Полиэтилен термостойкий: PERT, термостойкий полиэтилен, PE-RT, повыщенной термостойкости

Содержание

Термостойкий полиэтилен PERT XRT70K в ООО Экопластикс (ecpl.ru)

Продукты по категориям → PERT (термостойкий полиэтилен)

версия для
печати

3 500 USD /тонна

Цена на 11.08.2022

Производитель

Hanwha Total, Корея

Рынок

PERT (термостойкий полиэтилен)

Применение

Тип II, MRS 10, ГВС/ХВС, радиаторное отопление, внутриквартальные теплотрассы, термостойкие кабель-каналы

3 500 USD/тонна

Цена на 11.08.2022

О продукте

Описание

HDPE XRT70K – высокопроизводительный гексеновый (С6) полиэтилен высокой плотности, предназначен для производства методом экструзии труб для горячего и холодного водоснабжения, а также промышленных трубопроводов, в том числе больших диаметров (225-1200 мм)

Характеристики

Классификация PERT тип 2, класс PERT-100 (MRS 10 МПа), уникальная стойкость к медленному распространению трещин, гарантия безопасной и надежной эксплуатации трубопроводов, широкое бимодальное распределение молекулярного веса, уникальная перерабатываемость при экструзии труб малых и больших диаметров, применение в однослойных и многослойных трубопроводных системах, наличие оптимального количества добавок для обеспечения долгосрочной эксплуатации при повышенных температурах.

Метод переработки

Экструзия

Упаковка и транспортировка

Мешки по 25кг без паллет в 20-футовых контейнерах по 16,000т, либо мешки по 25 кг на паллетах в 40-футовых контейнерах по 22,000т

Свойства Термостойкий полиэтилен PERT XRT70K

ПоказательМетод измеренияУсловияЕдиницаЗначение
ПТРISO 1133190°C, 5 кгг/10 мин0.7
ПлотностьISO 1183г/см30.947
Время начала окисления (OIT)ISO 11357-6210°Cмин>40
ТеплопроводностьМетод HTC60°CВт / (м · K)0.35
Коэффициент линейного теплового расширенияМетод HTC40°Cм / (м · K)1,7Е-4
Модуль упругости при растяженииISO 527МПа850
Предел прочности при растяженииISO 527МПа23
Относительное удлинение при разрывеISO 52750мм/мин%>350
Модуль изгибаISO 178МПа750
FNCT (ползучесть с полным надрезом)ISO 16770Arkopal, 80°C, 4 МПачасов>2000
Ударная вязкость по ШарпиISO 8680°CкДж/м220

* Приведенные в таблице значения являются ориентировочными для данной марки продукции, их не следует рассматривать как абсолютно точные.

Другие продукты рынка PERT (термостойкий полиэтилен)

ПродуктПрименениеПроизводительЦена
Термостойкий полиэтилен mLLDPE PERT SP980 (LG Chem, Корея)Тип I, теплые полы, ГВС/ХВСLG Chem, Корея3 300 USD
Термостойкий полиэтилен mHDPE PERT SP988 (LG Chem, Корея)Тип II, MRS 8, ГВС/ХВС, радиаторное отопление, внутриквартальные теплотрассы, термостойкие кабель-каналыLG Chem, Корея3 500 USD


Термостойкий полиэтилен 2022

В 80-х годов прошлого столетия компанией The Dow Chemical приступила к производству полиэтилена повышенной термоустойчивости (сокращенно PERT). Его еще называют «линейный полиэтилен», используя английскую аббревиатуру LPE для отличия от так называемого «сшитого» полиэтилена СПЭ.

Производство

Уникальная технология производства такого полиэтилена состоит в следующем.

В химической реакции «плоский» бутен заменяется на октилен (формула С8Р16 ), имеющий разветвленную в пространстве структуру. В дальнейшем он образует около главной цепи боковые ответвления, представляющие собой взаимно переплетенные цепочки мономера. Они соединяются между собой благодаря механическому переплетению веток, анне за счет межатомных связей. Поэтому снижается риск смещения элементов цепи относительно друг друга. Это дает ряд интересных отличий термостойкого полиэтилена от его «прародителя» полиэтилена низкого давления.

Свойства

Перечислим физические и химические свойства полиэтилена PERT:

  1. Термоустойчивость.
  2. «Память» полиэтилена гарантирует прочное соединение резьбовым, компрессионным и гильзовым способом.
  3. Физиологическая и токсикологическая безопасность.
  4. Стойкость к воздействию высокого давления.
  5. Шумопоглощаемость.
  6. Отсутствие каких-либо отложений, накипи и коррозии на поверхности труб PERT.
  7. Пластичность.
  8. Долговечность и износоустойчивость при использовании в условиях высокой температуры.
  9. Прочность на изгиб, истирание и разрез.
  10. Невосприимчивость к повреждающему воздействию химических реагентов.
  11. Повышенная ударопрочность при больших колебаниях температуры (от -50 ° до +110 °С)

Сравнительный анализ PERT и других модификаций полиэтилена

Проведенные лабораторные исследования выявили, что главным отличием материала от изначального полиэтилена низкого давления является приобретенная устойчивость к воздействию ультрафиолетовых лучей и, соответственно, термоустойчивость.

В то же время, трубы из сшитого полиэтилена обладают большей долговечностью, чем термостойкий полиэтилен PERT при одних и тех же исходных условиях. А потери прочности в условиях длительного использования наблюдаются у PERT уже при 70 °С, в то время, как СПЭ сохраняет устойчивость вплоть до 110 °С. Показатели сопротивления ползучести у сшитого полиэтилена также выше в 1,6 раз, чем у термостойкой его модификации.

Это означает более надежное соединение труб с фитингом и сводит к минимуму риск разгерметизации системы.

Использование

Наибольшее применение термостойкий полиэтилен находит в производстве труб для прокладывания различных коммуникаций в доме (например, системы канализации или отопления). При этом системы труб PERT характеризуются:

  • Возможностью использования скрытой разводки согласно требованиям.
  • Долговременной установкой систем водоснабжения и отопления даже в многоэтажных домах сроком минимум 50 лет.
  • Малым числом отходов и стыков труб благодаря длинной намотке труб в рулоне и пластичности материала.
  • Значительной пластичностью при низкой температуре, достигающей -74°С.
  • Молекулярной памятью и способностью восстанавливать форму в последствии изгиба и разморозки.
  • Стойкостью к возникновению трещин.
  • Идеально ровной внутренней поверхностью, благодаря чему на ней не могут задержаться никакие отложения. Внутреннее сечение трубы остается неизменным с течением времени.
  • Пониженным (на 30%) коэффициентом, учитывающим гидравлическое сопротивление, если сравнивать с обычными полиэтиленовыми трубами.

На сегодняшний день термостойкий полиэтилен является уникальным и практически безальтернативным в своем роде материалом. Он с одинаковым успехом используется для отопления и теплых полов, санитарного водоснабжения и систем канализации. Обладая уникальным сочетанием физико-химических и эксплуатационных свойств, он в то же время доступен по цене.

Советы по выбору термостойкого пластика


Если вы когда-нибудь оставляли пищевой контейнер Rubbermaid в микроволновой печи на слишком долгое время, вы хорошо знаете, что некоторые виды пластика плохо переносят высокие температуры. В зависимости от урожая и типа контейнера вы можете хранить вчерашний ужин в полипропилене (ПП), поликарбонате (ПК) или полиэтилене (ПЭ), ни один из которых не является термостойким супергероем. Полипропилен, например, начинает терять прочность при 180°F (82°C). Полиэтилен работает лучше при 266°F (130°C), но даже так называемый «высокотемпературный» поликарбонат рассчитан только на 284°F (140°C).

Во время пандемии COVID-19 на рабочих местах было сложно поддерживать социальную дистанцию ​​между сотрудниками. Triax Technologies Proximity Trace предоставляет оповещения, помогающие обеспечить безопасность сотрудников. Эта отлитая под давлением деталь является одним из элементов устройства и изготовлена ​​из АБС-пластика.

Определение горячего: что такое термостойкий пластик?

Как видно из крошечного символа микроволновой печи на задней стороне этих контейнеров, каждый из только что перечисленных полимеров явно подходит для разогрева остатков пищи. Однако для высокотемпературных приложений требуется что-то более надежное. Но что это значит? Другими словами, насколько горячо горячо? Точный ответ зависит от требований приложения, но для целей данного совета по проектированию давайте определим его как 350°F (177°C).

Также уточним, что по большей части речь идет о рабочих температурах, а не о температурах, необходимых для плавления или кристаллизации полимера. Эта тема освещена в другом месте на нашем сайте. Мы также не обсуждаем огнезащитные свойства полимера. Как вы увидите, это важное свойство имеет мало общего с термостойкостью полимера.

Обратите внимание на акрилонитрил-бутадиен-стирол, распространенный пластик, известный вам как АБС. Любимец сантехников и производителей игрушек во всем мире, ABS имеет температуру размягчения по Вика — температуру, при которой материал теряет свою «стабильную форму» — примерно 219°С.°F (104°C) и теплостойкостью всего 201°F (94°C). При добавлении органического галогенированного соединения или другого огнезащитного соединения эти значения на самом деле значительно снижаются, хотя вероятность воспламенения материала гораздо меньше.

Тефлон «делает вещи лучше»

Итак, что представляют собой эти высокотемпературные полимеры? Начнем с политетрафторэтилена (ПТФЭ), более известного под торговым названием тефлон. Случайно обнаруженный в DuPont в 1938 году, ПТФЭ может выдерживать непрерывную рабочую температуру 500°F (280°C). И несмотря на то, что только что было сказано о огнестойкости, ПТФЭ также может похвастаться замечательным рейтингом V-0. Он гидрофобный (отталкивает воду), имеет один из самых низких коэффициентов трения (делает его чрезвычайно скользким). Кроме того, он обладает высокой устойчивостью к большинству кислот, растворителей и других агрессивных химических веществ.

ПТФЭ часто используется в качестве покрытия для ковров и одежды, но благодаря своей высокой прочности и ударопрочности он также является отличным выбором для механических компонентов, таких как блоки подшипников и корпуса. В пользу этого говорит тот факт, что ПТФЭ очень легко обрабатывается и сохраняет свои размеры. Однако, поскольку он не течет при нагревании выше его точки плавления 620 ° F (327 ° C), он не может быть отлит из пластика под давлением или напечатан на 3D-принтере.

Материальные блоки Ultem для станков с ЧПУ.

PEEK Performance

Одним из термостойких термопластов, который можно как обрабатывать, так и литьем под давлением, является полиэфирэфиркетон или PEEK. Имея температуру плавления, близкую к температуре плавления ПТФЭ, PEEK сохраняет свои механические свойства, которые, кстати, весьма превосходны, при температуре 482°F (250°C) или выше. Он также устойчив к радиации, химическому воздействию и гидролизу. Эта последняя характеристика означает, что PEEK можно стерилизовать в автоклаве, что делает его фаворитом в медицинской промышленности для использования в спинальных имплантатах и ​​устройствах фиксации. Эти же свойства делают его пригодным в качестве пищевого полимера.

PEEK также является диэлектриком, поэтому его обычно используют в качестве изолятора в полупроводниковых устройствах. Он не «скользкий», как ПТФЭ, но очень износостойкий и находит широкое применение в автомобильных уплотнениях, компенсационных кольцах и поверхностях подшипников. А благодаря высокому соотношению прочности к весу и другим физическим свойствам PEEK часто заменяет металлические сплавы в различных компонентах самолетов (он на 70% легче стали и примерно вдвое легче алюминия). Как и ПТФЭ, PEEK — действительно удивительный материал…

Остальная часть высокотемпературного хит-парада

Полифениленсульфид (PPS). Хотя он не соответствует PEEK и PTFE с точки зрения тепловых характеристик, он по-прежнему обеспечивает достойную рабочую температуру 428 ° F (220 ° C). Этот термопласт, известный инженерам-автомобилестроителям и инженерам-электрикам как Ryton, обеспечивает хорошее сочетание коррозионной стойкости, механической прочности и диэлектрических свойств. Он также хорошо течет в операциях литья пластмасс под давлением и демонстрирует минимальную усадку, что делает его хорошим кандидатом для прецизионных электрических соединителей и аналогичных компонентов.

PPS не подходит для механических деталей, но PPSU подходит. Полифенилсульфон (также известный как Radel) имеет рабочую температуру, довольно близкую к PPS, обладает аналогичными механическими и электрическими характеристиками, поддается стерилизации и вполне поддается механической обработке. Он используется в оконных рамах самолетов, ручках хирургических инструментов, фитингах для горячей воды, а поскольку он соответствует требованиям FDA (как и другие полимеры, перечисленные выше), он подходит для прямого контакта с пищевыми продуктами.

Точно так же существует полиэфиримид (PEI), известный как Ultem. PEI поддается как механической обработке, так и литью под давлением, и доступен с различными уровнями заполнения стеклом (GF). С максимальной непрерывной рабочей температурой 340 ° F (171 ° C) Ultem не совсем совместим с выпечкой печенья, но это отличный универсальный полимер для применений, требующих прочности, жесткости, устойчивости к растворителям и пламени, а также диэлектрических свойств. .

Напечатанная на 3D-принтере керамическая (Advanced High-Temp) стереолитографическая деталь PerFORM.

Как насчет термостойких материалов для 3D-печати?

Другие известные высокотемпературные полимеры включают Vectra, тип жидкокристаллического полимера (LCP) для литья под давлением, обычно используемый в промышленности SMT (технология поверхностного монтажа). Он обладает превосходными характеристиками текучести, позволяет изготавливать детали с очень тонкими стенками и имеет рабочий диапазон до 464°F (240°C). Существует также ПК/ПБТ, смесь поликарбоната и полибутилентерефталата, способная выдерживать температуры до 266°F (130°C) — далеко не аналоги, описанные до сих пор, но все же предлагая хороший баланс прочности и устойчивости к атмосферным воздействиям, особенно там, где низкие температуры вызывают беспокойство (например, при -40 ° F, что также составляет -40 ° C).

Вы можете подумать: «А как насчет 3D-печатных деталей? Какие здесь есть варианты для высокотемпературных материалов?» Вам повезло. Главным среди них является керамическая усовершенствованная высокотемпературная (PerFORM) стереолитографическая смола, способная выдерживать температуры до 514 ° F (268 ° C) после дополнительного процесса пост-отверждения. Это дает разработчикам возможность создавать прототипы прочных и жестких деталей для использования в таких приложениях, как испытания в аэродинамической трубе, быстрая оснастка, корпуса для электронных устройств и многое другое. Точно так же PC-подобный усовершенствованный высокотемпературный материал (Accura 5530) представляет собой полупрозрачный материал, сочетающий оптическую прозрачность с хорошей термостойкостью. Подобно поликарбонатам, используемым для механических и литьевых пластмассовых компонентов, Accura 5530 устойчива к воде, химическим веществам, огню и электрическим воздействиям.

Вопросы производства

Поскольку каждый из обсуждаемых здесь технических полимеров является прочным и стабильным, с точки зрения технологичности конструкции беспокоиться не о чем. Некоторые из них более абразивны, чем другие, и требуют от машиниста использования твердосплавных сверл и концевых фрез, в то время как те, у которых очень высокая температура плавления, могут потребовать некоторых корректировок в процессе литья пластмасс под давлением. Тем не менее, поскольку все они перечислены в качестве стандартных материалов Protolabs, любые проблемы будут решаться в процессе онлайн-цитирования.

Мы рекомендуем вам ознакомиться с обширным перечнем спецификаций материалов, доступных на нашем веб-сайте, для получения дополнительной информации. Доступно более 140 полимеров и 30 типов эластомеров или жидкого силиконового каучука (LSR), некоторые из которых могут выдерживать довольно высокие температуры, поэтому вы обязательно найдете идеальный материал для вашего следующего проекта. Если у вас есть какие-либо вопросы, напишите нам. Наши инженеры по приложениям всегда готовы помочь по телефону 877-479-3680 или [email protected].

Топ 5 термостойких пластиков | Быстрый радиус

Производители, как правило, используют такие металлы, как никель и нержавеющая сталь, для высокопроизводительных приложений, поскольку они обладают высокой термостойкостью. Сплавы на основе никеля, например, сохраняют свою прочность в условиях высоких температур, циклического термического воздействия и высокого уровня углерода. Несмотря на то, что металл имеет тенденцию быть более термостойким, чем пластик, во многих случаях инженерам было бы выгодно использовать термостойкие пластики вместо этого для своих высокопроизводительных приложений.

Термостойкие пластики делятся на две большие категории — термореактивные и термопласты. Термореактивные пластмассы — это пластмассы, которые затвердевают под воздействием тепла и не могут быть изменены после отверждения. Термопласты с высокими эксплуатационными характеристиками — это пластмассы, которые при нагревании плавятся, при охлаждении затвердевают и могут быть переплавлены после охлаждения. На структурную целостность термопластов влияют такие факторы, как температура стеклования (Tg) и температура плавления, присущая каждому материалу. Существуют варианты высокоэффективных термопластов, которые сохраняют свои структурные свойства при температурах выше 150°C и кратковременно при температурах выше 250°C.

В дополнение к термостойкости эти материалы обладают химической стойкостью, коррозионной стойкостью и превосходными электрическими и тепловыми изоляторами. Общие высокопроизводительные применения включают поршневые компоненты в автомобильной промышленности, кабельные каналы в аэрокосмической промышленности, подводные соединители в полупроводниковой промышленности и многое другое. При разработке деталей, которые будут контактировать с чрезвычайно высокими температурами, командам разработчиков следует рассмотреть возможность производства с использованием этих пяти лучших термостойких пластиков.

Топ-5 термостойких пластиков

Термопласты обладают термостойкостью благодаря своей молекулярной структуре. Когда к смоле добавляются жесткие ароматические кольца вместо алифатических групп, основная цепь молекулярной цепи ограничивается и укрепляется таким образом, что для разрыва цепи необходимо разорвать два химических звена. С этой новой структурой химическая и термостойкость термопласта может быть такой же или лучше, чем у термореактивного материала.

Вот пять пластиков, которые могут выдерживать высокую температуру.

1. Полиэфиримид (ПЭИ)

ULTEM®, торговая марка полиэфиримида (PEI), является одним из немногих коммерчески доступных аморфных термопластов на современном рынке. Он прочный, химически стойкий и огнестойкий и уже более 35 лет является основным продуктом в обрабатывающей промышленности.

ULTEM выделяется тем, что обладает самой высокой диэлектрической прочностью среди всех термопластов с высокими эксплуатационными характеристиками.

Этот материал имеет чрезвычайно высокую температуру плавления 219°C и максимальную температуру непрерывной эксплуатации 170°C, что делает его идеальным для изготовления печатных плат, оборудования для стерилизации пищевых продуктов и особенно деталей самолетов. ULTEM — одна из немногих смол для использования в коммерческой аэрокосмической промышленности — она превосходит другие термопласты по сопротивлению ползучести и хорошо выдерживает воздействие различных видов топлива и охлаждающих жидкостей. Однако он имеет тенденцию к растрескиванию в присутствии полярных хлорированных растворителей. Этот материал можно найти в противопожарных материалах и чехлах для сидений самолетов.

Пример детали, изготовленной с помощью ULTEM, которая несовместима с настольными принтерами.

ULTEM довольно дорог, как и многие другие пластмассы в этом списке. Кроме того, он имеет более низкую ударную вязкость и температуру использования, чем PEEK.

Преимущества ULTEM:

  • Лучшее сопротивление ползучести, чем у термопластов
  • Выдерживает воздействие топлива и охлаждающих жидкостей

Недостатки ULTEM:

  • Склонен к растрескиванию в присутствии полярных хлорированных растворителей
  • Довольно дорого

2. Полиэфиркетон (PEEK)

PEEK, сокращение от полиэфирэфиркетон, представляет собой полукристаллический высокоэффективный конструкционный термопластик, устойчивый к химическим веществам, износу, усталости, ползучести и нагреву. Этот материал настолько прочен и адаптируется к суровым условиям, что производители используют его в качестве замены металла во многих приложениях, независимо от температуры. PEEK может выдерживать кратковременные температуры до 310°C и имеет температуру плавления более 371°C. Более того, он обладает самой высокой прочностью на растяжение и изгиб среди всех высокоэффективных полимеров.

Благодаря своей металлической прочности PEEK широко используется для различных медицинских устройств, активных компонентов автомобильных трансмиссий и внешних деталей самолетов. Его дополнительное преимущество заключается в том, что его легко обрабатывать с помощью литья под давлением или экструзии, а твердый PEEK совместим с обработкой на станках с ЧПУ.

У этого популярного термопластика есть пара небольших недостатков, в том числе его восприимчивость к ультрафиолетовому излучению и некоторым кислотам. Тем не менее, PEEK по-прежнему является очень универсальным термопластом, который должен быть в арсенале всех инженеров.

Преимущества PEEK:

  • Прочный и адаптируемый к суровым условиям окружающей среды
  • Высочайшая прочность на растяжение и изгиб
  • Простота литья под давлением
  • Совместимость с ЧПУ

Недостатки PEEK:

  • Восприимчивость к ультрафиолетовому излучению и некоторым кислотам

3.

Политетрафторэтилен (ПТФЭ)

ПТФЭ, широко известный как тефлон, представляет собой мягкий термостойкий пластик с низким коэффициентом трения и исключительной химической стойкостью. Он обладает высокой прочностью на изгиб, адекватной устойчивостью к атмосферным воздействиям и хорошими электроизоляционными свойствами как в жарких, так и во влажных условиях.

ПТФЭ уникален тем, что он почти полностью химически инертен и плохо растворяется в большинстве растворителей, что делает его идеальным для применения при высоких температурах. ПТФЭ имеет одну из самых высоких температур плавления среди всех термопластов (327°C) и очень широкий диапазон рабочих температур. Он достаточно термически стабилен, чтобы его можно было использовать при температуре от -200°C до +260°C.

Кастрюли и сковороды с антипригарным покрытием часто покрывают ПТФЭ из-за его низкого трения и сильных антиадгезионных свойств.

ПТФЭ широко известен благодаря своему коммерческому применению. Он также используется для защиты труб от коррозионно-активных материалов, покрытия теплообменников и изоляции электрических компонентов.

ПТФЭ превосходен при экстремально высоких и низких температурах, но его механические свойства обычно уступают сопоставимым пластикам при комнатной температуре. Он чувствителен к ползучести, истиранию и излучению, а его пары могут быть токсичными. Кроме того, стоит отметить, что обработка ПТФЭ довольно дорога.

Преимущества ПТФЭ:

  • Высокая прочность на изгиб
  • Достаточная устойчивость к атмосферным воздействиям
  • Хорошая электроизоляционная способность как в жарких, так и во влажных средах

Недостатки ПТФЭ:

  • Уступает сопоставимым пластикам при комнатной температуре
  • Чувствителен к ползучести, истиранию и излучению
  • Fes может быть токсичным
  • Довольно дорого перерабатывать

4. Полибензимидазол (ПБИ)

Полибензимидазол

(PBI) обладает самой высокой термостойкостью и износостойкостью, прочностью и стабильностью механических свойств среди всех конструкционных термопластов, представленных сегодня на рынке. Волокна PBI не имеют известной температуры плавления, не горят и не прилипают к другим пластикам. Этот материал имеет максимальную температуру непрерывной эксплуатации 398°C в инертной среде, 343°C на воздухе и возможность кратковременного воздействия до 537°C.

Из-за своей высокой стабильности и чрезвычайной термостойкости PBI используется только для самых важных приложений, таких как скафандры космонавтов, защитная одежда пожарных и костюмы гонщиков.

При всех своих достоинствах PBI невероятно дорог и сложен в производстве. Инженерам часто приходится использовать алмазные инструменты для обработки этого материала, что еще больше увеличивает затраты. С точки зрения дизайна, одним из основных недостатков PBI является его чувствительность к вырезу. Разработчики продукта должны быть осторожны, чтобы избежать любых острых краев или углов и сгладить все поверхности.

Преимущества PBI:

  • Высокая стабильность
  • Чрезвычайная термостойкость – самая высокая из всех термопластов, представленных сегодня на рынке
  • Волокна не имеют точки плавления – они не горят и не прилипают к другим пластикам

Недостатки PBI:

  • Дорогой и сложный в производстве
  • Высокая чувствительность надреза

5.

Полидициклопентадиен (pDCPD) Полидициклопентадиен

(pDCPD) представляет собой специально разработанный термореактивный полимер, разработанный для обеспечения превосходного сочетания химической, коррозионной и термостойкости, а также жесткости и ударной вязкости. Этот материал сочетает в себе пластичность термореактивных материалов при формовании с высокими эксплуатационными характеристиками лучших инженерных термопластов. Он имеет температуру теплового изгиба до 120°C.

pDCPD уникален тем, что практически не имеет ограничений по размеру или весу деталей — детали с переменной толщиной стенок, формованными ребрами жесткости и т. д. не замедляют производство. pDCPD является относительно новым материалом, и его применение пока ограничено, но он показал себя многообещающим в коррозионно-стойком химическом технологическом оборудовании, септиктенках и оборудовании для очистки воды.

Преимущества pDCPD:

  • Сочетает в себе химическую, коррозионную и термостойкость
  • Нет ограничений по размеру или весу детали – не замедляет производство
  • Гибкость формования сочетается с высокой производительностью

Недостатки pDCPD:

  • Новый материал: применение ограничено

Могут ли производители улучшить термостойкость?

Инженеры и производители могут нагревать и улучшать характеристики большинства видов пластмасс с помощью добавок и/или термостабилизаторов. Тремя наиболее распространенными типами добавок являются антиоксиданты, антипирены и технологические добавки. Каждая добавка обеспечивает различные характеристики и способствует долговечности полимера.

Термостабилизаторы

защищают полимер от теплового повреждения во время производства или во время нормального использования готовой детали, и сегодня они добавляются в большинство полимеров. Термостабилизаторы также могут сохранить внешний вид, прочность и эластичность полимера.

Выберите опытного производителя, который поможет с выбором материала

Для высокотемпературных применений любой из этих высокоэффективных пластиков действительно может выдерживать тепло. Однако подойдет не любой материал. Инженеры должны провести исследование, чтобы убедиться, что они выбирают термостойкий пластик, который лучше всего подходит для их конкретного применения. Если инженеры выбирают неправильный материал, они рискуют поставить под угрозу функциональность своей детали, и им придется начинать с нуля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *