Процесс разложения воды: Разрыв молекул воды и Закон сохранения энергии. Какую использовать воду

Разрыв молекул воды и Закон сохранения энергии. Какую использовать воду

В данной статье поговорим про разрыв молекул воды и Закон сохранения энергии. В конце статьи эксперимент для дома.

Нет никакого смысла изобретать установки и устройства по разложению молекул воды на водород и кислород не учитывая Закон сохранения энергии. Предполагается, что возможно создать такую установку, которая на разложение воды будет затрачивать меньшее количество энергии, чем та энергия, которая выделяется в процессе сгорания (соединения в молекулу воды). В идеале, структурно, схема разложения воды и соединение кислорода и водорода в молекулу будет иметь циклический (повторяющийся) вид.

картинка-схема разложения воды и соединение кислорода и водорода в молекулу будеткартинка-схема разложения воды и соединение кислорода и водорода в молекулу будет

Изначально, имеется химическое соединение – вода (H2O). Для её разложения на составляющие – водород (Н) и кислород (О) необходимо приложить определённое количество энергии. Практически, источником этой энергии может быть аккумуляторная батарея автомобиля. В результате разложения воды образуется газ, состоящий в основном из молекул водорода (Н) и кислорода (О). Одни, называют его «Газ Брауна», другие говорят, что выделяющийся газ, ничего не имеет общего с Газом Брауна. Думаю, нет необходимости рассуждать и доказывать, как называется этот газ, ведь это не важно, пускай этим занимаются философы.

Газ, вместо бензина поступает в цилиндры двигателя внутреннего сгорания, где посредством искры от свечей системы зажигания воспламеняется. Происходит химическое соединение водорода и кислорода в воду, сопровождаемое резким выделением энергии взрыва, заставляющего двигатель работать. Вода, образованная в процессе химического соединения, выпускается из цилиндров двигателя в виде пара через выпускной коллектор.

 

Важным моментом является возможность повторного использования воды для процесса разложения на составляющие – водород (Н) и кислород (О), образованной в результате сгорания в двигателе. Ещё раз посмотрим на «цикл» круговорота воды и энергии. На разрыв воды, которая находится в устойчивом химическом соединении,

затрачивается определённое количество энергии. В результате сгорания, наоборот выделяется определённое количество энергии. Выделяемая энергия может быть грубо рассчитана на «молекулярном» уровне. Из-за особенностей оборудования, затрачиваемую на разрыв энергию рассчитать сложнее, её проще измерить. Если пренебречь качественными характеристиками оборудования, потерями энергии на нагрев, и другими немаловажными показателями, то в результате расчётов и измерений, если они проведены правильно, окажется, что затраченная и выделенная энергии равны друг другу. Это подтверждает Закон сохранения энергии, который утверждает, что энергия никуда не пропадает и не появляется «из пустоты», она лишь переходит в другое состояние. Но мы хотим использовать воду как источник дополнительной «полезной» энергии. Откуда эта энергия вообще может взяться? Энергия тратится не только на разложение воды, но и на потери, учитывающие КПД установки по разложению и КПД двигателя. А мы хотим получить «круговорот», в котором энергии больше выделяется, чем затрачивается.

Я не привожу здесь конкретные цифры, учитывающие затраты и выработку энергии. Один из посетителей моего сайта прислал мне на Майл книгу Канарёва, за что я ему очень благодарен, в которой популярно разложены «подсчёты» энергии. Книга является очень полезной, и пара последующих статей моего сайта будет посвящена именно исследованиям Канарёва. Некоторые посетители моего сайта утверждают, что я своими статьями противоречу молекулярной физике, поэтому в своих последующих статьях я приведу на мой взгляд — основные результаты исследований молекулярщика — Канарёва, которые моей теории не противоречат, а даже наоборот подтверждают моё представление о возможности низкоамперного разложения воды.

Если считать, что вода, используемая для разложения – это самое устойчивое, конечное химическое соединение, и её химические и физические свойства такие же, как у воды, высвобождаемой в виде пара из коллектора двигателя внутреннего сгорания, то какими производительными установки по разложению не были, нет смысла пытаться получать дополнительную энергию из воды. Это противоречит Закону сохранения энергии. И тогда, все попытки использовать воду в качестве источника энергии — бесполезны, а все статьи и публикации на эту тему не более чем заблуждения людей, или просто — обман.

Любое химическое соединение при определённых условиях распадается или соединяется вновь. Условием для этого может служить физическая среда, в которой находится это соединение – температура, давление, освещённость, электрическое, или магнитное воздействие, либо наличие катализаторов, других химических веществ, или соединений. Воду можно назвать аномальным химическим соединением, обладающую свойствами, не присущими всем остальным химическим соединениям. К этим свойствам (в том числе) относятся реакции на изменения температуры, давления, электрического тока. В естественных Земных условиях, вода – устойчивое и «конечное» химическое соединение. В этих условиях имеется определённая температура, давление, отсутствует какое либо магнитное, или электрическое поле. Существует много попыток и вариантов изменить эти естественные условия для того, чтобы разложить воду. Из них, наиболее привлекательно выглядит разложение посредством воздействия электрического тока. Полярная связь атомов в молекулах воды настолько сильна, что можно пренебречь магнитным полем Земли, которое не оказывает никакого влияния на молекулы воды.

Небольшое отступление от темы:

Есть предположение определённых деятелей науки, что Пирамиды Хеопса не что иное, как огромные установки для концентрации энергии Земли, которую неизвестная нам цивилизация использовала для разложения воды. Узкие наклонные тоннели в Пирамиде, назначение которых до настоящего времени не раскрыто, могли использоваться для движения воды и газов. Вот такое «фантастическое» отступление.

 

Продолжим. Если воду поместить в поле мощного постоянного магнита, ничего не произойдёт, связь атомов будет по-прежнему сильнее этого поля. Электрическое поле, образованное мощным источником электрического тока, приложенное к воде посредством электродов, погруженных в воду, вызывает электролиз воды (разложение на водород и кислород). При этом, затраты энергии источника тока огромны — не сопоставимы с энергией, которую можно получить от обратного процесса соединения. Здесь и возникает задача минимизировать затраты энергии, но для этого необходимо понять как происходит процесс разрыва молекул и на чём можно «сэкономить».

Для того, чтобы верить в возможность использования воды, как источника энергии мы должны «оперировать» не только на уровне единичных молекул воды, а так же на уровне соединения большого числа молекул за счёт их взаимного притяжения и дипольного ориентирования. Мы должны учитывать межмолекулярные взаимодействия. Возникает резонный вопрос: Почему? А потому, что перед разрывом молекул необходимо их сначала сориентировать. Это, так же является ответом на вопрос «Почему в обычной электролизёрной установке используется постоянный электрический ток, а переменный – не работает?».

В соответствии с кластерной теорией, молекулы воды имеют положительные и отрицательные магнитные полюса. Вода в жидком состоянии имеет не плотную структуру, поэтому молекулы в ней, притягиваясь разноимёнными полюсами и отталкиваясь одноимёнными, взаимодействуют друг с другом, образуя кластеры. Если для воды, находящейся в жидком состоянии, представить оси координат и попытаться определить в каком направлении этих координат больше ориентированных молекул, у нас ничего не получится, потому что ориентация молекул воды без дополнительного внешнего воздействия — хаотична.

структура молекул

структура молекулВ твёрдом состоянии (состоянии льда) вода имеет структуру упорядоченных и точно ориентированных определённым образом друг относительно друга молекул. Сумма магнитных полей шести молекул H2O в состоянии льда в одной плоскости равна нулю, а связь с соседними «шестёрками» молекул в кристалле льда приводит к тому, что в целом, в определённом объёме (куске) льда отсутствует какая либо «общая» полярность.

Если лёд растает от повышения температуры, то многие связи молекул воды в «решётке» разрушатся и вода станет жидкой, но всё равно «разрушение» будет не полным. Большое количество связей молекул воды в «шестёрки» сохранится. Такая талая вода называется «структурированной», является полезной для всего живого, но для разложения на водород и кислород не подходит потому, что необходимо будет тратить дополнительную энергию на разрыв межмолекулярных связей, затрудняющих ориентацию молекул перед их «разрывом». Значительная потеря кластерных связей в талой воде произойдёт позже, естественным путём.

Если в воде имеются химические примеси (соли, или кислоты), то эти примеси препятствуют соединению соседних молекул воды в кластерную решётку, отнимая у структуры воды водородные и кислородные связи, чем при низких температурах нарушают «твёрдую» структуру льда. Всем известно, что растворы кислотных и щелочных электролитов не замерзают при отрицательных температурах так же, как и солёная вода. Благодаря наличию примесей, молекулы воды становятся легко ориентируемыми под действием внешнего электрического поля. Это с одной стороны хорошо, не надо тратить лишнюю энергию на полярную ориентацию, но с другой стороны это плохо, потому, что эти растворы хорошо проводят электрический ток и в результате этого, в соответствии с Законом Ома, амплитуда тока необходимая на разрыв молекул оказывается значительной. Низкое межэлектродное напряжение приводит к низкой температуре электролиза, поэтому такая вода используется в электролизёрных установках, но для «лёгкого» разложения такая вода не годится.

 

Какая же вода должна применяться? Вода должна иметь минимальное количество межмолекулярных связей – для «лёгкости» полярной ориентации молекул, не должна иметь химических примесей, увеличивающих её проводимость – для уменьшения тока, используемого для разрыва молекул. Практически, такой воде соответствует дистиллированная вода.

 

Вы можете провести простой эксперимент сами

 

Налейте свеже-дистиллированную воду в пластиковую бутылку. Поместите бутылку в морозильную камеру. Выдержите бутылку около двух-трёх часов. Когда Вы достанете бутылку из морозильной камеры (трясти бутылкой нельзя), Вы увидите, что вода находится в жидком состоянии. Откройте бутылку и тонкой струйкой выливайте воду на наклонную поверхность из нетеплопроводного материала (например — широкую деревянную доску). На Ваших глазах вода будет превращаться в лёд. Если в бутылке осталась вода, закройте крышку, резким движением ударьте дном бутылки о стол. Вода в бутылке резко превратится в лёд.

Эксперимент может не получиться, если дистилляция воды была произведена более пяти суток назад, некачественно, или подвергалась тряске, в результате чего, в ней появились кластерные (межмолекулярные) связи. Время выдержки в морозильной камере, зависит от самой морозильной камеры, что так же может повлиять на «чистоту» эксперимента.

Этот эксперимент подтверждает, что минимальное количество межмолекулярных связей именно в дистиллированной воде.

Ещё один важный аргумент в пользу дистиллированной воды: Если Вы видели, как работает электролизёрная установка, то знаете, что использование водопроводной (даже очищенной через фильтр) воды загрязняет электролизёр так, что без регулярной его чистки снижается эффективность электролиза, а частая чистка сложного оборудования – лишние трудозатраты, да и оборудование из-за частых сборок – разборок придёт в негодное состояние. Поэтому даже и не думайте использовать для разложения на водород и кислород водопроводную воду. Стэнли Мэйер использовал водопроводную воду только для демонстрации, чтобы показать какая «крутая» у него установка.

Чтобы понять то, к чему нам необходимо стремиться, мы должны понять физику процессов, происходящих с молекулами воды во время воздействия электрического тока. В следующей статье мы вкратце, без «заумной нагрузки на мозг» ознакомимся с теорией профессора Канарёва о строении молекул воды, кислорода и водорода.

Расщепление воды с эффективностью 100%: полдела сделано / Хабр

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.

Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.

Научная работа опубликована в журнале Nano Letters (зеркало).

Как происходит процесс разложения воды электрическим током

Чистая, дистиллированная вода почти совершенно не проводит электрического тока.

Она обладает огромным сопротивлением. Например, сопротивление кубического сантиметра дважды перегнанной воды равно сопротивлению медной проволоки сечением в квадратный миллиметр, длина которой равна примерно 200 тысячам километров. Таким количеством проволоки можно больше чем 20 раз соединить между собой Москву и Владивосток. Для электролиза дистиллированная вода не годится. Нужна такая вода, которая бы хорошо проводила электрический ток, то есть была бы электропроводной.

Чтобы сделать воду электропроводной, в ней нужно растворить какую-нибудь соль, кислоту или основание, которые дают ионы.

Большинство химических соединений, растворяясь в воде, распадаются на части, которые приобретают при этом тот или иной заряд. Образующиеся заряженные частицы называются ионами, а разложение вещества на ионы — электролитической диссоциацией.

Обыкновенная поваренная соль (NaCl) при растворении в воде распадается на ион натрия (Na+), заряженный положительно, и ион хлора (Сl), заряженный отрицательно. Ионы натрия и хлора, имеющие только по одному заряду, называются одновалентными ионами. Ионы, которые имеют два или три заряда, называются двух- или трехвалентными. В качестве примера двухвалентного иона можно привести ион кальция (Са). Хлористый кальций (СаСl2), диссоциируя на ионы, дает два одновалентных отрицательных иона хлора (2Сl) и один двухвалентный ион кальция (Са), заряженный положительно. Треххлористое железо (FeCl3) при диссоциации на ионы дает три одновалентных отрицательных иона хлора (3Сl) и один трехвалентный положительный ион железа (Fe+++).

Итак, при электролитической диссоциации соли образуются отрицательно заряженные ионы, которые называются анионами, и положительно заряженные ионы — катионы.

Кислоты при диссоциации образуют положительно заряженный ион водорода и отрицательно заряженный кислотный остаток. Серная кислота (H2SO4) распадается на два положительно заряженных иона водорода (2Н+) и кислотный остаток — анион (SO4), обладающий двумя отрицательными зарядами.

Щелочи при диссоциации образуют положительный ион металла и отрицательный ион гидроксила. Положительные и отрицательные ионы, образующиеся при растворении в воде солей, кислот и оснований, переносят через раствор электрический ток.

Если в раствор, содержащий ионы, поместить две металлические пластинки и подключить к ним постоянный ток от аккумулятора, то положительные ионы — катионы — сразу же начнут передвигаться к отрицательному электроду, который называется катодом, а отрицательные ионы — анионы — направятся к положительному полюсу — аноду. Находящиеся у электрода анионы отда

Разложение воды электричеством | Русская Физика

56. Разложение воды электричеством

Прибор для разложения воды состоит из трёх колб, две из которых – закрытые, а одна – открытая. Все три колбы заполнены водой и сообщаются между собой в нижней части.

В закрытых колбах размещены электроды. Один из них соединён с отрицательной клеммой внешнего источника электрического тока и называется катодом, а другой соединён с положительной клеммой и называется анодом.

Внешний электрический источник нагнетает электроны на катод и создаёт на нём избыточное электрическое давление. С анода источник электроны отбирает, и там – пониженное электронное давление.

Постепенно повышенное давление электронов катода распространяется на всю катодную колбу, а пониженное распространяется на всю анодную колбу.

И только в направлении от катода в сторону анода электронное давление будет плавно уменьшаться от катодного до анодного. В этом направлении в воде образуется, своего рода, канал с таким плавно изменяющимся электронным давлением.

Сразу скажем, что в процессе разложения воды в катодной колбе собирается водород, а в анодной – кислород.

Прежде чем рассматривать физику разложения, ещё раз представим себе молекулу воды. Она состоит из атома кислорода и примкнувшей к нему молекулы водорода: O(Hm. У атома кислорода контурного жёлоба нет, и поэтому он сам и молекула воды, которую он образует, электрический ток не проводят. Контурный жёлоб есть только у молекулы водорода, но эта молекула располагается с одной стороны атома кислорода и охватывается его стволом.

Разложение молекул воды начинается на катоде.

Под напором избыточного давления электроны переходят с катода на те молекулы воды, которые примыкают к нему своей водородной стороной. При достижении  порогового значения избыточного давления электроны, как клин, отделяют в каждой такой молекуле воды молекулу водорода от атома кислорода.

Отрыв происходит так резко, что атом кислорода разворачивается и своим теперь уже открытым жёлобом оказывается направленным в противоположную сторону от катода.

На его открытом жёлобе будет уже повышенное давление электронов.

Среди примыкавших к оторванным атомам кислорода молекул воды окажутся и те, которые будут повёрнуты к ним своими водородными сторонами.

С ними произойдёт то же самое, что и с теми, которые примыкали к катоду, тоесть при пороговом избыточном давлении электроны, как клин, отделят в них молекулы водорода от атомов кислорода.

При этом часть электронов с предыдущего атома кислорода переместится на вновь разорванную молекулу воды.

В этот момент каждая оторванная молекула водорода оказывается между двух атомов кислорода и прилипает к тому из них, в сторону которого она получила толчок во время отрыва.

Таким образом молекула водорода перескакивает с одного атома кислорода на другой в сторону катода.

Если мы начнём рассматривать процесс дальше, то заметим, что и все другие оторванные молекулы водорода будут перескакивать с атома на атом кислорода в сторону катода. Такой процесс будет продолжаться на всём протяжении канала от катода до анода.

Это произойдёт и с теми молекулами воды, которые примыкают к аноду. Электронные клинья оторвут от них молекулы водорода, и те, сорвавшись, уйдут в направлении к катоду.

С освободившихся атомов кислорода избыточные электроны перейдут на анод.

Как видим, на всём протяжении канала от катода до анода молекулы водорода перепрыгивают с одной молекулы воды на другую в сторону катода.

В результате на катоде появляются свободные молекулы водорода, а на аноде – свободные атомы кислорода.

Собираясь в пузырьки, они поднимаются вверх и скапливаются над водой. Атомы кислорода при этом объединяются в молекулярные пары O2.

Так как электроны перескакивают только на те молекулы воды, которые повёрнуты к ним своими водородными сторонами, можно подумать, что прочие молекулы воды распадаться не будут. Но учитывая то, что в процессе разложения происходят интенсивные движения частиц, затрагиваемые ими молекулы воды будут случайным образом разворачиваться и принимать подходящие положения.

 

Итак, в процессе электрического разложения воды происходят два вида перескоков с молекулы на молекулу:

  • электроны перескакивают в направлении от катода к аноду;
  • молекулы водорода перескакивают в направлении от анода к катоду.
Разложение воды под действием звука описано ещё в "Юном технике"
— У ада и небес есть свои границы, защита, охрана, воины, ворота. Зачем им все это?
— Людей боятся, вот и окопались как могли...

"Непонятное устройство, стоявшее на столе Кили, имело сверху нечто вроде помеси форсунки и воронки. Кили некоторое время дул в него, а затем вылил туда порядка 18 литров воды. Через некоторое время манометр показал давление в 680 атмосфер, и Кили объявил, что вода дезинтегрировалась, а в генератор поступил так называемый «эфирный пар», способный приводить в действие любые механизмы. В доказательство Кили запустил находившийся тут же небольшой «вечный двигатель»."

"В 1884 году Кили продемонстрировал эфирную пушку, которая при немалом скоплении народа бесшумно выстрелила на 270 метров 140-граммовым ядрышком. В 1890-е Кили больше внимания стал уделять энергии, извлекаемой из чистых вибраций. без всякого эфирного пара. Последним его шоу (1897 год) стал вибрационный двигатель, имевший мощность 10 лошадиных сил при массе 91 килограмм."

"Дезинтегратор состоял из перестраиваемого резонатора, внутренности которого Кили держал в секрете, системы камертонов, воронки для воды и приёмного устройства для звука. На демонстрациях изобретатель шумел в «микрофон», заливал воду в воронку, камертоны вибрировали, внутри резонатора что-то происходило, и подсоединённый к нему электродвигатель начинал работать."

"камертоны вибрировали, внутри резонатора что-то происходило"

dmitrijan:Разложение воды под действием звука описано ещё в "Юном технике". Как вариант получаем пар или смесь газов. Проблема лишь в отделении водорода от кислорода, рванёт запросто.

При этом можно снимать немалый заряд за счёт распада воды. Вообще-то такие элементы делают - туда нужно влить воду, спирт или даже бензин и получить электричество. Капризное устройство однако.

Собственно просто и банально.

Хотя приспособить эти устройства пока не придумали особо куда. Можно получать водородо-кислород для двигателя. Можно увлажнять комнату, можно сушить бельё, можно греть еду.

Собственно СВЧ печка этим и занимается, за счёт разложения жидкости нагревает еду.

Ну можно облака разгонять и дождик конденсировать и лить на головы врагов или на поля.

Собственно, так или иначе этот эффект используют нынче. Хотя самое большое распространение этот эффект нашёл в нагреве еды.

Ну можно гранит или чего там на надо, сверлить.

В целом технология недалеко ушла от забивания клина и поливания оного водой, чтобы тот разбух и разломил, только технологичней.

Вода весьма хороший абразив, особенно если усилить это свойство за счёт её «вскипания». Будет резать не хуже алмазной крошки, даже лучше.

elektromexanik: И опять резонансные явления. Только их надо рассматривать немного шире. Именно как работу с эфиром.

dmitrijan: Проблема лишь достаточной точности подачи рабочего инструмента, но она решается, за счёт УЗ форсунок, которые сразу подают воду нужного вида на обрабатываемый материал.

Ну и как побочный эффект, можно крошить материал, который будет распадаться, подавая тот же УЗ на кромку. Без всякого механического воздействия материал теряет атомарные связи и распадается. Хотя зона воздействия очень узкая, потому распылить камень не получится, а вот сделать дырку, сдув «пыль», легко. Как горячим ножом резать масло.

Пока проблема в материале рабочих кромок, но технически всё это решаемо даже на уровне современной техники.

Только пропадёт антураж. Не будет романтики звука тр-ррррр, и общности людей, что хотят этот перфоратор засунуть его владельцу куда нить и поглубже.

Нечто типа "карандаша", который при надавливании на стену, выдавливает в ней отверстие.

Там даже звук неслышен.

По сути "шуруп" просто вдавливается в стену через такое устройство, которое делает материал податливым рядом с ним, а после, когда его отводят, бетон опять твердеет. Шуруп так и застревает в "камне".

Технология мало отличается от прохождения ростка через камень.

С одной стороны мы трудно и нудно ломаем тот же асфальт, прикладывая массу усилий. А с другой стороны, слабый росток может взломать нам покрытие дороги, не особо напрягаясь.

Мы забиваем гвозди так:

Быстро и сильно.

Слабый росток ломает асфальт так:

Естественно есть несколько путей решения. Можно применять силу, можно применять «хитрость».

Если мы ломимся через камень напрямую, то росток поступает философски – он ищет щель или трещинку, и начинает её расширять, постепенно ломая монолит, пробивая себе дорогу. В сути это работа клина, за счёт расширения жидкости, просачивающейся в трещину.

Т.е. если камень не имеет достаточных трещинок для просачивания жидкости, то такой камень росток не взломает. Но если накернить дырочку и пустить росток, то тогда лишь дело времени.

В сути данную технологию можно легко перенять, адаптировав, ускорив процесс сжатия-расширения жидкости многократно, например, за счёт УЗ, и тогда то, что росток делает за недели, можно сделать за секунды.

Хотя нынче данная технология применяется, но с понятной нам стороны:

По сути, отбойный молоток и делает возвратно-поступательные движения, что значительно ускоряют процесс. Однако для этого нужен крепкий наконечник.

Но вода тоже довольно твёрдая при определённых условиях. Ведь если просто в воду войти – она мягкая, а если с разбегу, то весьма твёрдая. Т.е. вместо долота можно использовать воду, но под значительной скоростью.

dmitry_9_9_9: Фукусима, прорастающие растения сквозь асфальт

elektromexanik: Такие на треногах устанавливают.

dmitrijan: И эта технология используется и водой режут.

Однако и тут есть недостатки.

Резка водой не совсем отбойный молоток.
Осталось пойти дальше и совместить технологии, и можно при помощи воды и без всякой такой-то матери вдавливать те же крепежи прямо в стену без всякого тр-рррр шума.

В сути все компоненты технологии уже есть в наличии и даже изготавливаются серийно.

elektromexanik: Тогда вода для передачи колебаний совместно стене и детали?

dmitrijan: С другой стороны, конечно, применение такой технологии напоминает не прорубание, а смягчение материала, в который проходит рабочий инструмент. Но зато можно прямо на камне выдавливать иероглифы, как вариант, пугая учёных потомков росписями тинэйджеров на стенах зданий.

Вода передаёт колебания - она отличный несжимаемый проводник колебаний. Лучший и самый доступный в нашей физике.

Причём настолько текуча, что может плотно прилегать к обрабатываемому материалу по всей обрабатываемой поверхности, оставляя за собой отполированные плоскости без каких либо следов инструмента.

Т.е. после такой обработки даже полировать не нужно и удалять мелкие дефекты и трещины, их просто не будет.

Собственно и эта технология применяется, когда на вибростолах равномерно перемешивают материал, а полотно дороги становится на порядок прочнее после такой обработки. Да и детали делают с такой «закалкой», кромки тех же шестерёнок после УВЧ значительно превосходят по износостойкости своих собратьев.

elektromexanik: Осталось сделать способ просто совмещения двух материалов. Тогда можно будет обойтись и без сварки и без клепки и прочих традиционных способов соединения.

dmitrijan: Так делают же, для металлов и камня есть такие УВЧ, когда материал сжимают и он даже не спекается, а происходит диффузия.

Так делают без склейки разные штучки, где может быть зона разных металлов с разными свойствами в одном флаконе.

Даже детали варят так.

elektromexanik: Видимо дороговата пока технология.

dmitrijan: У любой технологии своя ниша, своё применение. Если сказано, что применять для металлов, значит для металлов.

С металлом проще, у него компоненты внутри материала. Так закаливают зубья шестерни.

Причём такой ремонт можно производить, даже не снимая.

elektromexanik: Индукционный нагрев. А как с непроводящими материалами?

dmitrijan: В данном случае материал уже содержит компоненту для воздействия. Т.е. примерно как если нам нужно разогреть еду в СВЧ, то она должна содержать хоть сколько-то воды.

Соответственно для других материалов используем либо другие частоты, либо материал воздействия, типа катализатора или переходника, который преобразует воздействие.

Вода, как переходник при передаче ВЧ весьма подходит.

Т.е. если на камень мы не можем непосредственно воздействовать схожим образом, то нам ничего не мешает предварительно «смочить» нужное место, а потом оказать воздействие.

elektromexanik: Принципиальных противоречий вроде нет.

dmitrijan: Масло же мы используем, как посредник. Да и в химических реакциях есть элементы, что в реакции не участвуют, но без них реакция не получится.

Как пример. Индукционные плиты. Они могут нагревать металлы, но не еду. Как мы поступаем? Мы на индуктор ставим сковородку, на которой уже нагреваем еду.

Т.е. сковорода в данном процессе является обычным катализатором нагрева.

Индуктор ведь, в сути, тот же вибрирующий инструмент, который воздействует на материалы на определённых частотах.

Принцип отбойного молотка или клиньев меняется мало.

Даже отопление делают.

elektromexanik: Но культура производства...

Губит людей не пиво, а разгильдяйство!

dmitrijan: Причём схемка проста и легко повторима.

Характерные ряды элементов и выносной рабочий элемент, который, собственно, может быть на некотором расстоянии от самого аппарата, и представляет собой совсем простое устройство.

И сводится…

Ой, палочка с катушечкой на проводе!

elektromexanik: Ну так это только исполнительный элемент.

dmitrijan: Причём не обязательно объёмной, а может быть плоской и даже в корпусе.

Причём если промышленно для индукционных плит индукторы мотают как тот же бифиляр.

Это для наглядности свидетелям секты всё украдено и Теслы.

Так мотают и весьма, весьма витиеватые конструкции.

elektromexanik: Хотя те катушки пока остаются некой заковыристой загадкой.

dmitrijan: Т.е. ничто нам не мешает намотать индуктор хоть плоским, хоть круглым, хоть длинным. Ничего особо от этого не поменяется.

elektromexanik: Мешает только отсутствие понимание, что собственно изменяется при смене формы катушки.

Кроме формы поля.

dmitrijan: Мотать на круглое проще и технологичней, но если намотать ан плоское, то компактней.

Получаем такую длинную плоскую палку с намоткой.

Хотя мотают даже так:

И даже так:

elektromexanik: С бифилярной намоткой есть некоторая неопределённость. У Тесла это две секции которые включены последовательно и суммарная индуктивность значительно возрастает вместе с межвитковой ёмкостью. А вот встречное включение или намотка сложенным вдвое проводом вообще обнуляет классический параметр индуктивности.

dmitrijan: Хотя такая круглая удобней, но плоская лучше работает.

Есть безындукционная намотка, когда ЭДС самоиндукции нивелируется, аля лапша.

elektromexanik: А есть литцендрат, который увеличивает добротность контура.

dmitrijan: Знаменитая лапша, позволившая победить в линиях связи противную ЭДС самоиндукции.

elektromexanik: Витая пара ещё круче.

dmitrijan: Собственно такой же принцип можно применять в катушках и трансформаторах, избавившись от паразитной ЭДС самоиндукции.

Витая пара следствие лапши.

elektromexanik: Это что же получается, все кому не лень теперь смогут бесплатную розетку себе сделать? А на работу кто ходить будет?

dmitrijan: Неее, безплатной розетки не будет по любому. Но жаждущие халявы всё так же будут вздыхать про упущенную выгоду шкуры неубитого ими медведя.

elektromexanik: Как то сурово очень ))

dmitrijan: Зато каждый может осуществить и инструкция есть в картинках.

Хотя трудности могут возникнуть на шаге 2.

Но потенциально каждый, имеющий смартфон и достав инструкцию из инета, может осуществить.

elektromexanik: Вон француз то, прямо в огороде вечный двигатель собрал и даже секретов нет никаких. Вот почему никто не кинулся повторить?

Крутится на его участке и никто его не угнетает кроме жены...
http://vitanar.narod.ru/revolucio/revolucio6/revolucio6.html

dmitrijan: Дык скрывает, озорник!

elektromexanik: Или тогда не будет повода покричать, что, скрывают, преследуют, мировая закулиса и прочий бред.

dmitrijan: Народ же не очень-то рвётся же вон и тесла мобили скупать, спасая экологию.

elektromexanik:

Новые технологии разложения воды в США и России | C.O.K. archive | 2017

Американские исследователи из Университета Хьюстона обнаружили катализатор, который активно ускоряет реакцию разложения воды на водород и кислород и, в отличие от аналогов, состоит из легкодоступных и недорогих материалов. Для его производства не используются драгоценные металлы, и работает он намного эффективнее, чем известные катализаторы. Такой материал позволил бы решить одну из основных проблем использования воды для производства водорода как одного из наиболее перспективных источников «чистой» энергии.

Новые технологии разложения воды в США и России. 6/2017. Фото 1

«Водород — это самый “чистый” энергоноситель, которым мы располагаем на Земле, — говорит Пол Чу (Paul Chu), профессор, заведующий кафедры физики Университета Хьюстона, директор-основатель и руководитель исследовательских работ Техасского центра исследований сверхпроводимости Университета Хьюстона (Texas Center for Superconductivity at UH, TcSUH). — Вода могла бы быть бесконечным источником водорода, если бы мы научились эффективно разрывать прочную химическую связь водорода с кислородом в воде с помощью электрического тока и соответствующего катализатора».

Новый катализатор был получен исследовательской группой Пола Чу при Университете Хьюстона, в которую также входят профессор физики Жифенг Рен (Zhifeng Ren) и доцент Шуо Чен (Shuo Chen), ведущие исследователи TcSUH, научные сотрудники Хайчин Чжоу (Haiqing Zhou) и Фанг Юй (Fang Yu), а также аспиранты Джинджинг Сан (Jingying Sun) и Ран Хей (Ran He).

Катализатор, состоящий из метафосфата железа, в кристаллическом виде выращенного на электропроводящей никелевой подложке, имеющей губчатую структуру, намного более эффективен и дёшев, чем любые аналоги.

«Наш материал позволяет отлично сэкономить, и он намного более эффективен, превосходя имеющиеся катализаторы», — говорит Жифенг Рен, профессор физики Онкологического центра имени М. Д. Андерсона при Университете Хьюстона и ведущий автор статьи о результатах работы исследовательской группы Пола Чу. Катализатор также долговечен, на испытаниях он успешно проработал более 20 часов и выдержал 10 тыс. рабочих циклов. «Некоторые катализаторы обладают выдающимися характеристиками, но они стабильны только один-два часа, — рассказывает Жифенг Рен. — Такие материалы практически бесполезны».

Реакция разложения воды на водород и кислород теоретически очень проста, но на практике она представляет из себя сложный процесс, требующий двух отдельных химических взаимодействий — реакции выделения водорода и реакции выделения кислорода, каждая из которых протекает на отдельном электроде. И, хотя эффективные водородные катализаторы доступны, отсутствие недорогого и действенного кислородного катализатора создаёт учёным значительные трудности в области водородной энергетики.

Новые технологии разложения воды в США и России. 6/2017. Фото 2

Водород имеет ряд значительных преимуществ. «Водород, полученный посредством разложения воды электрохимическим процессом “водного электролиза”, считается наиболее экологически безопасным энергоносителем, способным заменить ископаемое топливо и удовлетворить растущий спрос всего человечества на электроэнергию, поскольку вода является одновременно и единственным сырьём, и “продуктом сгорания” — ведь экологичная “водородная энергия” получается путём преобразования этого химического элемента обратно в воду», — поясняют исследователи. При этом, в отличие от солнечной энергии, ветра и других видов «зелёной» энергии, водород относительно легко хранить.

В настоящее время водород получают тремя основными промышленными способами: паровой обработкой угля в специальных газогенераторах, газопаровой конверсией природного газа и электролизом воды, особенно если нужен сверхчистый водород.

При первом способе над раскалённым добела коксом (углём, нагреваемым без доступа кислорода) пропускают водяной пар, при этом из-за высокой температуры атомы водорода в воде замещаются на атомы углерода — образуется смесь угарного газа (CO) и водорода (H2), которую затем разделяют или используют как есть. Во втором случае, также при высокой температуре (около 1000 °C), осуществляется превращение метана с водяным паром, углекислым газом (CO2) или смесью водяного пара и углекислого газа в присутствии катализатора на основе никеля с добавками оксидов магния, алюминия и других металлов, причём образующуюся смесь водорода и угарного газа нужно затем дополнительно обрабатывать водяным паром. Водород также получают как побочный продукт производства хлора и гидроксидов щелочных металлов, которое осуществляется электролизом растворов их хлоридов.

Все эти методы сложны, крайне энергозатратны и связаны с выработкой вредного угарного газа, а также сажи, то есть имеют существенный «углеродный след», несмотря на то, что исходное сырьё в данных процессах сгорает относительно «чисто».

Исследовательница Шуо Чен отмечает, что известные на сегодняшний день катализаторы, ускоряющие реакцию выделения кислорода при электролизе воды, используют благородные металлы — иридий, платину или рутений. Но эти материалы дороги и недоступны.

«В своём исследовании мы обнаружили дешёвый, высокоэффективный и стабильный катализатор, основанный на широко распространённых химических элементах, который поразительным образом превосходит все благородные металлы, — подытоживает Шуо Чен. — Наше открытие может привести к гораздо более экономичному промышленному производству водорода простым электрохимическим разложением (электролизом) воды».

Отметим, что разложение воды на составные элементы может осуществляться и с помощью фотокатализа, который использует силу солнца. Однако прямое воздействие солнца на воду слишком неэффективно, так как вода поглощает лишь небольшую часть спектра солнечного излучения. Шуо Чен поясняет, что в идеале солнечные батареи будут использоваться для выработки электроэнергии, которая вместе с соответствующим катализатором позволит легко и эффективно разлагать воду для получения такого нужного человечеству химического элемента, как водород.

 

Отечественная технология получения водорода

Рассказывает И. В. Мещерин, к.т.н., доцент кафедры газохимии РГУ нефти и газа им. И. М. Губкина, председатель Комитета по технологическому проектированию в НОПРИЗ, президент Национальной палаты инженеров:

— Известно, что производство водорода в основном осуществляется крупнотоннажными системами с единичной объёмной производительностью в диапазоне 10–100 тыс. Нм³/ч [1]. От 1 до 5 % получаемого водорода находит применение в малотоннажных, наукоёмких отраслях промышленности: электронной, электротехнической, стекольной, фармацевтической, пищевой; выплавке металлов и сплавов высокой чистоты; синтезе химически высокоактивных веществ и других отраслях. Водород является ценным химическим реагентом, и его получение и концентрирование из топливных, остаточных, сбросных газов позволяет значительно повысить экономическую эффективность производства. Водород почти не встречается в природе в чистом виде, но потребление данного газа во всём мире неуклонно растёт. Для производства водорода необходимо специальное оборудование, отличительной чертой которого является компактность и надёжность.

Децентрализованное (то есть малотоннажное) производство водорода требует создания высокоэффективных технологий с уровнем единичной объёмной производительности в диапазоне от 10 до 1000 Нм³/ч [2].

Данный аспект в сегодняшней ситуации может иметь существенное влияние на экономическую эффективность производств, в которых используется водород. В условиях экономического кризиса поиск технологий получения водорода с меньшими затратами является актуальной задачей. В настоящий момент внутрироссийские регулируемые цены на природный газ продолжают оставаться одними из самых низких в мире, даже с учётом более чем двукратного падения цен на природный газ на европейском рынке. Одним из альтернативных решений могут быть технологии получения водорода из природного газа.

Изучение конкретной проблематики производилось сотрудниками кафедры газохимии РГУ нефти и газа (НИУ) имени И. М. Губкина в условиях завода по производству кварцевого стекла — ООО «Технокварц» в городе Гусь-Хрустальный.

Компания ООО «Технокварц» производит водород для производственных нужд с помощью блока электролизёров БЭУ-250, состоящий из шести электролизёров СЭУ-40. Этой производительности достаточно для обеспечения существующего объёма потребления водорода в технологии наплава кварцевого стекла. Целью работы являлся поиск экономически более эффективного метода получения водорода на базе ресурсов завода.

Промышленное производство кварцевого стекла связано с развитием экстремальных процессов со специфическими условиями, главным образом в космической и электронной технике, производстве чистых, особо чистых веществ, редких металлов, высокотемпературных неорганических соединений и т.п.

В результате анализа существующих методов получения водорода был выбран, как наиболее целесообразный, метод паровой конверсии природного газа. При помощи д.т.н., профессора М. Х. Сосны был произведён технологический расчёт блока конверсии для установки получения водорода. Входными данными послужили составы входящих потоков, их объёмы, температуры, давления, доля водяного пара, а также длина реактора, его диаметр и толщина стенки (расчёт реактора в 2016 году выполняла Мария Давыдова, технолог газохимии и магистрантка РГУ нефти и газа им. И. М. Губкина). В результате обработки полученных данных получен материальный баланс процесса (табл. 1), конверсия метана составила 92,6 %. Был также проработан вопрос изготовления реактора из кварцевого стекла.

Новые технологии разложения воды в США и России. 6/2017. Фото 3

Ниже приводится эскиз гипотетического мини-, микрореактора проточного типа из кварцевого стекла в горизонтальном исполнении для проведения химических процессов. Основой реактора служит модуль, представленный на рис. 1. Зоны 1 и 2 служат для подачи исходных компонентов, реакционная зона 3 предназначена для размещения катализаторов, нагрева рабочей смеси до температуры реакции, воздействия ВЧ-, ВУФи СВЧизлучения или иного технологического воздействия. Конфигурация зоны 3 может формироваться по требованиям ведения химических реакций. Зона 4 организована как циклон для разделения и закалки продуктов реакции, в том числе и как газовая центрифуга. Единичные модули в расчётном количестве собираются в батарею, как показано на рис. 2. По усмотрению разработчиков промышленные модули могут быть спроектированы и в вертикальном исполнении цилиндрической или иной формы.

Новые технологии разложения воды в США и России. 6/2017. Фото 4

Экономическая эффективность достигается за счёт того, что используется относительно недорогой природный газ, по сравнению с дорогой электроэнергией, себестоимость оборудования из кварцевого стекла на 25–40 % меньше, чем из металла.

Возможность развития конкретной технологии и отладки её внутри предприятия открывает новый метод получения водорода для малотоннажных производств. Кроме того, появление нового перспективного ассортимента товарной продукции существенно усовершенствует технологии обработки кварцевого стекла, дополнительно будет способствовать улучшению экономических показателей кварцевого производства.

Новые технологии разложения воды в США и России. 6/2017. Фото 5

Поскольку паровая конверсия природного газа в комплексе с аппаратурным оформлением процесса является составной частью синтеза материалов по реакциям Фишера-Тропша, перед ООО «ТехноКварц» возникает перспектива нового направления — изготовление высокоэффективных минии микроканальных кварцевых реакторов для других сегментов отрасли газохимии.

Электрохимические процессы разложение воды - Справочник химика 21
    Разность равновесных потенциалов электродных реакций называется обратимым напряжением разложения электролита Uo- Последнее численно равно э. д. с. электрохимической цепи, в которой протекает реакция, обратная реакции при электролизе. Например, обратимое напряжение разложения воды равно э. д. с. водороднокислородной цепи, при отборе тока от которой идет синтез воды из водорода и кислорода (см. 178). При 298 К э. д. с. этой цепи, а следовательно, и Uo равны 1,23 В. Учитывая соответствие между э. д. с. и обратимым напряжением разложения, последнее можно определить по термодинамическим данным согласно (175.9). При электролизе воды происходит выделение водорода на катоде и кислорода на аноде, причем каждый процесс сопровождается свойственным ему перенапряжением, зависящим, в первую очередь, от материала электродов [c.515]
    На практике процесс электролиза воды реализуется при более высоком напряжении. Данное обстоятельство связано с тем, что, помимо затрат электроэнергии на проведение собственно электрохимического разложения воды, необходимо затрачивать электроэнергию на преодоление электрического сопротивления электролита, диафрагмы, электродов, контактов, а также дополнительного сопротивления, обусловленного концентрационной и диффузионной поляризацией, перенапряжением процессов выделения водорода и кислорода. Напряжение на ячейке для электролиза воды можно представить в виде суммы следующих составляющих (баланс напряжения)  [c.23]

    Постоянный электрический ток используют в электрохимических производствах как для процессов разложения веществ, так и для процессов синтеза [9], при этом необходимо соблюдение определенных условий. Например, разложение воды начинается при напряжении [c.78]

    Электрохимическое выделение кислорода является неотъемлемой частью процесса разложения воды и протекает следующим образом  [c.205]

    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]


    Рассчитайте теоретическое значение напряжения разложения электролита процесса хромирования [сернокислый раствор оксида хрома (VI) СгОз1, пользуясь термодинамическими функциями компонентов электрохимической реакции (не учитывать побочный процесс электролитического разложения воды). [c.201]

    Вот один из самых казалось бы простых электрохимических процессов разложение воды на водород и кислород. [c.41]

    Отклонение выхода по току от 100 % может быть обусловлено протеканием побочных процессов разложением воды, восстановлением или окислением примесей, участием материала электрода в электрохимической реакции и др. Поэтому следует подбирать такие условия электролиза (pH раствора, материал электрода, растворитель, фоновый электролит и т.п.), чтобы выход по току был близок к 100 %. [c.517]

    Представление о том, что в растворах электролитов существуют свободные заряженные частицы — ионы, не сразу утвердилось в электрохимии. На первом этапе своего развития электрохимическая наука обходилась без этого представления. Тем не менее уже с начала XIX в. стали появляться теоретические модели, объяснявшие явление электропроводности в проводниках 2-го рода. Первая такая модель была предложена литовским ученым X. Гротгусом в 1805 г. применительно к процессу электрохимического разложения воды на водород и кислород. Представив молекулы воды в виде диполей, X. Грот-гус располагал их цепочкой между катодом и анодом электролизера фис. 2).Далее он предполагал, что при электролизе положительный конец диполя воды, обращенный к катоду, отщепляется и из него образуется [c.7]

    К фотоэлектрохимическим процессам разложения воды можно отнести также и электрохимические реакции, протекающие при облучении светом электрода (металлы, неорганические и органические полупроводники), либо адсорбированных на поверхности электрода частиц. [c.338]

    Нередко возникает задача электролитического получения полимерных пленок на катоде [15, 27, 62], поскольку анодное осаждение обладает рядом недостатков, например плохими электрическими характеристиками покрытий вследствие включения материала анода в растущую полимерную пленку. При осаждении на катоде полимерных покрытий из водных растворов в прикатодном пространстве происходит концентрирование гидроксильных ионов вследствие электрохимической реакции разложения воды. Чтобы полимерное вещество могло быть осаждено на катоде, оно должно удовлетворять двум требованиям растворяться в кислой или нейтральной среде и осаждаться при подщелачивании [15]. При проведении же процесса электроосаждения полимеров из неводных растворов дополнительно необходимы достаточно высокая проводимость растворителя и диссоциация полимерного вещества в нем с образованием поликатиона, а также тщательная очистка раствора от следов воды. Эти условия могут быть созданы, [c.32]

    Проведение процесса электросинтеза органических соединений в водных растворах связано и с рядом осложнений. Во многих случаях электрохимическая реакция на аноде или катоде сопровождается разложением воды, что обусловливает низкий выход продукта электролиза по току. Кроме того, что особенно существенно для анодных процессов, разложение воды приводит к появлению на поверхности электрода активных частиц, например, на аноде радикалов ОН, которые могут, путем взаимодействия с исходным или конечным продуктом электросинтеза, направлять реакцию в сторону образования побочных продуктов. [c.57]

    Эти процессы обратны процессам, идущим на электродах кисл

Минутку ...

Пожалуйста, включите Cookies и перезагрузите страницу.

Этот процесс автоматический. Ваш браузер будет перенаправлен на запрошенный контент в ближайшее время.

Пожалуйста, подождите до 5 секунд ...

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (+ [] - (!! [])) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [ ] + !! [] + !! []) + (! + [] + (!! []) + !! [+ !! [] + !! [] + !! [] + !!] [] + !! []) + (+ !! [])) / + ((+ [] + (!! [!]) - [] + []) + (! + [] + (!! []) + !! [] + !! []) + (+ [] - (!! [])) + (+ [] + (!! [!]) - []) + (+ [] - ( !! [])) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [ ] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] ) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] +! ! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [ (! + [] - (!! [])] + !! []) +!) + (! + [] + (!! []) + !! [])) / + ((+ [] + (!! []) + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] +! ! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] - (!! [])))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ [] + (!! [!]) - []) + (+ [] - (!! []!)) + (+ [ ] + (!! []) + !! [] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] + (!! []) - (! + [] + (!! []) []) + + !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + [] ) + (+ [] - (!! [])) + (! + [] - (!! [])) + (+ [] - (!! [])) + (+ [!] - (!! [])) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (+ [] + (!! [!]) - []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] ))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + [ ]) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] - (!! [])) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [ ] + (!! []) + !! [] + !! []) + (+ !! [])) / + ((! + [] + (!! []) + !! [] +! ! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []

,

Велоспорт и разложение питательных веществ

Что такое питание?

Всем нам известна концепция питания организмов. Но знаете ли вы, что существует целая область исследований, касающихся питания в сельском хозяйстве? Не волнуйся; Вам не нужно быть экспертом для управления системой.

Однако есть несколько основ, которые помогут вам, и мы собираемся упростить их для вас в этом посте.

Давайте поговорим о круговороте питательных веществ и разложении.

Основным принципом питания является изучение веществ, необходимых организму для роста и сохранения здоровья.Вещества могут быть одним элементом или более сложным соединением.

Некоторые недостатки вызывают восприимчивость к вредителям, таким как мучнистая роса.

Итак, когда нужен элемент?

Элемент необходим, когда организм не может ни выжить, ни завершить жизненный цикл без элемента. Когда у культуры нет нужного элемента, она начинает проявлять симптомы дефицита. Если

.

Наука за компостирование | Живая наука

Эта кожура банана в мусорном баке, в конечном счете, естественным образом разлагается, как и все органические отходы, благодаря полезным микроорганизмам в окружающей среде, которые питаются разлагающимся детритом.

Компостирование - это процесс, который работает, чтобы ускорить естественный распад органического материала, обеспечивая идеальные условия для роста организмов, питающихся детритом, согласно Министерству сельского хозяйства США (USDA). Конечным продуктом этого концентрированного процесса разложения является богатая питательными веществами почва, которая может помочь в выращивании сельскохозяйственных культур, садовых растений и деревьев.

Процесс компостирования

Микроорганизмы жизненно важны для процесса компостирования и находятся повсюду в окружающей среде, сказал Мэтью Уоршам, координатор по вопросам устойчивости и энергетики в Университете Дейтона в Огайо.

Ключом к эффективному компостированию является создание идеальной среды для процветания микроорганизмов, сказал Уоршам Live Science - высокие температуры, питательные вещества, влажность и большое количество кислорода.

Согласно Корнелльскому университету, в цикле компостирования есть три основных этапа, на которых процветают различные типы микроорганизмов.

Первая стадия обычно длится всего пару дней, в течение которых мезофильные микроорганизмы или микроорганизмы, которые размножаются при температуре от 68 до 113 градусов по Фаренгейту (от 20 до 45 градусов по Цельсию), начинают физически разрушать биоразлагаемые соединения. Тепло является естественным побочным продуктом этого начального процесса, и температура быстро поднимается до более чем 104 градусов F (40 градусов C).

Мезофильные микроорганизмы заменяются термофильными микроорганизмами (микроорганизмами, которые процветают при повышенных температурах) во время второй стадии, которая может длиться от нескольких дней до нескольких месяцев.Теплолюбивые микробы разрушают органические материалы на более мелкие кусочки. Более высокие температуры более способствуют расщеплению белков, жиров и сложных углеводов.

Кроме того, во время второй стадии температура продолжает повышаться, и, если не внимательно следить, куча компоста может стать настолько горячей, что в конечном итоге может уничтожить все полезные микроорганизмы. Такие методы, как аэрация и переворачивание компоста, помогают поддерживать температуру ниже примерно 149 градусов по Фаренгейту (65 градусов по Цельсию), а также обеспечивают дополнительный кислород и новые источники для разрушения термофильных микроорганизмов.

Третья стадия, которая обычно длится несколько месяцев, начинается, когда термофильные микроорганизмы израсходуют имеющийся запас соединений. На этой стадии температура начинает падать достаточно, чтобы мезофильные микроорганизмы могли возобновить контроль над компостной кучей и закончить расщепление оставшегося органического вещества в пригодный для использования гумус.

Организмы, которые помогают

Существует два основных класса компостирования микроорганизмов, известных как аэробы и анаэробы, согласно Planet Natural.

Аэробы - это бактерии, которым для выживания требуется уровень кислорода не менее 5 процентов, и они являются наиболее важными и эффективными компостирующими микроорганизмами, согласно Университету Иллинойса. Аэробы поглощают органические отходы и выделяют химические вещества, такие как азот, фосфор и магний, которые являются питательными веществами, необходимыми растениям для роста.

Анаэробные микроорганизмы - это бактерии, которым не требуется кислород. Они также не обрабатывают органические отходы так же эффективно, как аэробные бактерии.Анаэорги производят химические вещества, которые иногда токсичны для растений, и они вызывают вонючение свайных компостов, поскольку они выделяют сероводород, который пахнет тухлыми яйцами.

По данным Корнелльского университета, около 80-90 процентов всех микроорганизмов, обнаруженных в кучах компоста, являются бактериями. Оставшийся процент микроорганизмов составляют виды грибов, включая плесень и дрожжи.

В дополнение к микроорганизмам, другие полезные существа, такие как жуки-пилюли, многоножки и черви, найдут свой путь к куче компостирования, если условия будут правильными.Эти животные разлагают пищевые отходы, садовые заготовки и другие органические вещества в куче компоста и помогают превратить отходы в богатую питательными веществами почву.

Уоршам строит ресурсы для компостирования в Университете Дейтона и включает красных червей-вигглеров в кучу компостирования. По словам Уоршама, красные вигглеры ( Eisenia fetida ) - наиболее распространенные черви, используемые при вермикомпостировании или компостировании с червями. Вермикомпостирующие сваи университета могут разрушать 10 фунтов пищевых отходов и бумаги в день.

Что входит и не входит?

По данным Агентства США по охране окружающей среды, баланс "зеленых" и "коричневых" необходим для создания надлежащей среды для компостирования. Зелень богата азотом и включает такие предметы, как обрезка травы, фрукты и овощи и кофейная гуща. Брауны - это богатые углеродом обрезки дворов, такие как сухие листья, ветки и ветки.

Соотношение углерода и азота от 25 до 1 и от 30 до 1 идеально подходит для быстрого компостирования, согласно Университету Иллинойса.Микроорганизмы питаются как углеродом, так и азотом. Углерод дает микроорганизмам энергию, большая часть которой выделяется в виде углекислого газа и тепла, а азот обеспечивает дополнительное питание для дальнейшего роста и размножения.

Если в куче компоста слишком много углерода, разложение происходит гораздо медленнее, так как выделяется меньше тепла из-за того, что микроорганизмы не могут расти и размножаться так же легко, и, следовательно, не способны расщеплять углерод так же легко , С другой стороны, избыток азота может привести к неприятному запаху аммиака и может повысить кислотность компоста, который может быть токсичным для некоторых видов микроорганизмов.

Правильная влажность также жизненно важна для здоровья микроорганизмов, которые помогают в процессе компостирования. Содержание влаги от 40 до 60 процентов обеспечивает достаточную влажность, чтобы не допустить засорения микроорганизмов, но недостаточно для вытеснения кислорода из кучи.

Количество кислорода в компостной куче также важно, так как дефицит кислорода приводит к анаэробным микроорганизмам, которые могут привести к образованию вонючей компостной кучи. Кислород можно добавлять в компостную кучу, помешивая или переворачивая ее.

Что компост:

  • Фрукты и овощи
  • Яичные скорлупы
  • Кофейная гуща и фильтры
  • Чайные пакетики
  • Ореховые скорлупы
  • Измельченная газета, бумага и картон
  • Отделка двора, включая траву, листья, ветки, и веточки
  • Комнатные растения
  • Сено и солома
  • Опилки
  • Щепа
  • Тряпки из хлопка и шерсти
  • Сушилка и пылесос с ворсом
  • Волосы и мех
  • Зола камина

(Примечание: Министерство сельского хозяйства США рекомендует хоронить пищевые отходы если вы используете открытую компостную кучу для предотвращения появления нежелательных вредителей, ищущих бесплатную еду, таких как мухи, грызуны и еноты.)

Что не нужно компостировать:

  • Некоторые типы листьев и веток деревьев, такие как черный орех, выделяют вещества, которые могут быть вредными для растений
  • Уголь или угольная зола, поскольку они могут содержать вещества, которые вредны к растениям
  • Молочные продукты, яйца, жиры и масла, а также кость и отходы мяса или рыбы из-за потенциальных проблем с запахом, которые привлекают вредителей, таких как грызуны и мухи и передаваться на другие заводы
  • Отходы домашних животных (включая экскременты собак и кошек и использованный помет для кошек), так как они могут содержать вредных паразитов, бактерий или вирусов
  • Отделка дворов, обработанная химическими пестицидами; поскольку пестициды могут убивать компостирующие организмы

Коммерческие компостирующие компании также собирают такие продукты, как бумажные контейнеры для пищевых продуктов и компостируемые столовые приборы и столовые приборы, которые специально помечены как BPI Certified Compostable.

Молочные продукты, яйца, мясные продукты и жиры, как правило, не рекомендуются для компостирования, но есть много более крупных коммерческих объектов компостирования, которые хорошо подходят для борьбы с запахами и патогенами, которые могут существовать в этих продуктах.

Чтобы справиться с более сложными отходами, на коммерческие участки компостирования часто добавляется навоз скота, что способствует увеличению нагрева и скорости компостирования. По данным Университета штата Северная Дакота, навоз скота от травоядных животных, включая коров, овец и коз, уже содержит большое количество азота и многих аэробных микроорганизмов, которые необходимы для компостирования.Этот тип навоза также обычно не содержит опасных патогенов, которые можно найти в навозе мясоедающих животных, таких как кошки и собаки.

Компостирование помогает ускорить процесс естественного разложения органических материалов. (Изображение предоставлено: Shutterstock)

Что еще можно компостировать?

Многие компании разрабатывают больше продуктов, которые можно утилизировать при утилизации, включая обед и столовые приборы, мешки для мусора и даже подгузники. Прежде чем положить эти предметы в компостную кучу, важно убедиться, что они безопасны для компоста дома или приняты местным сборщиком компоста.[Top 10 сумасшедших экологических идей]

Хуантиан Цао, профессор исследований моды и одежды в Университете штата Делавэр, является со-директором проекта по созданию устойчивой одежды, которая работает над созданием компостируемой одежды. Цао и его команда разработали обувь, которая в основном сделана из грибов.

Прототип сандалии изготовлен из различных компостируемых деталей, сказал Цао в интервью Live Science. Подошва изготовлена ​​из грибного мицелиевого композита, который может пойти прямо в домашний компостер вместе со всеми отходами пищи.Стелька и подошва обуви сделаны из биоразлагаемой кожи растительного дубления, а ремешки сандалии - из хлопка, оба из которых можно компостировать на больших коммерческих площадках компостирования.

Компостирование дома

Рэнди Кокс и Кэти Гутовски, владельцы коммерческой компании по компостированию Green Camino, занимались компостом с самого раннего возраста и теперь рассказывают своему сообществу о преимуществах компостирования, будь то с помощью своей компании или дома ,

«Компостирование - это наркотик для входа в ноль отходов», - сказал Гутовски. «Когда вы начинаете компостирование, вы действительно начинаете обращать внимание на то, что вы выбрасываете, и вы начинаете смотреть на то, что вы покупаете и что входит».

Гутовски сказал, что многие из их клиентов вносят изменения в образ жизни, чтобы свести к минимуму то, что уходит в мусорные баки, в том числе не покупать продукты с избыточной пластиковой упаковкой и покупать по возможности на месте. «Это действительно изменение мышления», - сказал Гутовски.

Если у вас нет доступа к коммерческому компосту, начать работу дома так же просто, как собрать кучу в углу вашего двора. Многие хозяйственные магазины продают контейнеры для компостирования различных типов и размеров, чтобы удовлетворить потребности каждого дома. Обязательно ознакомьтесь с правилами компостирования, где вы живете, посетив веб-страницу департамента по утилизации отходов в вашем городе или округе. На дополнительную помощь по началу работы или на любые вопросы, которые могут у вас возникнуть, часто можно получить ответы в местном магазине бытовой техники, в питомнике или на рынках местного фермера.

,
исследований в области климатологии Южной Флориды

Источник изображения: Microsoft Clip Art

Процессы или области, которые преимущественно производят атмосферный углекислый газ, называют источниками.Углекислый газ добавляется в атмосферу естественным образом, когда организмы дышат или разлагаются (разлагаются), карбонатные породы выветриваются, происходят лесные пожары и извержения вулканов. Углекислый газ также добавляется в атмосферу в результате деятельности человека, такой как сжигание ископаемого топлива и леса и производство цемента.

Дыхание и Разложение

Вы, вероятно, знакомы с дыханием и дыхательной системой.Одним из определений дыхания является обмен кислорода и углекислого газа между кровью животного и окружающей средой. Углекислый газ также выделяется при дыхании организмов.

Дыхание также происходит на клеточном уровне. Все растения и животные возвращают в атмосферу как углекислый газ, так и водяной пар. Каждая клетка должна дышать, чтобы производить энергию, в которой она нуждается. Этот процесс известен как клеточное дыхание.Процесс дыхания производит энергию для организмов, комбинируя глюкозу с кислородом из воздуха. Во время клеточного дыхания глюкоза и кислород превращаются в энергию и углекислый газ. Поэтому углекислый газ выделяется в атмосферу в процессе клеточного дыхания.

C 6 H 12 O 6 + 6O 2 → 6CO 2 + H 2 O + энергия

глюкоза + кислород → углекислый газ + вода + энергия

Дыхание - это также процесс, при котором разлагающиеся живые (органические) организмы разлагаются.Когда организмы умирают, они разлагаются бактериями. Диоксид углерода выделяется в атмосферу или воду в процессе разложения.

Выветривание карбонатных пород


Известняк -
Источник изображения: SFWMD

В течение геологического времени известняк может подвергаться воздействию (в результате тектонических процессов или изменений уровня моря) атмосферы и атмосферных осадков.Углекислота, которая образуется, когда углекислый газ растворяется в воде, в свою очередь, растворяет карбонатные породы и выделяет углекислый газ.

Сжигание ископаемого топлива и леса


Бурение на нефть - Источник изображения: Microsoft Clip Art

Углекислый газ добавляется в атмосферу в результате деятельности человека.Когда сжигают углеводородное топливо (то есть древесину, уголь, природный газ, бензин и нефть), выделяется диоксид углерода. Во время горения или сжигания углерод от ископаемого топлива соединяется с кислородом в воздухе, образуя углекислый газ и водяной пар.

Это природное углеводородное топливо происходит из когда-то живых организмов и состоит из углерода и водорода, которые выделяют углекислый газ и воду при сжигании.

. Сжигание ископаемого топлива происходит с гораздо большей скоростью, чем его производство.

Мало того, что при сжигании лесов выделяется углекислый газ, вырубка лесов также может влиять на уровень углекислого газа. Деревья уменьшают количество углекислого газа из атмосферы в процессе фотосинтеза, поэтому меньшее количество деревьев означает, что в атмосфере остается больше углекислого газа.

Ниже представлена ​​анимация спутниковых снимков Landsat, показывающая изменения в топографии из-за вырубки лесов в амазонском лесу в Рондонии, Бразилия.Источник изображения: НАСА

Смотрите Эпизод 3: Глобальное потепление, все дело в углероде.
Роберт Крулвич и Одд Тодд из NPR в партнерстве с Wild Chronicles представляют серию мультфильмов об атоме в центре глобального потепления: углероде.В эпизоде ​​3: если вы разорвете углеродную связь - просто! цивилизация.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *