопло под углом 45 градусов к обрабатываемой поверхности.Следует проявлять осторожность, чтобы оборудование для заделки не перекрывало и не мешало схеме выпуска спрея
.

Рисунок 19. Различные положения для установки форсунок.

Форсунки с полым конусом

Форсунки с полым конусом обычно используются для внесения инсектицидов или фунгицидов на полевые культуры, где важен полный охват поверхности листьев. Рисунок с полым конусом используется в тех случаях, когда требуется тонкий рисунок распыления для полного покрытия.Эти сопла обычно работают в диапазоне давления от 40 до 100 фунтов на квадратный дюйм или более в зависимости от используемого сопла и применяемого пестицида. Снос распыления у сопел с полым конусом выше, чем у других сопел, так как образуются мелкие капли.

Форсунка с полым конусом создает форму распыления, при которой больше жидкости концентрируется на внешнем крае формы (Рисунок 15) и меньше в центре. Любое сопло, создающее конусообразный узор, включая тип вихревой камеры, не обеспечит равномерного распределения для распыления, если оно направлено прямо вниз на поверхность распыления.Они должны располагаться под углом от 30 до 45 градусов от вертикали.

Форсунки с полым конусом, используемые в опрыскивателях высокого давления для нанесения фунгицидов, могут быть направлены прямо вниз, если они расположены на расстоянии 10–12 дюймов друг от друга. Это дает очень мелкие капли, которые достаточно подвижны, чтобы компенсировать неравномерность рисунка.

Форсунки

«Raindrop» от Delavan были разработаны для получения больших капель в форме полого конуса при давлении от 20 до 60 фунтов на квадратный дюйм. Они разработаны для уменьшения сноса брызг и рекомендуются для применения в радиовещании при наклоне на 45 градусов или более от вертикали.

Форсунки с полным конусом

Форсунка с полным конусом создает завихрение и встречное завихрение внутри сопла, что приводит к образованию формы полного конуса. Форсунки с полным конусом производят большие, равномерно распределенные капли и высокую скорость потока. Широкий конический наконечник сохраняет форму распыления в диапазоне давления и расхода. Это сопло с низким сносом, которое часто используется для внесения гербицидов, внесенных в почву.

Проблемы с регулировкой сопла

Для разбрызгивания необходимо правильно расположить и отрегулировать плоские форсунки на распылителе.Для хорошего покрытия распылителем необходимо учитывать угол выброса форсунки, расстояние форсунки от обрабатываемой поверхности и расстояние между форсунками на штанге. См. Таблица 4 для правильной регулировки форсунки. Рисунок 20 На показаны некоторые схемы распыления, которые могут возникать в результате обычных проблем с регулировкой штанги.

Рис. 20. Некоторые распространенные ошибки при регулировке форсунок и стрелы.

Другое оборудование для внесения пестицидов

Аппликаторы стеклоочистителей

В продаже имеется несколько типов аппликаторов стеклоочистителей.Один состоит из длинной горизонтальной трубки или трубы (диаметром от 3 до 4 дюймов), заполненной системным гербицидом (рис. 21) . Ряд коротких перекрывающихся веревок или смоченная прокладка на пробирке контактируют с гербицидом и насыщаются за счет впитывания. Другой блок – это роликовый аппликатор, который состоит из трубки диаметром от 8 до 12 дюймов, вращаемой гидравлическим двигателем. Трубка покрыта ковром, который постоянно смачивается. Эти агрегаты устанавливаются на передней или задней части трактора на трехточечной навеске с гидравлической регулировкой, поэтому ее можно установить на такой высоте, чтобы подушка наносила гербицид на сорняки, которые выше, чем культура, но не контактировала с культурой.Наилучшие результаты достигаются при двойном покрытии аппликаторами салфетки. Второй проход должен быть в направлении, противоположном первому, чтобы закрыть две стороны растения.

Рис. 21. Типичный аппликатор для тросового фитиля с изображением собранных компонентов.

Инжекторные распылители

Инжекторные опрыскиватели непрерывно дозируют концентрированный пестицид в систему опрыскивания по мере необходимости. Они содержат два или более резервуара с одним или двумя резервуарами для концентрированных пестицидов и резервуаром большего размера для носителя.Некоторые агрегаты сконструированы таким образом, что дозируемый объем пестицидов определяется путевой скоростью. Другие регулируются на основе постоянной скорости движения. Любое изменение скорости может привести к чрезмерному или недостаточному нанесению.

Преимущество инжекторных опрыскивателей заключается в том, что после завершения нанесения не остается никаких смешанных химикатов. Эти устройства также могут использоваться для борьбы с сорняками путем точечного опрыскивания вредных насекомых, с которыми можно встретиться. Это делается путем добавления к раствору для опрыскивания другого пестицида, который эффективно контролирует отдельные или участки вредителей, вместо того, чтобы обрабатывать всю территорию обоими пестицидами.

Одна из проблем с инжекторными опрыскивателями – это своевременное впрыскивание химиката в систему, чтобы он выпускался в нужное время. Время выполнения впрыска может варьироваться в зависимости от размера шлангов на распылителе, скорости движения, количества наносимой жидкости и точки впрыска химического вещества в систему. Для инъекционного оборудования требуется точное измерительное оборудование, которое поддерживается в хорошем состоянии. Помните, что измерять небольшое количество химического вещества на постоянной основе труднее, чем измерять одно большее количество и смешивать его в баке для опрыскивания.

Мониторы распыления

Мониторы распыления могут быть двух типов – мониторы форсунок и системные мониторы. Использование монитора форсунок немедленно предупредит оператора о проблеме с форсункой, так что можно будет внести исправления и избежать пропусков в поле.

Системные мониторы определяют рабочие условия всего опрыскивателя. Они чувствительны к изменениям скорости движения, давления и расхода. Эти значения, а также вводимые оператором данные, такие как ширина полосы и галлоны опрыскивателя в баке, передаются в компьютер, который вычисляет и отображает скорость движения, давление и норму внесения (Рисунок 22) .Монитор также может рассчитывать и отображать другую информацию – производительность поля в акрах в час, покрытые акры, остаток смеси в резервуаре и пройденное расстояние. Для правильной работы монитор должен иметь подходящие датчики, которые точно и регулярно калибруются.

Рисунок 22. Типичные мониторы управления опрыскивателем.

Некоторые мониторы также могут автоматически контролировать расход и давление, чтобы компенсировать изменения скорости или расхода.Автоматический регулятор расхода будет реагировать, если наблюдается изменение контролируемого расхода от желаемого расхода. Компенсация расхода обычно осуществляется путем изменения настройки давления в определенном диапазоне. Если по какой-либо причине, такой как чрезмерное изменение скорости или проблемы с системой опрыскивания, контроллер не может вернуть норму внесения к запрограммированной скорости потока, устройство сообщит оператору, что проблема существует. Мониторы полезны при точном нанесении химикатов и должны привести к лучшей борьбе с вредителями, более эффективному распределению и снижению стоимости химикатов.

Маркеры валков

Системы маркеров пены и красителя способствуют равномерному нанесению распылением, маркируя край разбрызгиваемой полосы (Рисунок 23) . Эта метка показывает оператору, куда следует двигаться на следующем проходе, чтобы уменьшить пропуски и перекрытия, и является огромным подспорьем при выращивании непропашных культур, таких как опрыскивание обработанных полей для внесения предвсходовых пестицидов. Знак может быть непрерывным или прерывистым. Обычно на каждые 25 футов сбрасывается 1-2 стакана пены. Пена или краситель требуют отдельного резервуара и смеси, насоса или компрессора, нагнетательной трубки на каждом конце стрелы и элемента управления для выбора правильного конца стрелы.Другой маркер – это тип бумаги. Этот аппарат периодически роняет лист бумаги по всей длине поля. Бумага может разлететься по полю, если ее нельзя закрепить, нанеся на бумагу немного влаги из распылителя.

Рисунок 23. Пенный маркер.

Глобальная система позиционирования

Технология теперь доступна для автоматического определения местоположения с помощью глобальной системы позиционирования (GPS) (Рисунок 24) . Эта система, разработанная У.Министерство обороны США использует сеть из 24 спутников, вращающихся вокруг Земли. У пользователя должен быть приемник для интерпретации сигналов, посылаемых со спутников, и для вычисления своего местоположения. Он работает независимо от того, является ли приемник стационарным или мобильным, в любой точке мира, 24 часа в сутки.

Рисунок 24. Система глобального позиционирования.

Сигналы от трех спутников необходимы для определения двумерного положения на Земле. Для определения высоты требуется сигнал с четвертого спутника.Система глобального позиционирования используется в настоящее время при работе с воздуха и на земле и имеет хороший потенциал для улучшения внесения пестицидов путем точечного опрыскивания пятен сорняков с помощью системы впрыска химикатов или обеспечения лучшего расстояния между валками.

Системы наведения оборудования

Система автоматического рулевого управления со световой балкой помогает поддерживать точную ширину от валка до валка. Системы навигации идентифицируют воображаемую стартовую линию, кривую или окружность A-B для параллельного укладки валков, используя координаты GPS и модуль управления.Модуль учитывает ширину валка агрегата, а затем использует GPS для направления машин по параллельным, изогнутым или круглым, равномерно разнесенным валкам. Системы наведения включают дисплейный модуль, который использует звуковые сигналы или свет в качестве указателей поворота для оператора. Система наведения позволяет оператору следить за световой полосой, чтобы поддерживать желаемое расстояние от предыдущего ряда.

Для систем навигации

требуются два основных компонента: световая полоса или экран, который по сути представляет собой электронный дисплей, показывающий отклонение машины от предполагаемого положения (Рисунок 25) , и приемник GPS для определения местоположения.Этот приемник должен быть разработан для этой цели и должен работать на более высокой частоте (расчет местоположения обычно выполняется от 5 до 10 раз в секунду), чем приемник GPS, предназначенный для записи местоположения для монитора урожайности. Приемники GPS, предназначенные для навигации, можно использовать вместе с монитором урожайности или другим оборудованием для определения местоположения.

Рисунок 25. Система наведения.

Автоматизированные системы рулевого управления интегрируют возможности GPS-навигации в систему рулевого управления автомобиля.Автоматическое рулевое управление освобождает оператора от управления оборудованием, за исключением углов и краев поля.

Экранированная штанга опрыскивателя

Экранированные штанги опрыскивателя или полностью закрытые штанги демонстрируют возможность использования на разбрасывающих опрыскивателях для увеличения осаждения опрыскивателя в целевом валке. Исследования показывают, что экранированные штанги и отдельные конусы защиты форсунок могут уменьшить снос распыления на 50 процентов и более. Исследования показывают, что снос распылителя с экранированным опрыскивателем, работающим при скорости ветра 20 миль в час, равен или меньше, чем у неэкранированной штанги, работающей при скорости ветра 10 миль в час.Щиты НЕ устраняют весь дрейф; они только уменьшают количество. Помните об уязвимых культурах с подветренной стороны и соблюдайте осторожность при опрыскивании. Обязательно проконсультируйтесь с государственным департаментом сельского хозяйства или агентством, ответственным за соблюдение государственных законов о пестицидах, чтобы убедиться, что они позволяют опрыскивание при сильном ветре, когда используются экраны.

Основным недостатком экранированных штанг является увеличенный вес, который приходится переносить на штанги, и дополнительная очистка экрана, когда опрыскивателем собираются вносить различные пестициды.Стрела с колесной опорой почти необходима для того, чтобы выдерживать дополнительный вес и поддерживать стабильную высоту стрелы. Очистку опрыскивателя следует производить в поле или на площадке для смешивания / загрузки опрыскивателя, которая собирает промывочную воду, чтобы промывочный раствор можно было удерживать и использовать в качестве подпиточной воды для будущих работ по опрыскиванию.

Распылители с пневмоприводом

Опрыскиватели с пневмоприводом впрыскивают пестициды в высокоскоростной воздушный поток, который помогает переносить химикаты в культуру, улучшая проникновение в культуру растений или сорняков.Исследования показывают, что аэрозольные опрыскиватели способны переносить капли опрыскивателя глубже в растительный покров и способствовать отложению большего количества пестицидов на нижней стороне сельскохозяйственных культур или листьев сорняков, чем другие опрыскиватели, и могут улучшить борьбу с вредителями.

Исследования

NDSU показывают, что при полном покрове картофельного растения пневматические опрыскиватели улучшают покрытие листьев примерно на 5% по сравнению с обычными опрыскивателями при той же норме внесения.

Опрыскиватели

с пневмоприводом могут иметь высокую опасность сноса в начале вегетационного периода, когда растительный покров небольшой.Рекомендуется уменьшить скорость воздуха в пологах небольших или молодых растений из-за образования мелких капель. Это происходит из-за рассеивания воздушного потока при ударе о землю и возникающего в результате отскока воздуха вверх, который может уносить маленькие капли брызг вверх и уноситься прочь. Опасность сноса опрыскивания значительно ниже при использовании пестицидов для внесения пестицидов на полные растения позже в вегетационный период.

Распылитель

Унос пестицидов от цели – важная и дорогостоящая проблема, с которой сталкиваются специалисты по нанесению.В дополнение к потенциальному ущербу нецелевым областям дрейф имеет тенденцию снижать эффективность химикатов и стоит денег. Дрейф может происходить двумя разными способами.

ДРЕЙФ ПАРА происходит, когда химическое вещество испаряется после нанесения на целевую область. Затем пары переносятся в другое место, где может произойти повреждение. Количество происходящего испарения во многом зависит от температуры воздуха и состава используемого пестицида. Некоторые продукты могут быстро испаряться при температуре до 40 градусов по Фаренгейту.«Низколетучие» сложные эфиры 2, 4-D или MCPA могут испаряться при 75-90 F. Составы аминов 2, 4-D или MCPA по существу «нелетучие». Опасность уноса паров может быть существенно снижена путем выбора правильной рецептуры гербицида.

ФИЗИЧЕСКОЕ СМЕЩЕНИЕ КАПЕЛЬ – это фактическое перемещение частиц распыляемой жидкости от целевой области. На физический дрейф влияет множество факторов, но одним из наиболее важных является размер капли. Маленькие капельки медленно падают в воздух, поэтому они уносятся за счет движения воздуха.

Жидкость, распыляемая через сопло, разделяется на капли сферической или почти сферической формы. Общепризнанным показателем размера этих капель являются микроны.

Капли размером менее 100 микрон обычно считаются очень «сносящимися». Капли такого размера настолько малы, что их трудно увидеть, если только они не находятся в очень высоких концентрациях, например, в «туманное» утро.

Все имеющиеся в настоящее время форсунки для распыления капель производят капли различного размера.Некоторые производят более широкий ассортимент, чем другие. Таблица 6 показывает типичное распределение размеров капель для плоской форсунки при разбрызгивании воды при двух различных давлениях. Большинство капель, образующихся из гидравлического распылителя, имеют небольшой размер. Таблица 6 показывает, что более половины всех капель имели диаметр менее 63 микрон при давлении 20 или 40 фунтов на квадратный дюйм. Однако небольшая часть общего объема содержится в каплях диаметром менее 63 микрон. Большая часть объема содержится в более крупных каплях, особенно размером от 63 до 210 микрон.Эти принципы справедливы для обоих давлений, хотя увеличение давления привело к тому, что большая часть спрея будет содержаться в мелких каплях. Даже несмотря на то, что объем мелких капель невелик, подветренные культуры могут серьезно пострадать, если посевы подвержены травмам от пестицидов.

Количество капель, выпадающих на квадратный дюйм поверхности из обычного распылителя, обычно намного больше минимума, необходимого для борьбы с конкретным вредителем. В некоторых ситуациях, особенно при использовании фунгицидов или инсектицидов, может потребоваться высокая плотность капель распыления. Таблица 7 показывает, что покрытие или плотность капель на поверхности теоретически может быть достигнута с помощью однородных капель различного размера при нанесении из расчета 1 галлон на акр. Уменьшение размера капли с 200 до 20 микрон увеличит покрытие в 10 раз. Результаты многих исследований показывают, что плотность опрыскивания, необходимая для эффективного контроля над сорняками, значительно варьируется в зависимости от вида растений, размера и состояния растений, а также от типа гербицида, используемых добавок и носителя. Таблица 7 показывает, что плотность капель уменьшается для капель диаметром более 200 микрон при малых дозах нанесения.Хотя отличное покрытие может быть достигнуто с помощью очень маленьких капель, уменьшенное осаждение и увеличенный потенциал сноса ограничивают минимальный размер капли, которая обеспечит эффективную борьбу с вредителями.

Потенциал дрейфа капель разного размера также показан в Таблице 7 . Можно видеть, что неиспаряющаяся капля размером 100 микрон будет перемещаться на 48 футов по горизонтали при скорости ветра 3 мили в час при падении на 10 футов. Капли размером менее 50 микрон почти не видны в воздухе и могут оставаться взвешенными в течение длительного времени.Целью применения пестицидов является достижение равномерного распределения распыления при сохранении всех капель распыления в пределах предполагаемой области распыления.

Распыляемая жидкость может иметь скорость 60 футов в секунду или более при выходе из сопла. Скорость снижается из-за сопротивления воздуха и разбивания распыляемого материала на мелкие капли. Таблица 8 показывает расстояние, на котором капли будут замедляться до состояния свободного падения, и продолжительность их жизни до того, как они исчезнут из-за испарения.Например, капли воды диаметром менее 20 микрон будут испаряться менее чем за одну секунду при падении менее одного дюйма. Капли размером более 100 микрон сопротивляются испарению намного сильнее, чем капли меньшего размера, из-за большего отношения объема к площади поверхности.

При использовании водовозов капли распыляемой жидкости будут уменьшаться в размере из-за испарения во время их падения. На рис. 26 показаны траектории испаряющихся капель брызг, падающих в стабильный воздух при температуре 77 F и относительной влажности 55% при боковом ветре со скоростью 1 миля в час.Капли размером менее 100 микрон приобретают горизонтальную траекторию за очень короткое время, и вода в капле исчезает. Активный ингредиент в этих каплях превращается в очень маленькие аэрозоли, большая часть которых не достигнет земли, пока их не унесет падающий дождь. Из Рисунок 26 можно сделать вывод о быстром уменьшении потенциала дрейфа капель по мере их увеличения примерно до 150 или 200 микрон. Падение размера при уменьшении потенциала дрейфа зависит от скорости ветра, но обычно находится в диапазоне от 150 до 200 микрон для скорости ветра от 1 до 7 миль в час.При типичном наземном применении гербицидов с водоносителями капли размером 50 микрон или меньше полностью испаряются до остаточной сердцевины пестицида, прежде чем достигнут цели. Капли размером более 150 микрон не будут значительно уменьшаться в размере перед осаждением на мишени. На испарение капель размером от 50 до 150 микрон существенно влияют температура, влажность и другие климатические факторы.

Рисунок 26. Скорость испарения капель воды.

Дрифт не всегда вреден. Это зависит от используемого пестицида, целевого вредителя и нецелевых организмов или объектов, которые находятся с подветренной стороны или примыкают к вашей целевой области. Имейте в виду, что при значительном дрейфе по ветру вы теряете пестициды. Снос большинства гербицидов должен быть сведен к минимуму, и должны использоваться все методы уменьшения сноса, если химические вещества позволяют. При использовании инсектицида для борьбы с комарами может быть желательным «дрейф».В этой ситуации для эффективной работы требуется небольшая капля, которая может перемещаться по небольшим участкам.

Несколько факторов влияют на размер капель и потенциальный дрейф. В их числе:

1. Направление ветра
2. Скорость ветра
3. Стабильность воздуха
4. Тип форсунки
5. Расход
6. Давление распыления
7. Угол распыления форсунки
8. Высота штанги
9. Относительная влажность и температура
10 . Распылительные загустители
11. Экранированные штанги

.

Направление ветра: Пестициды не следует применять, когда ветер дует на прилегающую восприимчивую культуру или культуру на уязвимой стадии роста.Подождите, пока ветер не подует с подветренной стороны уязвимых культур, растений или чувствительных участков.

Скорость ветра: Количество гербицида, потерянного из целевой области, и расстояние, на которое он перемещается, увеличиваются с увеличением скорости ветра. Однако серьезные травмы в результате дрейфа могут возникнуть при малых скоростях ветра, особенно в условиях температурной инверсии.

Стабильность воздуха: Движение воздуха в значительной степени определяет распределение капель спрея. Ветер обычно считается важным фактором, но вертикальное движение воздуха часто не учитывается.Температурная инверсия – это состояние, при котором прохладный воздух у поверхности почвы задерживается слоем теплого воздуха. Высокий потенциал инверсии возникает, когда приземный воздух на 2-5 F холоднее, чем воздух над ним. В условиях инверсии даже при ветре происходит небольшое вертикальное перемешивание воздуха. Снос распыления может быть значительным в условиях инверсии, поскольку маленькие капли распыления могут медленно падать или могут оставаться взвешенными из-за плотного прохладного воздуха и перемещаться с легким ветерком в прилегающую зону.

Смещение распыления может происходить даже в относительно спокойных условиях при стабильном воздухе или в условиях инверсии, особенно с небольшими каплями распыления.Некоторые из наиболее серьезных проблем сноса возникают из-за низкой скорости ветра, условий инверсии и мелких капель брызг. Избегайте распыления в условиях переворачивания. Потенциал сноса распыления можно уменьшить, увеличив размер капель, используя форсунки с большими отверстиями и / или более низкое давление распыления с форсунками с расширенным диапазоном.

Другая причина сноса распылителей – это уменьшение «пропуска» более 3,2 F на каждые 1000 футов высоты. В нормальных условиях «перерыва» холодный воздух мягко опускается, вытесняя нижний теплый воздух и вызывая вертикальное перемешивание воздуха.Это может привести к поднятию и рассеянию мелких капель. Когда «провал» сильнее, больше брызг будет подниматься вверх, что приведет к увеличению вероятности сноса брызг. Исследования показали, что температурная инверсия вызывает больший снос брызг, чем условия «пропуска» при заданной скорости ветра.

Избегайте применения гербицидов рядом с восприимчивыми культурами в условиях температурной инверсии. Инверсии часто можно определить по дыму от костра. Дым, движущийся горизонтально близко к земле, указывает на температурную инверсию.

Тип форсунки: Размеры капель, получаемых с помощью различных типов форсунок при разном давлении распыления, показаны в Таблице 11 . Плоскоструйные и заливные форсунки производят капли одинакового размера. Сопло с полным конусом производит капли большего размера, чем плоский вентилятор, а сопло с полым конусом производит капли меньшего размера, чем плоский вентилятор.

Скорость потока: Скорость потока через сопло сильно влияет на размер капель. Это показано Таблица 12 . Форсунки с маленькими отверстиями производят маленькие капли, а большие форсунки – более крупные.Увеличение размера сопла до следующего размера – отличный способ уменьшить количество сносимой мелочи.

Давление распыления: Давление распыления влияет на образование капель распыляемого раствора. Раствор для опрыскивания выходит из сопла тонким слоем, а на краю листа образуются капли. Более высокое давление приводит к тому, что лист становится тоньше, и этот лист распадается на более мелкие капли. Форсунки большого размера с более высокой скоростью подачи производят капли большего размера, чем форсунки меньшего размера.Мелкие капли уносятся дальше по ветру, чем более крупные капли, образующиеся при более низком давлении. Таблица 9 показывает процент химического вещества, выпавшего с подветренной стороны на различных расстояниях. Он также показывает расстояние по ветру, на котором скорость химического осаждения снижается до 1 процента от нормы внесения.

Угол распыления форсунки: Угол распыления – это внутренний угол, образованный между внешними краями рисунка распыления из одного сопла. Таблица 10 показывает, что форсунки с более широким углом распыления будут производить более тонкий слой распыляемого раствора и меньшие капли распыления, чем форсунки с той же скоростью подачи, но с более узким углом распыления.Однако широкоугольные сопла размещаются ближе к цели, чем узкие, и преимущества более низкого расположения сопла перевешивают недостаток капель немного меньшего размера.

Срединный объемный диаметр (VMD) – это термин, используемый для описания размера капли, производимой из сопла. VMD определяется как диаметр, при котором половина объема распыляемой жидкости находится в каплях большего диаметра, а другая половина объема – в каплях меньшего размера.

Высота штанги: Использование штанги опрыскивателя как можно ближе к обрабатываемой поверхности – хороший способ уменьшить снос.Чем ближе штанга к земле, тем шире должен быть угол распыления для равномерного покрытия. Убедитесь, что насадки подходят для области применения. Отскакивающие штанги вызывают неравномерное покрытие и снос. Штанги с колесной опорой – хороший способ стабилизировать высоту штанги, что снизит опасность заноса и улучшит качество опрыскивания.

Эффект уменьшения сноса, когда форсунки установлены как можно ближе к земле, показан в , Таблица 9 . Химикаты, выбрасываемые из плоской форсунки, показывают значительное уменьшение отложений с подветренной стороны как на расстоянии 4, так и 8 футов для сопел, расположенных ниже.Распылительные форсунки производят широкое распыление и могут работать при низком давлении. Широкое расположение позволяет устанавливать их близко к земле, сводя к минимуму снос.

Относительная влажность и температура: Низкая относительная влажность и / или высокая температура вызывают более быстрое испарение капель распылителя между распылителем и целью. Испарение уменьшает размер капель, что, в свою очередь, увеличивает потенциальный снос капель спрея. Распыление при более низких температурах и более высокой влажности поможет уменьшить снос.

Загустители для опрыскивания: Некоторые адъюванты для опрыскивания действуют как загустители при добавлении в бак для опрыскивания. Эти материалы увеличивают количество более крупных капель и уменьшают количество мелких капель. Они, как правило, придают спреям на водной основе несколько «тягучий» оттенок. Загустители уменьшают снос, но не делают распылитель устойчивым к сносу. Уменьшение отложений с подветренной стороны при добавлении загустителя в бак для опрыскивания показано в таблице .

Капли, образующиеся из спрея на масляной основе, имеют тенденцию уноситься дальше, чем капли от водовода, потому что капли масла обычно меньше, легче и остаются в воздухе в течение более длительного периода.Масла образуют капли меньшего размера, чем вода, когда распыление производится с помощью того же гидравлического сопла и того же давления распыления. Спреи на масляной основе не испаряются, как только спреи на водной основе, поэтому капли остаются активными в течение более длительного времени.

Экранированные штанги: Распылительные щитки стали чрезвычайно популярными для опрыскивания мелкого зерна, поскольку исследования показывают, что снос уменьшается на 50 процентов и более. Ветер во время сезона опрыскивания часто является ограничивающим фактором для своевременного опрыскивания в Северной Дакоте.Щиты помогают продлить время опрыскивания при умеренном ветре. Опрыскивание необходимо прекратить при слишком сильном ветре или при подветренном ветре уязвимых культур. Щиты не останавливают весь дрейф, а только уменьшают его. При использовании экранов могут возникнуть серьезные проблемы сноса, если аппликаторы будут небрежны, не обращая внимания на подветренные культуры.

Контроль дрейфа

Поскольку все форсунки производят капли различного размера, мелкие, склонные к сносу частицы не могут быть полностью устранены, но снос можно уменьшить и удерживать в разумных пределах.

1. Используйте достаточное количество носителя. Это означает более крупные сопла, которые, в свою очередь, обычно производят более крупные капли. Хотя это увеличит количество повторных заправок, добавленный носитель улучшает покрытие и обычно увеличивает эффективность химикатов. Более мелкие капли будут образовываться при меньшем объеме распыления, что приведет к большей опасности сноса.

2. Избегайте использования высокого давления. При более высоком давлении образуются мелкие капли; 40 PSI следует считать максимальным значением для обычного распыления.

3. По возможности используйте сопло, уменьшающее снос. Они производят более крупные капли и работают при более низком давлении, чем эквивалентное плоское сопло.

4. Многие присадки для распыления, снижающие снос, которые можно использовать с обычным распылительным оборудованием, доступны сегодня.

5. Используйте широкоугольные форсунки и держите штангу устойчиво и как можно ближе к урожаю.

6. Выполняйте опрыскивание при скорости ветра менее 10 миль в час и при ветре вдали от чувствительных культур.

7.Не распыляйте при полностью спокойном воздухе или при перевороте.

8. Используйте экранированную штангу опрыскивателя, когда ветровые условия превышают основные условия внесения пестицидов.

Калибровка химических аппликаторов

Количество применяемого химического раствора на акр зависит от скорости движения, давления в системе, размера сопла и расстояния между соплами на стреле. Изменение любого из них приведет к изменению нормы внесения.

Испытания более 100 сельскохозяйственных опрыскивателей в Северной Дакоте выявили ряд проблем, которые могут существенно повлиять на точность внесения.К ним относятся:

Чтобы настроить опрыскиватель на любую заданную норму на акр, необходимо правильно отрегулировать скорость движения и давление. Размер сопла должен быть изменен для значительного изменения нормы внесения, и все сопла должны выпускать равное количество распыляемой жидкости. Если какая-либо из этих настроек неверна, будут получены плохие результаты.

Первое, что нужно сделать при калибровке опрыскивателя, – это выбрать тип и размер сопла для вашей работы по опрыскиванию. Вы можете принять решение о типе форсунки на основе условий распыления и руководящих принципов, как рекомендовано в таблицах 2 и 3 .

После того, как вы выбрали тип сопла, следующим шагом будет расчет размера сопла.

Выбор форсунки не должен основываться на «галлонах на акр», как заявляют некоторые производители. Сопло, обозначенное как 10-галлонное сопло, будет подавать это количество на акр только при одном условии, например, когда расстояние между соплами на штанге составляет 20 дюймов, опрыскиватель движется со скоростью 4 мили в час и давление в штанге составляет 30 фунтов на квадратный дюйм. Если расстояние, скорость или давление отличаются от этих установленных значений, форсунка не будет подавать указанные галлоны на акр.

Выбор размера сопла должен основываться на расчете галлонов в минуту, а не на расчете галлонов на акр. Расчет на основе галлонов в минуту позволяет оператору принимать решения об опрыскивании в зависимости от культуры и условий поля.

Метод калибровки № 1

В качестве примера предположим, что вы собираетесь использовать плоские форсунки с углом наклона 80 градусов. Вы хотите использовать 20 галлонов на акр, форсунки расположены на расстоянии 20 дюймов друг от друга, а скорость, которую вы предпочитаете, составляет 6 миль в час.Сопло какого размера в галлонах в минуту требуется для этого распыления?

Спецификации из каталогов производителей для 80-градусных плоских форсунок (Таблица 13) показывают, что XR8004 и LFR 4 будут обеспечивать 0,4 галлона в минуту при 40 фунтах на квадратный дюйм. Другой выбор – XR 8005 или LFR 5 при 25 фунтах на квадратный дюйм или XR 8006 или LFR 6 при 18 фунтах на квадратный дюйм. При более низком давлении образуются более крупные капли с меньшим потенциалом сноса, чем при распылении под давлением 40 фунтов на квадратный дюйм. Однако большее падение приведет к уменьшению покрытия по сравнению с меньшим падением, произведенным при 40 фунтах на квадратный дюйм.Обязательно сверьтесь с этикеткой пестицида, чтобы узнать о рабочем давлении.

После того, как вы определили наконечник подходящего размера, наденьте эти форсунки на распылитель и запустите его с водой. Проверьте герметичность, другие проблемы с распылителем, равномерность формы распыления и калибровку.

Уравнение 2

Если набор форсунок доступен для использования, предыдущая формула после изменения значений может использоваться для определения нормы внесения опрыскивателем в галлонах на акр.

Калибровка опрыскивателя чрезвычайно важна.Он определяет, сколько пестицидов вы равномерно наносите на площадь. Распылители необходимо калибровать, даже если они новые или заменены форсунки. Их также следует откалибровать через несколько часов использования, поскольку износ новых форсунок и скорость потока будут быстро увеличиваться. Калибровку следует выполнять путем измерения количества пестицида, нанесенного на часть акра, и расчета того, какое количество пестицида будет внесено на весь акр. Обязательно проверьте скорость потока всех форсунок на распылителе, чтобы все они применяли одинаковое количество.Каждая форсунка распыляет отдельную полосу через поле. Если одна форсунка наносит больше или меньше, могут появиться полосы по полю.

Управляйте опрыскивателем, используя ту же настройку дроссельной заслонки, которую вы используете при опрыскивании и при проверке скорости. Это обеспечит подачу насоса того же объема, что и при фактическом распылении.

Собрать распыляемый материал из каждой форсунки в мерную емкость на одну минуту. Тщательно измерьте расход из каждого сопла.Обычно легче производить измерения в унциях в минуту, чем в галлонах в минуту. Скорость потока в галлонах в минуту, указанная в каталогах форсунок, можно преобразовать в унции в минуту, умножив количество галлонов на 128. Во многих каталогах форсунок также указывается скорость потока в унциях в минуту, а также в галлонах в минуту.

Уравнение 3

Сравните это рассчитанное количество унций с измеренными значениями. Любые форсунки, выходящие за пределы + 5% от средней производительности, должны быть очищены, если они забиты, или заменены в случае износа.Если какая-либо форсунка выходит более чем на 10 процентов больше, чем указано в спецификации производителя при данном давлении, она изнашивается и подлежит замене.

Если средняя производительность не соответствует требованиям, отрегулируйте производительность, увеличивая или уменьшая давление. Простой и быстрый метод проверки расхода через форсунку – использование калибратора расхода через форсунку, как показано на , рис. 27, . Это быстрее, чем сбор потока в мерной емкости, и очень точно.

Рисунок 27.Калибратор расхода сопла.

Проверка скорости

Для хорошей работы опрыскивателя необходима точная скорость. Спидометры трактора или пикапа могут давать неточные показания, поэтому их необходимо проверить. Используйте рулетку, чтобы разбить измеренное расстояние. Затем запишите время, необходимое для прохождения загруженного опрыскивателя на это расстояние (Рисунок 28) при настройке дроссельной заслонки и передаче, которую вы будете использовать для опрыскивания. Сделайте это, когда опрыскиватель хотя бы наполовину заполнен водой и находится на той же поверхности, на которую будет производиться опрыскивание – калибровка на рыхлой почве или твердой дороге не даст точной скорости при работе на полях.

Рисунок 28. Проверка скорости опрыскивателя.

Уравнение 4

Проверить скорость на расстоянии 300 футов легко и точно. Таблица 14 представляет собой диаграмму, в которой время в секундах, необходимое для преодоления расстояния 300 футов, преобразуется в мили в час.

Метод калибровки № 2

Следующий метод калибровки избавляет от догадок и позволяет быстро и точно определить, как нужно настроить опрыскиватель, чтобы обеспечить требуемый средний балл.Этот метод позволяет настроить и откалибровать опрыскиватель, управляя опрыскивателем на небольшом расстоянии в поле. Это гарантирует, что сопла будут обеспечивать необходимый равномерный выход.

Этот метод включает распыление на определенное расстояние, начиная с полного резервуара воды. Путешествие на большее расстояние даст более точные результаты.

Эту формулу можно использовать для калибровки на любом расстоянии. Этот метод хорошо работает, когда у вас есть поле известной длины, например ½ мили (2640 футов) или 1 миля (5280 футов).Также можно использовать другие расстояния измеренной длины.

1. Начните с полным баком воды.
2. Распылите на известное расстояние в поле, на котором вы будете распылять.
3. ИЗМЕРИТЕ количество галлонов воды, необходимое для наполнения бака.
4. Используйте следующую формулу для вычисления количества галлонов на акр (ГПа).

Хороший способ дважды проверить калибровку – определить, сколько пестицидов было внесено на определенную площадь.

Например, если было опрыскано 100 акров и использовано 600 галлонов химической смеси, это была норма внесения 6 галлонов на акр.Эта система очень проста, и ее преимущество заключается в измерении количества распыляемой жидкости, фактически нанесенной на область. Имейте в виду, что это не единственный метод калибровки.

Метод калибровки № 3

УНЦ = МЕТОД В ГАЛЛОНАХ

Этот метод калибровки очень прост, и его можно использовать для быстрой проверки и точной настройки опрыскивателя, но для этого требуется проехать определенное расстояние в поле. Перед калибровкой опрыскивателя каким-либо методом необходимо проверить равномерность подачи форсунки.Исправьте все форсунки, расход которых различается более чем на + 5%. Также проверьте надежность манометра и правильность настройки давления. Затем действуйте следующим образом:

1. Для широковещательной передачи определите расстояние в дюймах между соплами. Для приложений с полосами определите ширину полосы в дюймах. Для направленного применения соберите сливы из всех форсунок в каждом ряду.

2. Из Таблицы 15 определите расстояние, необходимое для равного 1/128 акра.Отметьте это расстояние на поле, которое вы будете опрыскивать.

3. Измерьте время (в секундах), необходимое для преодоления необходимого расстояния на нормальной рабочей скорости со всем присоединенным оборудованием и заполненным на ½ баком опрыскивателя.

4. Соберите выбросы из всех форсунок, направляющих распылитель в один ряд, в течение времени, измеренного на этапе 3. Все химические вещества, добавленные вместе в унциях, являются галлонами на акр. Если выполняется рассредоточенное опрыскивание, количество унций, собранных из одной форсунки, составляет галлонов на акр.

Ленточное и направленное распыление

Применение ленты – это нанесение химического вещества в параллельных полосах, оставляя область между полосами свободной от химикатов.

Направленное опрыскивание – это нанесение химиката на определенную область, такую ​​как полог растения, ряд или у основания растений.

Часто используются несколько конфигураций насадок, когда возникает проблема с проникновением листвы или высотой пропашной культуры. На рис. 29 показано несколько часто используемых конфигураций сопел.

Рисунок 29. Размещение форсунок для ленточного и направленного распыления.

Конфигурации с двумя и тремя соплами обеспечивают лучшее покрытие нижней створки, чем с одним соплом.Это может быть важно для многих пестицидов. Капельные форсунки полезны для внесения гербицидов на более высокие пропашные культуры, чтобы снизить риск повреждения урожая. Для пропашных культур меньшего размера достаточно использовать «ленточную» конфигурацию насадки с использованием насадки с равномерным рисунком, такой как равномерно распределяемый поток.

Калибровка приложения ленты

Для калибровки ленточных аппликаторов можно использовать те же методы калибровки, что и для широковещательного распыления. Единственная разница – это размер покрываемой площади.Основная идея, о которой следует помнить, – это то, что подразумевается под акром. Общая площадь – это вся площадь поля. Это будет включать полоску с распылителем и область между полосами. Обработанный акр относится только к обработанной площади полосы. Спрей, который будет выпущен при скорости вещания, сконцентрирован в узкой полосе на основе отношения расстояния между рядами к ширине полосы (см. Следующий пример). При ленточном опрыскивании расстояние между рядами и расстояние между форсунками одинаковы.

Если не указано иное, нормы внесения химикатов даются на основе рассылки.Для полосовых применений скорость на обработанную площадь такая же, как и на широковещательную скорость, но общее количество пестицидов, используемых на поле, меньше, потому что обрабатывается только часть поля.

Таблицы распыления, предоставляемые производителями для ленточных форсунок, обычно указываются как применяющие химикаты на основе рассылки. Наносимое количество будет увеличиваться, если направить его в узкую полосу.

Калибровка диапазона

Пример: В таблицах производителей форсунок галлоны на акр означают объем, нанесенный на обработанную площадь (обработанный акр).В зависимости от расстояния между рядами и ширины полосы эта область составляет некоторую долю от общего поля. На следующем рисунке показан больший объем, сбрасываемый с обработанного акра при определении скорости передачи:

Таблица 16 можно использовать для определения эффекта концентрации при направлении распыления от скорости передачи к диапазону внесения. Умножьте средний балл, полученный на основе широковещательной рассылки, на коэффициент , таблица 16, .

При внесении 15 ГПа в ряду (обработанный акр) СМЕШИВАНИЕ ХИМИЧЕСКОГО ВЕЩЕСТВА В БАК ДЛЯ ОПРЫСКИВАНИЯ НА ОСНОВЕ ДАННОЙ НОРМЫ .Не смешивайте его с нормой 5 ГПа (общая площадь), иначе вы будете вносить химикат в ряд с трехкратной дозой. Если вы не хотите поливать рядок водой с плотностью 15 ГПа, потребуется сопло меньшего размера. См. Таблицы в каталоге производителей форсунок.

Калибровка ручного распылителя

Ручные распылители обычно используются для нанесения химикатов на небольшие площади. Ручные опрыскиватели можно откалибровать следующим образом: определить площадь в квадратных футах, измерить мощность ручного пистолета в течение одной минуты и рассчитать, насколько быстро должна быть покрыта измеренная площадь.Затем смешайте достаточное количество химиката, чтобы покрыть область, и нанесите все химическое вещество как можно более равномерно.

Пример: Вы измеряете площадь 21 на 21 фут. Это примерно 1/100 акра. Ваш пистолет выпускает ½ галлона за одну минуту, и химикат следует наносить из расчета 25 галлонов на акр. В данном случае: 1/100 акра = 0,01 акра.

Сколько химикатов в бак

Чтобы определить количество пестицида, которое нужно добавить в бак для опрыскивания, вам необходимо знать рекомендуемую норму пестицида, емкость бака для опрыскивания и откалиброванную производительность опрыскивателя.

Рекомендуемая норма внесения обычно указывается в фунтах на акр для смачиваемых порошков и в пинтах, квартах или галлонах на акр для жидкостей. Рекомендация также может быть выражена в фунтах активного ингредиента (фунты AI) на акр, а не в общем количестве продукта на акр. Активный ингредиент должен быть преобразован в фактический продукт.

Убедитесь, что на вашем баке для опрыскивания есть точная маркировка сбоку, чтобы вы могли определить количество раствора, оставшегося в баке. Это необходимо, чтобы вы не добавляли больше или меньше химикатов, чем необходимо.Убедитесь, что опрыскиватель стоит на ровной поверхности, чтобы можно было получить точные показания.

Большинство пестицидов продаются в виде составов, в которых активный ингредиент (AI) объединен с носителем из воды, масла или инертного материала. После того, как вы выбрали химическое вещество и рецептуру, вы должны определить количество смеси для спрея, необходимое для нанесения. Это будет зависеть от размера резервуара, объема распыления на акр, площади покрытия и требуемой нормы внесения, указанной на этикетке продукта.

Пример: Рекомендуемая жидкость требует 0,5 фунта активного ингредиента (AI) на акр.
Пестицид содержит 4 фунта (AI) на галлон состава. Используемый опрыскиватель имеет бак на 500 галлонов и откалиброван на 8 галлонов на акр. Сколько продукта нужно добавить в бак для опрыскивателя?

Пример: Рекомендация по сухому продукту требует 2 фунта активного ингредиента (AI) на акр. Продукт является сыпучим на 80% в сухом виде.Опрыскиватель откалиброван на 9 ГПа, а бак вмещает 540 галлонов. Сколько продукта нужно добавить в бак для опрыскивателя?

Адъюванты (распределители – наклейка, поверхностно-активное вещество и т. Д.)

Производитель может рекомендовать добавление небольшого количества адъюванта в дополнение к обычному химическому веществу. Эта рекомендация часто выражается в виде «процентной концентрации».

Если рекомендуется адъювант с концентрацией 0,25% по объему, сколько следует добавить в резервуар на 500 галлонов?

Химическое смешивание и утилизация излишков пестицидов

Со всеми сельскохозяйственными химикатами следует обращаться осторожно, чтобы избежать случайного разлива и загрязнения.Поскольку при работе с пестицидами почти неизбежны незначительные проливы и стекание промывочной воды из опрыскивателя, целесообразно загружать и очищать опрыскиватель на подушке для смешивания. Подушечка будет содержать разливы и ополаскиватель, что позволит перекачивать ее в сборный резервуар для последующего использования в качестве подпиточной воды для опрыскивания или для надлежащей утилизации.

Подушка может быть изготовлена ​​из герметичного бетона или из соответствующей ткани, если требуется портативность. В справочнике «Проектирование сооружений для локализации пестицидов и удобрений» MWPS-37 от Службы планирования Среднего Запада содержится много идей и предложений по строительству этих сооружений.Эту книгу можно получить в местном представительстве округа или в отделе сельскохозяйственной инженерии при Государственном университете Северной Дакоты.

Лучше всего использовать химические вещества в соответствии с указаниями на этикетке. Чтобы свести к минимуму проблемы с утилизацией, покупайте и смешивайте только необходимое количество химикатов. Когда необходимо утилизировать небольшое количество пестицидов, примените их к той же культуре в другом месте или к другой культуре и вредителю, для которых помечен пестицид. Внимательно проверьте этикетку, чтобы убедиться, что химическое вещество зарегистрировано для этого альтернативного применения.

Уборочное оборудование

Практика, которая получает все большее распространение, заключается в том, чтобы носить на опрыскивателе дополнительный бак с чистой водой, который можно использовать для мытья и ополаскивания опрыскивателя в поле. Это оставляет разбавленный распыляемый материал в поле и позволяет распылителю вернуться к подушке «чистым», тем самым устраняя накопление химической промывочной воды, которую необходимо будет утилизировать позже. Предлагаемое водопроводное устройство, показывающее расположение резервуаров для воды и клапанов, показано на Рис. 30 .Бак для воды и промывочные форсунки могут быть добавлены к большинству опрыскивателей.

Рисунок 30. Система промывки поля опрыскивателя.

Трижды промойте внутреннюю часть распылителя, используя от 5 до 10 галлонов чистой воды для каждого полоскания. Пропустите ополаскиватель через опрыскиватель и распылите его по полю на одобренной культуре. Повторите процедуру полоскания еще два раза. Кроме того, никогда не сливайте излишки пестицидов и не ополаскивайте там, где они могут стекать в ручьи, озера или другие поверхностные воды, или где они могут загрязнить колодцы и грунтовые воды.

Для удаления остатков гербицидов на масляной основе, таких как сложные эфиры 2, 4-D и подобных материалов, промойте опрыскиватель средством для очистки резервуаров, которое можно приобрести у большинства продавцов пестицидов.

После ополаскивания оборудования маслом или моющим средством для воды, заполните резервуар на четверть или половину водно-аммиачным раствором (1 литр бытового аммиака на 25 галлонов воды) или водно-тринатрийфосфатом (TSP ) раствора (1 стакан TSP на 25 галлонов воды). Пропустите раствор через систему в течение нескольких минут и дайте небольшому количеству пройти через сопла.Дайте оставшемуся раствору постоять не менее шести часов, затем прокачайте его через форсунки. Снимите форсунки и фильтры и дважды промойте систему чистой водой. Оборудование, в котором использовались смачиваемые порошки, формы аминов или водорастворимые жидкости, следует тщательно промыть водно-моющим раствором (2 фунта моющего средства на 30-40 галлонов воды). Водорастворимые материалы следует рассматривать как водорастворимые жидкости. Дайте водному раствору моющего средства циркулировать по системе в течение нескольких минут.Снимите форсунки и фильтры и дважды промойте систему чистой водой.

Когда пришло время поставить опрыскиватель на хранение, добавьте от 1 до 5 галлонов, в зависимости от размера вашего бака, антифриза (этиленгликоль) и воды или антифриза для транспортных средств для отдыха перед окончательной промывкой. Когда вода откачивается из опрыскивателя, антифриз оставляет защитное покрытие
внутри резервуара, насоса и водопровода.

Контейнер для утилизации

Рекомендуются возвратные, многоразовые контейнеры, если они есть в наличии, поскольку они устраняют проблемы с утилизацией.Переработка – это решение проблемы невозвратной тары; в 1995 году было переработано около 48 000 единиц. Когда это невозможно, очень важно правильно избавиться от пустых контейнеров из-под пестицидов. Не оставляйте пустые контейнеры, так как они представляют опасность для окружающей среды, животных и людей.

Пустые емкости с жидкостью перед утилизацией необходимо промыть трижды или под давлением. После того, как содержимое полностью слито в распылитель, промойте его, наполнив как минимум 1/10 воды, закрыв крышкой, затем встряхивая, пока все внутренние поверхности не будут промыты.Слейте промывочную воду в бак для опрыскивания. Полностью слейте воду из емкости (не менее 30 секунд) и повторите процесс ополаскивания еще два раза, добавляя промывочную воду в бак для опрыскивателя.

Тройное ополаскивание – медленное и утомительное занятие. Более простой и быстрый способ – использовать устройство для ополаскивания под давлением, которое прикрепляется к шлангу и протыкает дно или боковую часть
контейнера (Рисунок 31) . Распыляемая вода ополаскивает емкость во время слива. 60-секундное ополаскивание спреем обычно лучше, чем тройное ополаскивание.Также доступны специальные вращающиеся форсунки для промывки емкостей и опрыскивателей. Промытые контейнеры следует раздавить и утилизировать в системе обращения с отходами или переработать, если они подлежат возврату.

Рисунок 31. Устройство для ополаскивания.

Если сжигание упаковок разрешено местными постановлениями, сжигайте не более одного дневного накопления за раз. Дым и пары пестицидов могут быть токсичными. Сжигайте контейнеры в таком месте, где дым и пары не движутся в сторону людей или населенных пунктов.Альтернативой сжиганию является поместить пустые бумажные и картонные контейнеры в пластиковый мешок для мусора и утилизировать их на утвержденном предприятии по переработке отходов.

Утвержденные процедуры утилизации излишков химикатов и пустых контейнеров часто менялись. Методы утилизации, которые являются законными сегодня, могут оказаться неприемлемыми завтра. Узнайте у местных властей, какие методы использовать.

Химическая инъекция

Дозирование химикатов для опрыскивания – еще один подход к решению многих проблем с обращением и удалению излишков смеси и ополаскивателя в баке для опрыскивания.

Инжекционные опрыскиватели

сконструированы таким образом, что перемешивание в баке не требуется. Поскольку в баке содержится только чистая вода, промывка бака между распылениями и утилизация неиспользованной химической смеси исключаются.

Вместо смешивания в баке дозируются химикаты из контейнера для концентрата и впрыскиваются в воду, прокачиваемую через распылитель, обеспечивая правильное соотношение химиката и воды для необходимого распыления. Впрыск может происходить в различных точках опрыскивателя, в зависимости от конструкции.После завершения распыления контейнеры с концентратом можно убрать на хранение, и после минимальной очистки распылитель готов к следующему использованию.

Микроволны101 | Смесители

1954 Смеситель Sears Roebuck, заложивший фундамент дома детства Неизвестного редактора в Нью-Джерси

Загляните на нашу страницу рекомендаций по книгам и закажите шедевр Стивена Мааса о миксерах!

Вот интерактивный указатель на наш материал для выращивания на миксерах:

Смеситель S-параметров Excel (новинка января 2021 года!)

Карманный смеситель-гребешок (новинка ноября 2019!)

История микшера – гетеродининг

Коэффициент шума смесителя

График смесителя

Беспорядок в смесителе!

Формы сигналов смесителя

Однобалансный смеситель

Двухбалансный смеситель

Смесители субгармоник

Инструкция калькулятора поиска шпоры

Балуны

Смесители для исключения изображения

Смеситель I / Q

Ищите микшеры RF на EverythingRF.com

История смесителя – гетеродининг

Реджинальд Обри Фессенден придумал идею смешивания сигналов в 1901 году, явление, которое он назвал «гетеродинингом». Преимущества микшера в радиоприемнике не могут быть получены без стабильного гетеродина, чего у Фессендена не было. Во время и сразу после Великой войны майор Эдвин Армстронг разработал супергетеродинный приемник, что было бы невозможно без работы Фессендена. И Фессенден, и Армстронг находятся в Зале славы микроволновых печей!

Это из OAH в Нью-Джерси, по радио перед супергетером…

Первоначальным определением гетеродина было простое выпрямление амплитудно-модулированного RF для восстановления огибающей модуляции. Определение супергетеродина включало в себя сначала преобразование входящего AM-сигнала в усиление промежуточной частоты (ПЧ) (посредством использования отслеживающего локального осциллятора) перед простым выпрямлением, чтобы восстановить амплитудную модуляцию сигнала ПЧ. Super-Het произвела революцию в индустрии радиоприемников. В детстве Глаз может вспомнить старые настроенные радиочастотные приемники, в которых у вас было два или три каскада индивидуально настроенных усилителей (TRF).Когда вы получали свой новый набор, с ним всегда была инструкция, с инструкциями о том, как настроить отдельные шкалы тюнера для популярных передатчиков в стране …….. вы можете периодически принимать удаленные станции на ночью из-за передачи через несушек Кеннелли-Хевисайда. Также в инструкции имелся пустой регистрационный лист, чтобы вы могли записать настройки шкалы TRF на случай, если вы случайно выбрали радиостанцию ​​самостоятельно. Глаз все еще может видеть эти циферблаты…… около 5 дюймов в диаметре, каждая с градациями от нуля до 100 …. черного цвета с белыми буквами.

Что такое миксер?

Что такое миксер? Это устройство, которое выполняет задачу преобразования частоты путем умножения двух сигналов (почему вы думаете, что на схеме для микшера стоит буква «X»?). Смесители необходимы в большинстве микроволновых систем, потому что уровень радиосигнала слишком велик для обрабатывать свою информацию (например, ища доплеровский сдвиг в приложении радара X-диапазона, вы не найдете много аналого-цифровых преобразователей, которые могут обрабатывать 10 ГГц!)

Условное обозначение смесителя

Смеситель может быть таким же простым, как смеситель, в котором используется один диод, или может быть намного сложнее для повышения производительности.Две широкие категории миксеров, обычно используемых в микроволновых приложениях: переключающие миксеры и нелинейные миксеры . Переключаемые микшеры включают в себя односбалансированные, а микшеры с двойной симметрией являются наиболее распространенными и имеют наиболее предсказуемые характеристики, но нелинейные микшеры позволяют вам перейти на гораздо более высокие частоты (хорошо в миллиметровом диапазоне). Даже при переключении микшеров вам все равно понадобится нелинейное устройство. Нелинейным устройством в смесителе чаще всего является диод Шоттки, но он также может быть полевым транзистором или другим транзистором.PIN-диоды никогда не используются в смесителях, они переключаются слишком медленно. (Спасибо, Майлз!)

Вот удобное видео от Кристофера Марки с красивым вступлением к теме микшеров:

Порты смесителя

На микшере есть три порта: порт радиочастоты (RF), порт гетеродина (LO) и порт промежуточной частоты (IF).

RF-порт – это то место, где применяется высокочастотный сигнал, который вы хотите преобразовать с понижением частоты, или где высокочастотный сигнал выводится в повышающем преобразователе.

Порт гетеродина (LO) – это то место, куда подается “мощность” для смесителя. В этом случае подаваемая мощность является ВЧ-сигналом, а не постоянным током, как в усилителе. Сигнал гетеродина является самым сильным сигналом и используется для включения и выключения диодов в смесителе с переключением (что составляет девять из десяти смесителей). Действие переключения эффективно меняет путь от RF к IF.

Порт ПЧ – это то место, где передается РЧ-сигнал, который был изменен сигналом гетеродина, и его форма волны фильтруется, чтобы стать сигналом ПЧ.

Сравнение активного и пассивного смесителей

Несмотря на то, что для управления смесителем используется изрядная мощность гетеродина, смеситель считается пассивным устройством, если он не содержит средства усиления преобразованного сигнала с использованием мощности постоянного тока. Один из типов активного смесителя, о котором вы, возможно, слышали, – это смеситель с ячейками Гилберта, который мы обещаем описать в другой раз!

Конвертеры с понижением частоты и преобразователи с повышением частоты

Вы можете использовать микшер для преобразования сигнала с понижением частоты (как в приемнике) или повышением частоты (как в передатчике или возбудителе), потому что это обратное устройство.

Боковые полосы

Когда две синусоидальные волны сталкиваются друг с другом, вы получаете как суммарную, так и разностную частоты. В простейшей форме математика, лежащая в основе микшера, представлена ​​в следующей тригонометрической идентичности, которую вы должны были выучить в колледже:

sin ( 1 t) x sin ( 2 t) = 1/2 {(cos [( 1 2 ) t] – cos [( 1 + 2 ) t]}

Таким образом, смеситель перемножает два сигнала, что дает суммарную и разностную частоты.Если ваш радиочастотный сигнал составляет 10 ГГц, а ваш гетеродин – 9 ГГц, вы получите два выходных сигнала, один на 1 ГГц и один на 19 ГГц. В конструкции приемника вы бы отбросили сигнал 19 ГГц с помощью простой структуры нижних частот.

Зависимость частоты RF от частоты изображения

По аналогичному анализу, есть два РЧ-сигнала, которые преобразуются с понижением частоты до одной и той же ПЧ частоты, которые известны как РЧ и частота “изображения”. В случае ВЧ 10 ГГц и гетеродина 9 ГГц изображение появляется на частоте 8 ГГц. Изображение может вызвать разрушения в системе приемника по двум причинам.Во-первых, возможно, что мешающий сигнал на частоте изображения будет ошибочно принят за «истинный» сигнал и даже может вызвать насыщение вашего приемника, если он достаточно силен. Во-вторых, шум на частоте изображения будет напрямую увеличивать отношение сигнал / шум, испортив коэффициент шума, даже если вы поставите перед микшером малошумящий усилитель. Без обработки изображение часто увеличивает коэффициент шума приемника на 3 дБ! Два способа избавиться от изображения: удалить его с помощью фильтра перед микшером или использовать миксер для подавления изображения.

Смеситель с двойной боковой полосой и микшеры с подавлением изображения

Обычно микшер обрабатывает обе боковые полосы, и вам решать, как устранить нежелательную боковую полосу с помощью фильтра преселектора. Смеситель, обрабатывающий обе боковые полосы, называется двухполосным смесителем , смеситель подавления изображения называется однополосным смесителем .

Смеситель на стороне высокого давления и смеситель на стороне низкого давления (HSM / LSM)

В приемнике с одной боковой полосой вы можете обрабатывать любую из боковых полос.Смеситель верхнего уровня – это смеситель, в котором частота гетеродина выше, чем частота RF, смеситель нижнего уровня – это смеситель, в котором частота гетеродина ниже.

Убыток / прибыль от преобразования

Это разница в амплитуде доступного РЧ-сигнала с выходным сигналом ПЧ (преобразователь с понижением частоты) или между сигналом ПЧ и РЧ-сигналом (преобразователь с повышением частоты). Для пассивных смесителей величина усиления преобразования всегда меньше единицы, возможно от -5 до -10 дБ.

Говоря о данных о потерях преобразования в дБ, мы знаем, что многие инженеры искажаются, когда кто-то ссылается на что-то с потерями как « минус что-то в дБ потери», когда, конечно, у него должны быть положительных потерь , если это пассивно потому что знак минус неявно присутствует в слове потеря .Люди, которые зацикливаются на этом, носят слишком тесное нижнее белье. По нашему мнению, убыток может быть выражен со знаком минус или без него, если вы не отправляете документ IEEE, и тогда вы можете сделать это правильно, если хотите, чтобы он был принят.

Измерения изоляции смесителя

В идеальном смесителе сигналы RF и LO не будут присутствовать на порте IF, а LO не будет присутствовать на порте RF. Следует учитывать три важных изолированности:

РФ по IF

LO – IF

LO по RF

В частности, гетеродин представляет проблему, потому что обычно это намного более сильный сигнал, чем два других.Проблема с гетеродином (или ВЧ) на выводе ПЧ заключается в том, что эти сигналы могут вызывать другие ложные продукты позже в цепи и, возможно, насыщать усилитель ПЧ, если они достаточно сильные. Проблема с гетеродином на ВЧ-порте заключается в том, что это может привести к тому, что ваш приемник будет излучать ВЧ-энергию в порте антенны и вызвать у вас проблемы с FCC, или, что еще хуже, ваш истребитель будет обнаружен ракетой «земля-воздух».

Шпоры

Слово «шпора» является сокращением от «ложного сигнала».Это нежелательные продукты, которые могут проникнуть в вашу полосу ПЧ, если вы не знаете, что делаете, когда составляете частотный план своей системы, и не знаете ограничений типа микшера, который вы планируете использовать. Любое нелинейное устройство, представленное с двумя или более входными частотами, будет выводить не только входные частоты, но также гармоники и продукты интермодуляции входных частот. Выражение, обычно используемое для смешивания продуктов:

F IF = M x F RF + N x F LO

По сути, существует бесконечное количество возможностей, которые связаны с кратными частотами RF и LO.У нас есть отдельная страница, посвященная этой теме. И еще одна страница на шпорецовых диаграммах!

Насос

LO иногда называют сигналом «накачки». Говорят, что смесители на субгармонике имеют субгармоническую накачку. Это, вероятно, как-то связано с тем, что в английском языке трубки называются «клапанами», они, кажется, привязаны к ссылкам на сантехнику …

Некоторые практические правила микшера:

Точка компрессии смесителя на один дБ обычно на 6 дБ меньше указанной мощности гетеродина.

Коэффициент шума смесителя

примерно равен величине потерь преобразования или немного меньше. Например, смеситель с коэффициентом преобразования -6 дБ может иметь коэффициент шума 5,5 дБ. См. Эту страницу для текущих объяснений (или противоречий!)

Вы должны измерить возвратные потери трех портов микшера на указанном уровне возбуждения гетеродина, иначе вы увидите плохие результаты, потому что диоды не будут гореть. Это означает, что вам необходимо измерить возвратные потери гетеродина при надлежащей мощности, что обычно невозможно с использованием анализатора цепей.

Насосы и миксеры, настолько маленькие, что их можно разместить на кредитной карте, могут стать системой доставки лекарств будущего, говорят инженеры Калифорнийского университета в Беркли.

БЕРКЛИ. к нам присоединятся “карты” доставки лекарств, которые мы можем вытащить и надеть нашу руку, чтобы дать себе необходимое лекарство, например, контролируемую капельницу инсулин или краткий курс антибиотиков.

Это цель инженеров Калифорнийского университета в Беркли, которые разработали микроскопические миксеры и пузырьковые насосы, которые помещаются на заплатку размером с толстую кредитную карту и может вводить наркотики через иглу размером не больше морды комара.

Проект частично финансируется Агентством оборонных исследовательских проектов, Центр датчиков и приводов Беркли и Becton Dickinson, мировой крупнейший производитель устройств для доставки лекарств, таких как шприцы и имплантируемые инсулиновые помпы.

“Правительству нужен хороший способ доставки лекарств в поле, и это обеспечивает очень стабильный способ доставки лекарств “, – говорит Дориан Липманн, доцент кафедры машиностроения университета Калифорнии, Беркли, и руководитель исследовательского проекта.”Но устройство также было бы полезно для доставки инсулина, обеспечивая небольшой постоянная доза, которая выровняет колебания уровня сахара в крови и возможно предотвратить нарушение кровообращения, обычное у диабетиков ».

Липманн считает, что карты доставки лекарств будут полезны в экстренных случаях медицина, или просто как простой способ доставить ряд лекарств от антибиотиков к обезболивающим. Кроме того, поскольку они доставляют лекарства непрерывно и небольшими дозы, они могут позволить использование лекарств, которые слишком вредны для печени доставить инъекцией сегодня.

«Эта технология открывает новые формы доставки лекарств, а потому это делает доступным множество новых лекарств », – говорит он.

Liepmann продемонстрировал новое устройство в среду, 11 марта, во время выступления на 20-й ежегодной конференции Industrial Liaison Programme, мероприятии в кампусе организовано Инженерным колледжем Калифорнийского университета в Беркли.

Система доставки лекарств, хотя и находится в стадии разработки, является одной из первые практические устройства, появившиеся в области, называемой микрофлюидикой – наука о перемещении и смешивании жидкостей в средах размером не более человеческий волос.

Когда впервые произошел взрыв в области микроэлектромеханических систем или МЭМС 10 лет назад многие рекламировали возможности микроскопических насосов и доставки лекарств. устройств на микросхеме, но добиться этого оказалось сложнее, чем предполагалось изначально, – говорит Липманн. В таком маленьком масштабе – его смесительная камера содержит только 1/100 000 кубического сантиметра – вязкость играет пропорционально больше роль. Это исключает использование турбулентности – типа перемешивания, которое происходит. когда вы добавляете сливки в кофе.

«Это сложная задача, потому что он настолько мал, что можно получить только ламинарный поток, то есть никаких водоворотов и завихрений. Мешалки не работают, это все равно что пытаться для перемешивания патоки “, – говорит Джон Эванс, аспирант, который работает с Липманном на проекте.

Когда исследователь Калифорнийского университета в Беркли Аль Пизано, содиректор Berkeley Sensor и Actuator Center и в настоящее время в отпуске в качестве директора программы MEMS DARPA, впервые обратился к Липманну по поводу микроскопической системы доставки лекарств. лет назад Липманн сразу подумал о новом способе микширования, названном «хаотическая адвекция» или «ламинарное перемешивание».«

Десять лет назад профессор Калифорнийского университета в Сан-Диего Х. Ареф утверждал, что вы можете создать хаотические поля течения в простых системах, использующих только впускные отверстия для жидкости и выходы – известные как «источники» и «стоки» в торговля.

«Это было ключевое открытие, – отмечает Эванс, – потому что оно предположил, что вы можете создавать хаотические потоки, способные смешиваться, даже если вы не могли изготавливать сложные трехмерные формы или создавать турбулентные потоки. Это именно те ограничения, с которыми мы сталкиваемся сегодня при проектировании микрофлюидные системы.«

Эванс и Липманн показали с помощью компьютерного моделирования и простого эксперимента что эта форма смешивания может полностью смешать жидкости за 30 секунд, что требуется 30 минут, чтобы смешать с помощью простой молекулярной диффузии.

«Мы используем очень простое поле течения, созданное с помощью источников жидкости. и тонет. Но поле течения спроектировано так, чтобы быть хаотичным », – говорит Эванс. “В поле хаотического потока две жидкие частицы, которые начинаются рядом с друг друга далеко друг от друга. Если это происходит для каждой пары частиц, образец станет хорошо перемешанным.«

Они думают, что могут оптимизировать технику для достижения смешивания в 2-3 раза. секунд, время, необходимое, чтобы включить карту и наклеить ее на верх рука.

«Это обеспечивает очень быстрое и контролируемое смешивание», – Липманн. говорит. “Если вы не смешиваете контролируемым образом, может быть угол несмешанной жидкости, что не только приводит к потере лекарственного средства, но и может вызвать серьезные медицинские последствия ».

Смешивание осуществляется в небольшой плоской камере размером 0,6 мм на 1,5 мм. и толщиной 0,025 мм, что составляет общий объем около 15 нанолитров.Жидкость закачивается и выходит из четырех отверстий в камере в последовательности, которая создает хаотичный поток.

Сам насос использует пузырек в качестве поршня. Микронагреватель используется для испарить жидкость в тупиковой трубе. По мере образования пузыря жидкость выталкивается вниз по каналу. При выключении обогревателя пузырек схлопывается, вытягивая жидкость по каналу. Когда этот «пузырчатый поршень» совмещен с новыми обратными клапанами MEMS жидкость может перемещаться вокруг устройства в контролируемом манера.

Пузырьки создают больше силы и смещения лучше, чем другие МЭМС методы срабатывания.

Смесительная камера, резервуары, насосы и патрубки протравлены. в кремниевой пластине с использованием методов, аналогичных тем, которые используются в полупроводнике. промышленность. Разряженная батарея питала бы нагревательные элементы, которые создают пузыри и рассчитаны на срок службы всего около 24-48 часов. При включении нагреватели начнут перекачку, смешивая химикаты вместе. В все устройство будет толщиной около 8 мм, толщиной с соломинку соды. А прототипная серия из пяти смесителей, включающая более десятка насосов и клапанов, умещается на чипе всего на один сантиметр сбоку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *