Теплообменник косвенного нагрева: Бойлер косвенного нагрева Sunsystem, 150 л, теплообменник 15 кВт, эмаль

Содержание

15 лучших бойлеров косвенного нагрева — Рейтинг 2020 года (Топ 15)

Бойлеры косвенного нагрева создают нужную температуру налитой в них воды за счет других теплоносителей. Например, воды или антифриза, нагретых котлами, системой центрального отопления и так далее. Плюсы от применения подобных накопительных водонагревателей способны по достоинству оценить и обладатели городских квартир, желающие заметно сократить суммы в счетах за ГВС и электроэнергию.

Какие же бойлеры косвенного нагрева могут считаться лучшими?

Некоторые важные критерии выбора бойлеров косвенного нагрева

Объём бака

Этот параметр подбирается схожим образом с электрическими «накопителями», зависит от количества активных пользователей и целей. Только в данном случае значение будет иметь ещё и мощность подключаемого котла, температура теплоносителя в отопительной системе.

Конструкция теплообменника

Могут быть применены:

  • Трубчатый змеевик. Один – в стандартном формате, два – в моделях с возможностью подключения к альтернативному источнику тепловой энергии;
  • Бойлеры с системой «бак в баке». Состоят из двух ёмкостей (обычно из «нержавейки») разного размера, вставленных одна в другую. Внутренняя заполняется так называемой санитарной водой, вторая содержит теплоноситель, обеспечивающий нагрев.

Материал бака

Существует 3 варианта:

  • нержавеющая сталь;
  • эмалированная сталь;
  • титановое покрытие.

Чаще всего встречаются первые две разновидности. В любом случае важны антикоррозионные свойства материала, а для большей надёжности следует обратить внимание на наличие магниевого анода (особенно в случае выбора менее дорогого бойлера с эмалированным баком).

Поддерживаемое рабочее давление

Данный параметр можно увидеть в спецификации. В зависимости от модели диапазон варьируется от 6 до 11 бар (обычно 6-7).

Очень важный показатель для тех, кто ставит бойлер в квартире. Отечественные водопроводные системы отличаются скачками давления, иногда превышающими норматив вдвое, а предохранительные клапаны могут засориться. И чтобы не клясть ни в чём не повинного производителя, есть резон установить редуктор на входе и спокойно радоваться безупречной работе бойлера без каких-либо протечек.

Наличие ТЭН

Как бы ни был хорош и экономичен косвенный водонагреватель, а иногда отопление может попросту отсутствовать. Тогда актуальны комбинированные модели с добавлением электрических (газовых) элементов нагрева. Проще говоря, модель с теплообменником и ТЭН, при недоступности подачи теплоносителя извне, способен работать как обычный накопительный электрический водонагреватель.

Рейтинг лучших бойлеров косвенного нагрева

Какой бойлер косвенного нагрева лучше купить?

У каждого участника нашего рейтинга найдется свой покупатель. Но при выборе лучшего бойлера косвенного нагрева помните — вода в нем нагревается около получаса. Поэтому объему нужно уделить особое внимание – чтобы воды хватало на нужды всех членов семьи. Для семьи из 3-4 человек обычно нужно покупать бойлер не менее 100, а лучше 150 литров.

Желаем удачной покупки!

Для чего нужен косвенный бойлер

В частных и загородных домах, где установка электроводонагревателей невыгодна из-за высокой стоимости электроэнергии, часто используют бойлеры косвенного нагрева, обеспечивающие нужды потребителей в горячей воде. Накопительный бак с теплообменником, запитывающимся от автономного котла отопления отлично справляется с нагревом большого количества жидкости без дополнительных энергозатрат и обеспечивает бесперебойную подачу горячего потока в нужном объеме и заданной температуры.


Несмотря на все эти достоинства, многие владельцы загородных домов нередко считают приобретение косвенного бойлера излишней тратой денег и отдают предпочтение другим вариантам.

Например, двухконтурным котлам, справедливо полагая, что они стоят дешевле и занимают меньше места, обеспечивая жилье сразу и ГВС, и отоплением. В этой статье мы расскажем, для чего нужен косвенный бойлер и чем он лучше остального оборудования.

Принцип действия прибора

Ключевое отличие бойлера косвенного нагрев от других видов накопительных водонагревателей — отсутствие собственного нагревательного элемента. Визуально это тот же резервуар, но внутри вместо ТЭНа или газовой горелки стоит теплообменник, подключенный к внешнему источнику тепла — контуру котла, системе центрального отопления или солнечному коллектору.


Теплоноситель, циркулирующий по трубопроводу, постоянно подогревает воду в баке до заданной температуры, не затрачивая при этом дополнительных энергоресурсов. При условии, что резервуары косвенного бойлера обычно на 300-400 литров, владелец дома значительно сэкономит на оплате газа или электроэнергии.

Плюсы и минусы оборудования

Помимо энергонезависимости приборы имеют и другие достоинства:

  • В бойлерах косвенного нагрева не нужно долго ждать, когда протечет холодная вода или нагреется израсходованный объем (как в газовых или электрических моделях). Благодаря конструктивным особенностям прибора жидкость здесь прогревается равномерно по всему резервуару, а если в доме реализована система обратной циркуляции ГВС, горячая вода потечет из крана буквально сразу после его открытия.
  • Оборудование обеспечивает все точки водоразбора потоком с одинаковым напором и температурой, в том числе и в период пиковой нагрузки. Это позволяет использовать горячую воду из бойлера сразу нескольким потребителям, не причиняя дискомфорта другим пользователям.
  • Конструкция прибора позволяет подключать оборудование к альтернативным источникам энергии — гелиосистеме, термодинамическим панелям или тепловому насосу, которые будут обеспечивать передачу тепла воде при невозможности косвенного нагрева.

Минус такой конструкции — нагрев жидкости происходит только при поступлении тепла извне. Прибор не может работать, когда отопление отсутствует, и бойлер косвенного нагрева становится не нужным. Многие производители компенсируют этот недостаток, предлагая усовершенствованное оборудование с встроенными ТЭНами. В период, когда нет отопления или невозможно использовать альтернативный источник энергии, вода нагревается с помощью электрического нагревателя, как в типовых электроводонагревателях.

Посмотрите подробное видео, как работают разные типы бойлеров косвенного нагрева:

Устройство косвенных бойлеров разных видов

Вне зависимости от типа бойлер представляет собой резервуар, заключенный в декоративный корпус из нержавеющей стали, пластика или металла с эмалью. Внутренний накопительный бак может быть:

  • со стеклокерамическим или эмалевым защитным слоем;
  • из нержавеющей стали;
  • с титановым напылением.

Покрытие из керамики и эмали обеспечивает защиту бака от коррозии, что продлевает срок эксплуатации резервуара. Однако наиболее долговечны нержавеющие и титановые емкости, они прослужат до 7-12 лет. В качестве дополнительной антикоррозийной защиты в емкости устанавливается магниевый или титановый анод.


Между корпусом и накопительным баком устроен слой теплоизоляции из пенополистирола или полиуретана, снижающий потери тепла в резервуаре до 2-3°С за 24 часа.

Каждый прибор предусматривает возможность присоединения труб с теплоносителем, входа холодной и выхода горячей воды, для чего бойлер косвенного нагрева оснащается соответствующими патрубками.

Внутреннее устройство оборудования зависит от его типа.

Приборы со змеевиком

Наиболее распространены приборы теплообменником из стали или латуни, по которому проходит теплоноситель. Первый вариант отличается длительным сроком службы, второй эффективнее в нагреве и легче чистится от накипи. От количество витков змеевика зависит скорость нагрева воды — чем их больше, тем быстрее прогревается жидкость.

Принцип работы оборудования: теплоноситель поступает в теплообменник через верхний патрубок, нагревает объем жидкости в баке и возвращается охлажденным обратно в котел отопления через нижнюю трубу подключения. Такая система позволяет постоянно поддерживать заданную температуру в месте отвода горячей воды. За циркуляцию теплоносителя отвечает встроенный в контур насос.


Забор нагретой жидкости выполняется из верхней части резервуара, холодной водой емкость пополняется через нижний патрубок. По середине бака может находится подвод системы рециркуляции. Температура нагрева отслеживается автоматически, для чего на косвенный бойлер монтируется термостат, отключающий насос при достижении заданных параметров.  

На патрубок холодной воды устанавливается обратный клапан, препятствующий вытеканию жидкости при снижении давления в системе. При наличии контура обратной циркуляции прибор оснащается мембранным расширительным баком вместимостью в ⅕ от объема основного резервуара. Он будет отводить излишек горячей воды при повышении давления в контуре. Рядом с бачком монтируют воздухоотводчик для стравливания образующегося пара и предохранительный клапан.

Посмотрите подробное видео, чтобы понять, как работает система рециркуляции и зачем она нужна:

Бойлеры «бак в баке»

Некоторые производители предлагают другое конструктивное исполнение оборудования — здесь в качестве нагревательного устройства используются два резервуара разной емкости, вставленные друг в друга. По большему проходит теплоноситель температурой +90…+95°С, подогревающий воду в меньшем баке с гофрированными стенками.

Для чего нужен бойлер косвенного нагрева такого типа: эти модели предпочтительны для применения в домах с большим количеством проживающих и точек водоразбора. Благодаря большой площади теплообмена вода в приборе быстро прогревается, что позволяет прибору обеспечивать бесперебойную подачу горячего потока.


Подобная конструкция бойлера обладает следующими преимуществами:

  • Вся вода в баке имеет одинаковую температуру, так как здесь нет непрогреваемых зон. Это позволяет ориентировать резервуар в любом пространственном положении как горизонтальном, так и вертикальном.
  • В сравнении с классическим вариантом, оснащенным змеевиком, бойлеры «бак в баке» имеют меньший объем при одинаковой производительности.
  • В отличие от спиральных теплообменников, склонных к образованию накипи, внутренняя емкость бойлера самоочищается в процессе эксплуатации. Это обеспечивает прибору экономичность в потребление электроэнергии и длительный службы — до 5-10 лет.

Полезный объем, отведенный под ГВС, составляет примерно 70% от общего вместительности устройства. Дополнительный плюс оборудования — для такого косвенного бойлера не нужна установка магниевого анода, что значительно упрощает его обслуживание.

Особенности монтажа «косвенников»

Бойлеры косвенного нагрева монтируют недалеко от котла отопления, чтобы сократить потери тепла при транспортировке теплоносителя. Навесные модели крепятся на несущую стену, напольные устанавливают на ровную поверхность.

Водонагреватель подключается по следующим схемам:

  • Через трехходовой клапан, который устанавливается на подводе горячей воды после циркуляционного насоса и управляется термостатом бойлера. При включении котла поток теплоносителя, циркулирующий по общему отопительному контуру, перенаправляется в водонагреватель. После подогрева воды до заданной температуры в баке срабатывает термодатчик и ГВС отключается от схемы отопления. Для корректной работы подобной системы важно правильно настроить термостат, чтобы его параметры не были ниже, чем в котельном терморегуляторе.


  • Запараллеливание отопительного котла и бойлера косвенного нагрева, для чего на отопительной магистрали и подводящей трубе прибора устанавливается два насоса. Они обеспечивают принудительную циркуляцию теплоносителя по одному из контуров в зависимости от сигнала термостата. При необходимости нагрева ГВС радиаторы временно отключаются и весь ресурс системы идет в водонагреватель.

      

  • Многоконтурная система подключения бойлера применяется, если кроме радиаторов в доме есть другие потребители тепла. В этом случае устанавливают гидравлический распределитель, который предупредит поломки насосов и выход из строя приборов отопления.

Независимо от схемы подключения за насосами последовательно обязательно монтируется обратный клапан, позволяющий работать оборудованию независимо друг от друга.

Какой бойлер выбрать

Подбирая бойлер косвенного нагрева, нужно в первую очередь определиться с его емкостью. Этот параметр зависит от предполагаемого объема горячей воды, которая будет потребляться в доме. В среднем на семью из 2-3 человек расходуется 80-100 литров в сутки. По точкам водоразбора в среднем может тратиться:

  • 6-16 л на умывание;
  • 60-85 л на принятие душа;
  • 160-180 л на ванну;
  • 20-25 л на мытье посуды;
  • 20-30 л на другие бытовые нужды.

Объем накопительного бака рассчитывают исходя из этих значений и потребностей проживающих людей в доме. При этом учитывают, что производительность прибора напрямую зависит от мощности котла отопления и на нагрев объема воды требуется некоторое время.

При выборе стоит обратить внимание на следующие моменты:

  • Особенности конструкции прибора и возможность подключения дополнительных устройств, расширяющих функциональность прибора — ТЭНа, второго теплообменника, системы рециркуляции, альтернативных источников энергии.
  • Из каких материалов изготовлены элементы косвенного бойлера, для чего ознакомьтесь с инструкцией производителя. Здесь указывается информация по внутреннему покрытию бака и декоративному корпусу, типу теплоизоляции, используемому аноду, теплообменнику и т.д. От качества этих компонентов зависит срок эксплуатации прибора.
  • Конструкционные особенности изделия: способ монтажа — настенный или напольный, ориентация бака — горизонтальная или вертикальная, размеры устройства. Как правило, бойлер устанавливается рядом с котлом в отдельном помещении, где места хватает для всего оборудования. Но иногда габариты тоже играют роль.
  • Тип управления — механическое или электронное с возможностью программирования.

Особое внимание при выборе водонагревателя обратите на производителя — продукция малоизвестных компаний доступнее по цене, но недолговечна. Поэтому лучше отдать предпочтение таким проверенным европейским брендам, как Thermona, Viessmann, Buderus, Drazice и т.д. В надежности этого оборудования нет никаких сомнений — специалисты компании «Мособлгаз» давно работают с продукцией этих производителей и уверены в ее качестве.

Бойлер косвенного нагрева: своими руками, видео, чертежи

Горячее водоснабжение — это привычно и удобно, но как быть, если подключиться к центральной системе затруднительно? Решить этот вопрос целым рядом способов, и самый простой и экономичный из них — установка бойлера косвенного нагрева.

Особенности

В отличие от водонагревателей, в бойлере косвенного нагрева используется энергия теплоносителя, применяемого для отопления. Для этого в бак-накопитель встраивается теплообменник, обычно имеющий форму змеевика. Проходя по нему, теплоноситель системы отопления нагревает воду, находящуюся в баке.

Нагрев воды в бойлере, как и в водонагревателе накопительного типа, происходит в течение нескольких часов, но ее температура потом долго остается стабильной, что повышает удобство использования горячей воды для душа и ванны.

Бойлер косвенного нагрева не только экономичен, он еще и более безопасен, чем водонагреватель. В случае отказа автоматики в ТЭНовых нагревателях может произойти закипание воды и разрушение самого прибора или фитинговых соединений, что приведет к утечке. В бойлере же вода не может нагреться сильнее, чем теплоноситель, обычно этот показатель находится в пределах 60-90 градусов, что безопасно и для труб, и для человека.

Плюсы использования бойлера косвенного нагрева:

  • теплообменник можно подключить как к центральному отоплению, так и к котлу любого типа;
  • для нагрева воды не нужна электроэнергия, газ или другое топливо, что снижает затраты на монтаж и эксплуатацию бойлера;
  • температура воды стабильная, без резких скачков;
  • безопасность использования даже без установки дорогостоящей автоматики — вода не закипает, при утечке или прекращении подачи холодной воды не происходит выхода прибора из строя;
  • простая конструкция и монтаж позволяют дополнительно сэкономить, сделав и установив бойлер косвенного нагрева своими руками.

Минусы:

  • довольно большие размеры и вес, сравнимые с водонагревателем накопительного типа;
  • бойлер косвенного нагрева используется только в отопительный сезон, для летнего применения его оснащают ТЭНом;
  • длительный нагрев воды, во время которого температура теплоносителя в радиаторах снижается;
  • отложение солей на змеевике требует регулярной чистки и обслуживания.
На рынке представлено множество моделей бойлеров, использующих косвенный нагрев. Но при наличии минимальных навыков сварки и монтажа возможно изготовление бойлера для дома или дачи своими руками.

Конструкция

Устройство бойлера довольно простое. В баке из материала, не подверженного коррозии, расположен теплообменник в виде змеевика или бака меньшего размера. Теплообменник для увеличения теплоотдачи выполняют из материала с высокой теплопроводностью, обычно из меди.

Бак оснащен штуцерами для подвода и отбора воды. Ввод холодной воды расположен снизу бака и оснащен обратным клапаном, через него же, с помощью обводного вентиля, производят слив. Выводной патрубок для горячей воды располагают в верхней части бака.

Стенки бака для уменьшения тепловых потерь необходимо хорошо утеплить. Для этого можно использовать различные материалы, но наилучший вариант — полиуретан, он обладает высокими теплоизоляционными качествами, при этом не боится влаги, хорошо гасит шум воды, возникающий при нагреве, долговечен и экологически безопасен.

Чтобы сделать бойлер своими руками проще всего поместить бак-накопитель в бачок или корпус аналогичной формы чуть большего размера и заполнить пространство между ними полиуретановой пеной из баллона.

Для измерения и регулировки температуры бойлер оснащают термометром и термостатом. Этот элемент не обязателен, но существенно увеличивает удобство использования нагревателя. Чтобы уменьшить внутреннюю коррозию, можно также встроить в бак магниевый анод, предназначенный для водонагревателей ТЭНового типа. Их продают в сервисных центрах обслуживания или в магазинах бытовой техники.

Технология изготовления своими руками

Прежде чем начать самостоятельное изготовление бойлера, нужно определиться с его параметрами и характеристиками:

  • расход воды и объем бака;
  • вид змеевика и расчет его размеров;
  • наличие дополнительных устройств — ТЭНа, термостата.

Исходя из полученных ответов можно выбрать емкость для накопительного бака, материал для изготовления змеевика, а также определиться с размерами и выполнить эскиз будущего бойлера.

Расчет объема

Чтобы обеспечить достаточное количество горячей воды, необходимо представлять себе ее ежедневный расход. Принято считать, что на каждого постоянно проживающего в доме человека необходимо 50-80 литров нагретой воды в день.

Это количество позволит принять душ или ванну, а также удовлетворит потребность в горячей воде для стирки, уборки и мытья посуды. Таким образом, для семьи из 3-4 человек понадобится бойлер с баком на 200 литров.

Если вода нужна только для хозяйственных нужд, например, мытья рук и посуды, достаточно бака меньшего размера — на 50-70 литров. Не стоит без необходимости выбирать бак слишком большого размера — это увеличит время нагрева воды и приведет к уменьшению эффективности отопительной системы.

Выбор и расчет змеевика

Змеевик в бойлере может быть выполнен из металлической трубы в виде спирали или змейки, либо представлять собой внутренний бак меньшего размера. Делать его лучше из материала, обладающего высокой теплопередачей и устойчивостью к коррозии, например, из меди.

Также можно использовать трубу из нержавейки, но ее сложнее согнуть и придать ей необходимую форму. Обычные стальные трубы использовать не рекомендуется — проточная вода при нагреве будет выделять пузырьки кислорода, которые вызовут быструю коррозию металла. Наиболее удобна трубка из меди диаметром 10 мм — она гнется без применения горелки по шаблону.

Некоторые мастера используют также металлопластиковые трубы. Они устойчивы к внешней и внутренней коррозии, но использовать их нужно строго при температуре ниже 90 градусов. Любой перегрев приведет к деформации труб, протечкам и смешиванию воды в контурах. При определенных условиях это может привести к воздушным пробкам и ухудшению циркуляции.

Змеевик из трубы наматывают в виде спирали из расчетного числа витков и располагают в нижней части бака круглого сечения. Для нормальной теплоотдачи он не должен касаться стенок. При изготовлении бака прямоугольной формы теплообменник делают в виде змейки и размещают у одной из стенок.

Размеры и число витков змеевика определят с помощью расчета по формуле:


В этой формуле:
  • Р — тепловая мощность змеевика, которая должна составлять 1,5 кВт на каждые 10 литров объема бака;
  • d — диаметр используемой трубы, выраженный в метрах, принимаем 0,01 м;
  • l — общая длина трубы, в метрах;
  • ∆Т — разность температур до и после нагрева, обычно для предварительного расчета принимают 65 градусов.

Для бака на 200 литров с мощностью в 30 кВт расчет будет таким:


Отмерив необходимую длину трубы, нужно рассчитать также диаметр витка. Чтобы спираль не касалась стенок, его принимают на 10-12 см меньше диаметра бака-накопителя. Расчетные значения для некоторых размеров бака приведены в таблице.
Объем бака бойлера, лМощность тепловая, кВтДлина змеевика, мДиаметр бака бойлера, мДиаметр витка, мКоличество витков
20030150,50,412
15022,5110,50,49
100157,50,40,38
507,540,40,35

Расстояние между витками целесообразно делать 5-8 см, чтобы улучшить условие теплообмена. При этом важно рассчитать общую высоту змеевика так, чтобы он не перекрывал входной и выходной патрубок для нагреваемой воды.

Теплообменник в виде бака выполняют обычно из того же материала, что и сам бак, а его размеры составляют 1/5-1/8 общего объема бойлера.

ТЭН, термостат и другие вспомогательные устройства

Один из недостатков бойлера косвенного нагрева — возможность его использования только в отопительный период. Решить эту проблему можно двумя способами:

  • выполнить монтаж короткого замкнутого контура от котла, рассчитанного только на нагрев воды в бойлере;
  • установить в самом баке ТЭН.

Первый способ связан с лишним расходом времени и топлива — при загрузке на неполную мощность котел будет работать с пониженным КПД, а в случае использования твердого топлива — еще и с образованием повышенного количества копоти и сажи. Кроме того, потребуется время на его обслуживание, загрузку и чистку.

Установка ТЭНа в сам бак бойлера позволит использовать его летом в режиме обычного водонагревателя. Для снижения затрат на электроэнергию нагрев можно производить в ночное время по более низким тарифам или подключить в систему солнечный коллектор.

Мощность ТЭНа должна соответствовать объему бака. В среднем, для объема 50 литров необходим ТЭН электрической мощностью 1,5-1,8 кВт, а для 200 литрового бойлера — 5-6 кВт. Эти значения могут быть незначительно изменены, при этом стоит помнить: чем больше мощность, тем короче время нагрева, и наоборот.

Осуществляя монтаж ТЭНа в бак бойлера, обязательно установите термостат, отключающий нагрев при температуре не более 90 градусов!

Также рекомендуется установить в бак магниевый анод, который отвлекает на себя процессы электрохимической коррозии внутри бака. Он постепенно растворяется при этом, и через несколько лет может потребоваться его замена.

В данной статье вы узнаете, что лучше: купить электрокотёл для частного дома или сделать своими руками.
Как правильно выбрать электрокотёл для обогрева дома площадью 100 квадратных метров, читайте здесь

Порядок изготовления и монтажа

После проведения всех необходимых расчетов и подготовки эскиза можно собирать бойлер косвенного нагрева своими руками.

    1. Сборку начинают с подготовки самой важной части — бака-накопителя. Можно использовать любую готовую емкость из нержавейки, алюминия или термостойкого пластика или сварить бак из листового металла и обрезков труб подходящего диаметра. Главное требование — достаточная толщина стенок и прочность бака и устойчивость к коррозии.
    2. Достаточно просто сделать бак из отработанного газового баллона. Для этого верхнюю часть баллона срезают, внутренние стенки тщательно зачищают, промывают несколько раз и проветривают на свежем воздухе в течение 3-5 дней. В противном случае вода приобретет запах газа. После просушки поверхность грунтуют водостойкой краской.
    3. В баке в соответствии с эскизом нужно сделать несколько отверстий: для подключения змеевика, для входного и выходного патрубка, а также для ТЭНа и термостата при их установке.

    1. Приваривают обрезки трубы — патрубки, и нарезают на внешней части резьбу для подключения контура ГВС и отвода от контура отопления.
    2. Далее нужно сделать змеевик по расчетным размерам. Навивать спираль удобно по шаблону, в качестве которого используют трубу нужного диаметра, бревно или любой прочный цилиндрический предмет. Навивка должна быть достаточно свободной, чтобы готовый змеевик снялся с оправки.

  1. К патрубкам змеевик крепят с помощью пайки, проверяя герметичность соединений. Это можно сделать с помощью воздуха из компрессора и мыльной воды. Давление при опрессовке должно превышать рабочее давление в системе отопления как минимум в 1,5 раза.
  2. При необходимости устанавливают в бак ТЭН, термостат и магниевый анод. Подключают к электрической части медный кабель необходимого сечения — для ТЭНа 2 кВт — 1,5 мм², для 4 кВт — 2,5 мм², для 5 и более — 4 мм².
  3. Помещают бак в корпус, если он предусмотрен проектом. Устанавливают между стенками бака и корпуса временные или постоянные распорки, чтобы выдержать одинаковое расстояние со всех сторон. Заполняют пространство утеплителем, например, монтажной полиуретановой пеной.
  4. После высыхания пены срезают излишки, обрабатывают патрубки и крепят крышку корпуса. Можно окрасить его краской по металлу в светлые тона, для меньшего излучения тепла и продления срока службы.
  5. Подключают бойлер к системе отопления и ГВС соответственно приведенной схеме.

Сделать бойлер косвенного нагрева своими руками довольно просто и бюджетно, а его эффективность и экономичность быстро окупит все затраты. Горячая вода со стабильной температурой сделает жизнь в загородном доме обеспечит привычный горожанам комфорт.

Бойлер косвенного нагрева Sunsystem MB 100 V/S1 с одним теплообменником и ТЭНом

Бойлеры косвенного нагрева представляют собой аппарат, в котором нагрев осуществляется за счет внешнего источника, работающего с рециркуляцией. Косвенный водонагреватель имеет свои достоинства и недостатки. Изучив их, принимают решение о целесообразности выбора оборудования. Конструктивные особенности бойлера косвенного нагрева Классификация подобных нагревателей: бойлер косвенного нагрева по форме корпуса может быть прямоугольным и цилиндрическим; по способу монтажа бывают настенными, напольными, вертикальными, горизонтальными; по числу змеевиков делятся на одно-, двух-, трехконтурные. Вертикальный тип наиболее популярен.   Принцип работы бойлера косвенного нагрева      Некоторые аппараты конструктивно представляют собой «бак в баке». Тогда между стенками внешнего и внутреннего сосудов циркулирует теплоноситель, поступающий от отопительной системы. Бак, в котором греется вода, изготавливается из нержавейки. КПД таких систем выше. Комбинированные модификации вертикальных водонагревателей позволяют использовать отопительную систему, электричество, газ.    Достоинства оборудования     Чем особенно привлекает бойлер косвенного нагрева – минимальными расходами на оплату ресурсов, необходимых для его функционирования. Классическим модификациям не требуется электрическая энергия. Они не повышают нагрузку на электросети.      Вертикальная замкнутая конструкция сосуда вкупе с физическими законами обеспечивает непрерывную циркуляцию жидкости. Верхние слои, остывая, постепенно опускаются вниз, где вновь взаимодействуют с теплообменником. Выход горячей воды расположен сверху. Поэтому холодного отстоя не бывает. Потребитель, открыв кран, сразу получает кипяток. Вертикальный косвенный водонагреватель удобнее котла с двумя теплообменниками. У последнего при водозаборе одновременно несколькими потребителями падает давление. Это чревато скачками температуры воды, нестабильностью режима работы котла, что негативно отражается на длительности эксплуатации. Косвенный нагреватель способен снабжать сразу несколько водоразборных точек, гарантируя неизменность температурного режима, напора. Процесс рециркуляции предупреждает поражение бака легионеллами, патогенными микроорганизмами. Внутри постоянно поддерживается высокая температура, предупреждающая их наличие. Теплоноситель не контактирует с водой в баке, не доводит ее до максимальных значений. Змеевик рекомендуется прогревать до 60°С. Тогда вода достигнет 50°С. Потому отложений солей и накипи в таком бойлере практически нет, что существенно продлевает его жизнь. Вертикальный косвенный нагреватель вместителен. В нем всегда находится большой объем воды. Ее хватит для подключения минимум двух потребителей. Также объема бака хватит, чтобы обеспечивать водоснабжение даже при нестабильной подаче воды. Внутренняя емкость окружена теплоизоляционным материалом. Хорошо, если это полиуретан. Внутри косвенного нагревателя высокая температура сохраняется долго. Этим пользуются для экономии, периодически отключая отопление. Для предупреждения коррозии нагревательного элемента используется специальный анод. Так продлевается срок службы змеевика. Чтобы давление в баке не превысило максимально возможное, имеются два устройства: терморегулятор и клапан предохранения. Корпуса вертикальных бойлеров – стальной лист. Часто это эмалированные поверхности. При необходимости дизайн видоизменяется. Недостатки Покупка, монтаж косвенного нагревателя воды – дорогое удовольствие. Цена таких баков выше, чем их электрических или газовых аналогов. Для установки вертикального водонагревателя емкостью 100-200 л требуется много места.    Продолжительность работы устройства напрямую зависит от материала, из которого изготовлено защитное покрытие внутреннего баллона. В бюджетных моделях используют эмаль, стеклокерамика, стеклофарфор. Со временем они трескаются. Самые надежные водонагреватели – с теплообменником с титановым напылением. Но цена их выше.     Теплообменник подключается к отопительной системе. Он забирает определенный объем теплоносителя. При прогреве косвенного бойлера нагрузка на котел увеличивается, одновременно повышается расход топлива (газа, угля). Иногда хозяйства вынуждены покупать еще один бак другого вида (электрический, накопительный), чтобы снизить нагрузку на отопительный прибор. Тогда эксплуатируют и обслуживают два агрегата, что дорого, требует дополнительных трудозатрат.     Кипяток косвенный бойлер будет давать только тогда, когда змеевик имеет достаточную температуру, то есть, когда включено отопление. В иное время нужно либо переходить на другие подогреватели, либо совершенствовать конструкцию этого бака. Многие устанавливают в вертикальный косвенный бойлер ТЭН. В некоторых моделях данный элемент является штатным. Но подогрев большого объема воды электричеством обойдется недешево.     Косвенный водонагреватель отличается инертностью. Если бак остыл, возможность пользоваться водой появится не раньше двух-трех часов после включения отопительного котла. Пока, поскольку приходиться греть большой объем жидкости, снижается эффективность отопления дома. Подобрать такой сложный товар можно в этом разделе: https://gaziteplo.ru/catalog/boylery_kosvennogo_nagreva/  

Зачем нужен бойлер косвенного нагрева и как он работает

В этой статье я расскажу о бойлерах косвенного нагрева. Бойлер (от англ. boiler), ещё одно название накопительный водонагреватель ― это утеплённая ёмкость, в которую встроен теплообменник. Конструкция теплообменника бывает разная, как и их количество. Наиболее распространённая конструкция теплообменника спираль.

Содержание статьи

Бойлер косвенного нагрева — конфигурации

Я знаю около десятка конфигураций. Её я подбираю она в зависимости от того, какую задачу мне нужно решить.

Бойлер косвенного нагрева с одним теплообменником я устанавливаю, если нужно приготавливать горячую воду от единственного источника энергии. Это может быть твердотопливный, электрический или газовый котёл с одним контуром.

Бойлер косвенного нагрева Tesy

Бойлеры с двумя теплообменниками монтирую, когда источников тепла – два. Например, я установил в частном доме твердотопливный котёл и солнечные коллекторы. Или, например, электрический и твердотопливный котёл. В этом случае один источник тепла подключается к одной спирали бойлера, а другой источник ко второму теплообменнику.

Водонагреватель косвенного нагрева Tesy

Принцип работы бойлера

Принцип работы я думаю понятен – вода для ГВС нагревается от того источника, который более удобен или выгоден в определённое время.

Приведу пример: дом отапливается электрическим котлом и есть гелиосистема. Днём солнце бесплатно нагревает воду. Ночью вода в бойлере нагревается от электрического котла, который работает по ночному тарифу.

Меньше распространены бойлеры с теплообменником огромного размера. Такие водонагреватели ставлю там, где источник тепла низкотемпературный, например, тепловой насос.

Водонагреватель косвенного нагрева с мультиспиралью

Большая спираль у такого водонагревателя позволяет быстро нагревать воду. Если мне нужен большой теплообменник в бойлере, но такого я найти не могу или он дорого стоит, то я делаю так:

Покупаю водонагреватель косвенного нагрева с двумя теплообменниками и соединяю эти спирали в одну с помощью фитингов и трубы.

Также распространены бойлеры с конструкцией бак в баке, это когда вместо спирали установлен меньший бак внутри самой ёмкости.

Водонагреватель косвенного нагрева Tesy бак в баке

Водонагреватель с конструкцией бак в баке эффективнее, чем водонагреватель со спиральными теплообменниками. Например, бойлер ACV, объёмом 300 л, по эффективности производства горячей воды можно сравнить с бойлером Tesy, объёмом 500 литров.

Это связано с тем, что внутренний бак в бойлере ACV сделан из нержавеющей стали, а теплообменник в Tesy, покрыт специальным композитным материалом. У нержавейки теплопередача больше и площадь теплообмена больше, чем у спирального. Больше площадь-больше теплообмен за единицу времени. Поэтому воду нагреть такой бойлер сможет быстрее.

Но у бойлеров бак в баке есть большой недостаток. Они не очень надёжны и очень прихотливы к качеству монтажа и эксплуатации. За последние 10 лет я видел 7 лопнувших баков в бойлерах и буферах. А вот поломанного бойлера со спиральным теплообменником ещё ни разу не видел.

Зачем нужны бойлеры косвенного нагрева

Бойлер косвенного нагрева приготавливает и сохраняет горячую воду в процессе своей работы. С помощью бойлера можно получить поток горячей воды в любой точке дома, с постоянной температурой. И даже если люди в доме откроют одновременно 3 крана с горячей водой, то во всех кранах температура горячей воды будет одинакова.

Водонагреватель косвенного нагрева 200 литров

Если вы купаетесь в душевой и в это время кто-то включает воду в соседнем помещении (например, кухне), и вас ошпаривает кипятком ― то в этом доме, 100% нет бойлера косвенного нагрева.

В домах, где несколько санузлов, без бойлера косвенного нагрева получить воду одинаковым напором и температурой просто невозможно.

Я много раз видел, как люди в двух или трёхэтажный дом ставят двухконтурный газовый котел и думают, что его хватит для приготовления горячей воды на весь дом.

Потом заселяются и нервничают, потому что котёл не справляется.

Двухконтурный котел, мощностью 24 кВт, сможет нагреть воду в протоке максимум для двух точек водоразбора. Я открыл 2 крана с горячей водой: на кухне и в ванной. Если котел стоит недалеко, то его мощности хватит, чтобы нагревать воду в протоке.

А если котел стоит в подвале, кто-то открыл кран на кухне и ванной, то на втором этаже, открыв кран с горячей водой вы её не дождётесь. Вот для таких случаев ставят бойлер косвенного нагрева и делают рециркуляцию

Что такое рециркуляция и зачем она нужна

С помощью бойлера косвенного нагрева несложно сделать рециркуляцию горячей воды. Это нужно там, где точки водоразбора находятся далеко от источника горячего водоснабжения. Приведу простой пример: двухэтажный дом, котельная в подвале. Открываете кран с горячей водой в санузле на втором этаже и ждёте пару минут, когда появится горячая вода.

С реализованной системой рециркуляции ГВС, горячая вода из крана появится через несколько секунд после открытия. Это решение намного повысит комфорт. А также значительно снизит общий расход воды, что является экономией.

Посмотрите какие ошибки совершают люди, когда строят частный дом.

Схема подключения бойлера

А если у вас нет газа и смонтирован твердотопливный котёл, как тогда греть горячую воду? Тоже с помощью водонагревателя косвенного нагрева. В последнее время набирают популярность солнечные коллекторы и панели. Тут тоже применяется бойлер косвенного нагрева, только уже с двумя теплообменниками.

Один теплообменник присоединён к котлу, а второй теплообменник присоединён к гелиосистеме. Когда светит солнце, горячая вода в бойлере нагревается солнечной энергией. Когда солнца нет, горячую воду нагревает котёл.

Схема подключения котла и гелиосистемы

Вы уже догадались, почему такое название — бойлер косвенного нагрева. Потому что нагрев воды в бойлере осуществляется косвенно, за счёт другого источника энергии. Например, котла, солнечного коллектора, теплового насоса и т.д.

Зачем накапливать горячую воду?

Главный из них — недостаточная тепловая мощность источника энергии. С этой проблемой сталкиваются не только владельцы гостиниц и гостевых домов, но и люди, в домах которых больше одного санузла.

Потребление горячей воды очень большое. Значит, котлы имеют недостаточную мощность в моменты пиковых нагрузок. Поэтому и используют бойлеры косвенного нагрева. Они при небольшой мощности котла успевают накопить достаточное количество горячей воды.

 

Бойлер косвенного нагрева Steelsun InOS 100 (нержавейка, 1 теплообменник)

Водонагреватель косвенного нагрева InOS 100

Объем ― 100 л

Количество теплообменников ― 1 шт

Материал бака ― нержавеющая сталь

Мощность теплообменника ― 14 кВт

Возможность подсоединения ТЭНа

Патрубок рециркуляции ГВС

Размеры: Высота 970 мм, Диаметр 550 мм

Безопасная, долговечная и экономичная работа оборудования возможна только при соблюдении правил его установки и эксплуатации. Скачайте буклет чтобы подробнее ознакомиться с техническими характеристиками моделей водонагревателей, а также инструкцией по их монтажу, подключению и использованию.

 

 

Работа водонагревателя с косвенным нагревом построена следующим образом: вода, подогретая другим отопительным источником (например, газовым котлом), циркулирует через змеевик, нагревая воду в баке для последующего использования ее в быту. 

Емкость для воды может быть выполнена из углеродистой или нержавеющей стали. У каждого вида есть свои преимущества. Нержавеющая более устойчива к коррозии и не требует особого ухода. Углеродистая отличается большей ударопрочностью и стоит дешевле. Внутренняя поверхность емкости из углеродистой стали покрыта титановой эмалью для повышения устойчивости к коррозии. Вне зависимости от используемого материала, конструкция отличается гигиеничностью, прочностью и долговечностью.

Теплообменник сконструирован и расположен таким образом, чтобы обеспечить равномерный прогрев всего объема воды в бойлере. Также конструкция предусматривает установку дополнительного источника нагрева — ТЭНа (электрический нагревательный элемент). Максимальное снижение потерь тепла достигается за счет теплоизоляции — слоя полиуретана, толщиной 50 мм (для моделей, объемом более 800 л — 80 мм).

Оборудование разработано в соответствии с новейшими технологиями и требованиями техники безопасности. При соблюдении условий монтажа и эксплуатации срок службы водонагревателя — более 10 лет.

  • Предназначены для напольного монтажа.
  • Рассчитаны на работу в помещениях при температуре от +2 до +45°C и максимальной влажности воздуха 80%.
  • Предусмотрена возможность присоединения нескольких точек водоразбора.
  • Присутствуют функции точного контроля температуры воды и сигнализации работы водонагревателя.
  • Максимальное рабочее давление для контура отопления — 3 бара, для контура горячего водоснабжения —7 бар.
  • Максимальная рабочая температура: +90°C.
  • Требования к воде: соответствие качества СанПин 2.1.4.1074-01, содержание хлоридов менее 150 мг/л, pH от 6 до 8.
  • Водонагреватели испытаны в условиях давления 1,2 МPа‚ теплообменники — 0,6 МPа.

 

Бойлер косвенного нагрева АН-1 Игла от АНВИТЭК

Кожухотрубные теплообменники

Высокие температуры и давления, оптимальная цена, возможны твердые включения, высоковязкие среды

Прост как танк T-34, но умен и эффективен как Тесла за счет специальных тонкостенных 8 мм теплообменных труб толщиной 0,5 мм, плотно упакованных в теплообменный пучок

Узнать особенности

Паровые теплообменники

Сконденсируем и переохладим любой продукт с давлением ниже атмосферного вплоть до полного вакуума, а также насыщенный и перегретый пар любой температуры и давления

Максимально эффективная конденсация для сред со значительной разницей в объемных средах. Эффективно используем допустимые перепады давления

Узнать особенности

Пластинчатые теплообменники

От профессионалов производства с 2006 года

Для всех отраслей. Любой сложности. Любые среды. Самые компактные – от 5 000 руб с НДС.
Сроки изготовления – от 3 дней. Гарантия – до 3 лет

Узнать особенности

Скоростные бойлеры «Игла»

Мгновенная и беспрерывная подача горячей воды. Жесткая и загрязненная вода для Иглы не помеха!

От 5 до 70 кВт. Платишь столько сколько потребляешь! Заменяет огромные и дорогие накопительные бойлеры с конечным запасом горячей воды в Вашей котельной.

Узнать особенности

Испарители и конденсаторы АНФ

Равномерное распределение фреона в специальных витых трубках и максимальной теплопередачей

Длина канала до 6 метров, гарантированный полный фазовый переход фреона
Эффективная борьба с обледенением в “живых” трубках и малые гидравлические потери

Узнать особенности

Ширококанальные теплообменники


Free Flow

Запатентованная технология Anvitek Shell для работы с высоковязкими, плотными продуктами для нефтегазовой, химической и пищевой отраслей

Концепция одного канала нужного диаметра для прохождения продукта с препятствием в виде супер плотного пучка специальных тонкостенных труб малого диаметра.

Узнать особенности

Утилизаторы дымовых газов

Оборудование с концепцией максимально быстрой окупаемости и долговечности

Максимальный отбор энергии от уходящих газов. Работа от всех источников дымовых газов. Расчёт на прочность и химическую стойкость материалов

Узнать особенности

Газовоздушные теплообменники

Долговечная работа в самых экстремальных условиях

Рабочие давления до 120 бар. Рабочие температуры до 900 °С. Полное сопровождение проекта “под ключ”

Узнать особенности

Кожухотрубные испарители

Безупречное испарение по всей теплопередающей поверхности телообменника. Низкие издержки при покупке и эксплуатации установки.

Малые гидравлические сопротивления, позволят подобрать оптимальное насосное оборудование. Высокая производительность при использовании низкопотенциальных паров позволит эффективно расходовать тепловую энергию, снижая затраты предприятия

Узнать особенности

Кожухотрубные конденсаторы

Сконденсируем и переохладим любой продукт с давлением ниже атмосферного вплоть до полного вакуума, а также насыщенный и перегретый пар любой температуры и давления

Максимально эффективная конденсация для сред со значительной разницей в объемных средах. Эффективно используем допустимые перепады давления

Узнать особенности

Блочные индивидуальные тепловые пункты

Собственное ПРОИЗВОДСТВО всех важных узлов

Блочный пункт экономичнее в 2-3 раза сборки по месту. Проект, помощь в согласовании и сдаче в эксплуатацию

Узнать особенности

ТЕПЛООБМЕННИКИ

Теплообменник – это устройство, используемое для передачи тепла между двумя или более жидкостями. Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте. Устройства, включающие источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не считаются теплообменниками, хотя многие принципы, заложенные в их конструкции, одинаковы.

Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации.Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования, прежде всего, по конструкции. Оба рассмотрены здесь.

Классификация теплообменников по конфигурации потока

Существует четыре основных конфигурации потока:

На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях.Этот тип устройства потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность – это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).

Рисунок 1. Противоток.

В прямоточных теплообменниках потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоточный поток, но обеспечивает более равномерную температуру стенок.

Рисунок 2. Попутный поток.

По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.

Рисунок 3. Поперечный поток.

В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многопроходные теплообменники.(См., Например, рисунок 4.)

Рис. 4. Поперечный / противоточный поток.

Классификация теплообменников по конструкции

В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5). Первый уровень классификации состоит в том, чтобы разделить типы теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой жидкости, и жидкости протекают одновременно через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока.Регенеративный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.

Рисунок 5. Классификация теплообменников.

Регенеративные теплообменники

В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается, когда горячая жидкость проходит через нее (это называется «горячим обдувом»). Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»).Регенеративные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).

Регенераторы в основном используются для рекуперации тепла газа / газа на электростанциях и других энергоемких отраслях. Два основных типа регенераторов – статические и динамические. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не уделить должного внимания, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.

Рекуперативные теплообменники

Существует много типов рекуперативных теплообменников, которые можно в широком смысле сгруппировать в непрямой контакт, прямой контакт и специальные. В теплообменниках с косвенным контактом теплоносители разделяются с помощью трубок, пластин и т. Д.. Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.

В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, которые расположены в соответствии с классификацией, приведенной на рисунке 5.

В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.

Трубчатые теплообменники очень популярны из-за гибкости, которую проектировщик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубные теплообменники являются наиболее распространенными.

Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне труб, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:

  • Передняя часть – это место, где жидкость входит в трубную часть теплообменника.

  • Задний конец – это место, где жидкость на трубной стороне выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами на трубной стороне.

  • Пучок труб – состоит из трубок, трубных решеток, перегородок, стяжек и т. Д. Для удержания пучка вместе.

  • Кожух – содержит пучок труб.

Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормальным является то, что трубы прямые, но в некоторых криогенных применениях используются спиральные катушки или катушки Хэмпсона .Простая форма кожухотрубного теплообменника – это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, находящихся внутри трубы большего размера. В своей наиболее сложной форме разница между многотрубным двухтрубным теплообменником и кожухотрубным теплообменником невелика. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга Э.А.Д. Сондерс [Saunders (1988)] дает хороший обзор трубчатых теплообменников.

К другим типам трубчатых теплообменников относятся:

  • Печи – технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.

  • Пластинчатые трубы – в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.

  • С электрическим нагревом – в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).

  • Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа для обеспечения дополнительной площади поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Они, как правило, используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.

  • Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков можно рассматривать как трубчатые или помещать в Рекуперативные «Особые предложения». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубы, где конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в ​​основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, например пропеллера или ленточного винтового импеллера. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.

Пластинчатые теплообменники отделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они скреплены болтами, припаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.

Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько рельефных прямоугольных пластин с отверстиями на углах для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая уплотняет пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду вызывает беспокойство, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не сможет протекать. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки всех пластин вместе, а затем приварки входных и выходных отверстий.

Рисунок 6. Классификация трубчатых теплообменников.

Рисунок 7. Классификация пластинчатого теплообменника.

Рисунок 8. Кожухотрубный теплообменник.

Рисунок 9. Пластинчато-рамный теплообменник.

Пластинчато-ребристые теплообменники состоят из ребер или прокладок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны друг с другом. Их основное применение – сжижение газа из-за их способности работать с близкими температурами.

Пластинчатые теплообменники в некоторых отношениях аналогичны кожухотрубным. Прямоугольные трубы с закругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через зазоры между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются проточные каналы большего размера.

Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.

В теплообменниках этой категории не используется поверхность теплопередачи, из-за чего они часто дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник прямого контакта с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)

Наиболее легко узнаваемая форма теплообменника с прямым контактом – градирня с естественной тягой, которая используется на многих электростанциях. Эти агрегаты состоят из большой приблизительно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода распыляется на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема, связанная с этим и другими типами градирен с прямым контактом, заключается в постоянной необходимости восполнять подачу охлаждающей воды за счет испарения.

Конденсаторы прямого контакта иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Есть много вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость распыляется сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.

Впрыск пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло путем конденсации. Обычно конденсат не собирается.

Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другой вид прямого нагрева – это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, а выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.

Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в этом типе устройства вода распыляется по трубкам, а вентилятор всасывает воздух и воду по пучку труб. Вся система закрыта, и теплый влажный воздух обычно выходит в атмосферу.

Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в тех случаях, когда отложения образуются на нагретых стенках сосуда с рубашкой.

Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегата заключается в том, что и горячий, и холодный поток являются прерывистыми. Чтобы преодолеть это и обеспечить непрерывную работу, требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.

В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно по каналам с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)

Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.

(1)

Это уравнение вычисляет количество тепла, передаваемого через область dA, где T h и T c – местные температуры горячей и холодной жидкости, α – местный коэффициент теплопередачи, а dA – местная дополнительная площадь, на которой α основывается. Для плоской стены

(2)

где δ w – толщина стенки, а λ w – ее теплопроводность.

Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. Как только коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется как

(3)

где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением

(4)

Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения

(5)

где – общая тепловая нагрузка, U – средний общий коэффициент теплопередачи, а ΔT M – средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».

Расчет U и ΔT M требует информации о типе теплообменника, геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, которое равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти вычисления и оптимизируют конструкцию.

Механические аспекты

Все типы теплообменников должны подвергаться механической конструкции в той или иной форме. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местными требованиями к конструкции сосуда под давлением с кодом , например ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к резервуару высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но, как правило, отдельные производители устанавливают свои собственные стандарты.

ССЫЛКИ

Гарланд, У. Дж. (1990) Частное сообщение.

Уокер, Г. (1982) Промышленные теплообменники – Основное руководство , Hemisphere Publishing Corporation.

Rohsenow, W. M. и Hartnett, J. P. (1973) Handbook of Heat Transfer , New York: McGraw-Hill Book Company. DOI: 10.1016 / 0017-9310 (75)

-9

Сондерс, Э. А. Д. (1988) Теплообменники – выбор, проектирование и строительство, Longman Scientific and Technical. DOI: 10.1016 / 0378-3820 (89)

-5

Ассоциация производителей трубчатых теплообменников, (1988) (ТЕМА), седьмое издание. Кожухотрубные теплообменники .

Американский институт нефти (API) 661: Теплообменники с воздушным охлаждением для нефтяной промышленности .

Технология прямого и косвенного нагрева

Проще говоря, технология прямого нагрева включает в себя непосредственный контакт объемного твердого материала с нагревательным газом для изменения конечной температуры материала. С другой стороны, технология непрямого нагрева не позволяет продукту вступать в контакт с воздухом, газом или любым другим нагревательным агентом для изменения конечной температуры. Косвенная теплопередача использует теплопроводность, излучение или конвекцию для достижения изменения температуры.Существуют различные типы технологий, используемых как для прямого, так и для косвенного нагрева сыпучих материалов.

РОТАЦИОННЫЙ БАРАБАН ПРЯМАЯ ПЕРЕДАЧА ТЕПЛА

Вращающиеся барабаны обычно используются для удаления влаги из свободно текущих сыпучих материалов путем приведения материала в непосредственный контакт с нагретым газом, обычно с воздухом. Вращающийся барабан представляет собой цилиндрическую трубу, слегка наклоненную вниз и быстро вращающуюся. Когда продукт (например, порошок, удобрения, сахар) попадает в барабанную сушилку, вращающийся механизм поднимает материал на ряд внутренних ребер, выстилающих внутренние стенки сушилки.По мере того, как материал течет к разгрузочному концу, он падает с ребер и проходит через поток горячего газа во вращающемся барабане, удаляя влагу. Газ, протекающий через барабан, может течь как в прямотоке, так и в противотоке.

РОТАЦИОННЫЙ БАРАБАН НЕПРЯМОЙ ТЕПЛООБМЕН

Вращающийся барабан можно также использовать в нишевых приложениях в качестве механизма косвенного теплообмена. Это особенно хорошо работает с тонкими, легкими или легковоспламеняющимися материалами. Процесс косвенной теплопередачи основан на использовании тепла от корпуса барабана для сушки или нагрева материала за счет теплопроводности и излучения.При этом продукт не контактирует напрямую с воздухом. Для обеспечения теплопроводности на барабан поливают горячую воду во время его вращения, нагревая внешнюю оболочку и, в свою очередь, материал внутри.

ПРЯМАЯ ТЕПЛОПЕРЕДАЧА С ЖИДКОСТЬЮ

Другой технологией теплопередачи является псевдоожиженный слой. Эта технология хорошо работает, когда требуется точный контроль температуры и времени пребывания, например, в полимерной, химической и фармацевтической промышленности. Псевдоожиженные слои заставляют воздух проходить через перфорированные стальные слои, что псевдоожижает сыпучие материалы.Когда материал добавляется к одному концу псевдоожиженного слоя, он постепенно перемещается от одного конца слоя к другому. В этот процесс вводятся воздух или газы, которые перемещаются между частицами материала, удаляя влагу и изменяя конечную температуру. В технологии псевдоожиженного слоя воздух выполняет две функции; во-первых, он создает псевдоожиженное состояние материала, позволяя продукту течь, а во-вторых, он либо нагревает, либо сушит материал посредством прямого контакта.

ТЕПЛООБМЕННИКИ ПРЯМОГО КОНТАКТА НАСОСНЫЕ ТЕПЛООБМЕННИКИ

В теплообменниках с прямыми объемными твердыми телами используются вертикальные закрытые бункеры или силосы, которые позволяют впрыскивать газ, обычно воздух, для непосредственного нагрева или охлаждения свободно текущего материала, проходящего через оборудование.Газ и твердое вещество (например, порошок) подаются в теплообменник двумя потоками при разных температурах. Газ может течь либо противотоком к массивному твердому веществу, подаваемому снизу вверх, когда материал течет вниз, либо встречным потоком, перпендикулярно поперек материала, когда он течет вниз. Для успешной работы требуются адекватная теплопередача, равномерный поток, правильный размер выпускного отверстия, надежный поток газа и достаточный единичный объем. В отличие от вращающихся барабанов или псевдоожиженных слоев, прямые теплообменники для сыпучих материалов не имеют движущихся частей, что снижает затраты на установку и техническое обслуживание.

ИСПОЛЬЗОВАНИЕ ВОЗДУХА В ТЕХНОЛОГИИ ПРЯМОГО НАГРЕВА

В системах с прямым контактом теплопередачи требуется большое количество воздуха для процесса, обеспечивающего достаточный нагрев, охлаждение или сушку. Это требование приводит к необходимости в системах кондиционирования воздуха, больших вентиляторах, обширных воздуховодах и вытяжных трубопроводах. Предварительный нагрев воздуха, а также его обработка и очистка требуют больших затрат энергии. Вращающиеся барабаны и псевдоожиженные слои могут потреблять более 600 кВт энергии для прямого нагрева 100 т / ч для достижения изменения температуры на 25 ° C.Хотя эти системы прямой теплопередачи существуют уже несколько десятилетий, они показывают неэффективное использование ресурсов с высоким потреблением энергии.

Системы прямого теплообмена также приводят к высокому пылеобразованию и выбросам. Все выбросы должны быть очищены до того, как они будут выпущены обратно в атмосферу, чтобы обеспечить соблюдение мер по контролю за загрязнением и окружающей средой.

ТЕХНОЛОГИЯ НЕПРЯМОГО НАГРЕВА

За последние 25 лет был внедрен более эффективный и экономичный метод, использующий косвенную теплопередачу для нагрева свободно текущих сыпучих материалов.Серия вертикально установленных модулей, заполненных полыми пластинами из нержавеющей стали, включает непрямой теплообменник. В этом устройстве используется противоточный поток греющей воды или жидкости, проходящий через полые пластины, для достижения косвенной теплопередачи за счет теплопроводности. Поскольку сыпучий сыпучий продукт (например, сахар, удобрения, порошок) течет вниз между пластинами с более длительным временем пребывания, происходит теплопередача между пластинами и материалом.

Использование систем косвенной теплопередачи дает множество преимуществ:

  • Повышенная энергоэффективность, поскольку нет необходимости использовать воздух в этом процессе, что устраняет необходимость в избыточном оборудовании.Этот процесс потребляет до 90% меньше энергии, чем традиционные технологии.
  • Экологичность, так как в процессе непрямого теплообмена не выделяются запахи, пыль или выбросы. Воду, используемую в этом процессе, также можно перенаправить на другие производственные процессы или из них. Например, тепловая энергия от процесса непрямого охлаждения может быть рекуперирована и затем использована для предварительного нагрева питательной воды котла или где-либо еще на заводе. В качестве альтернативы, отработанная энергия от других производственных процессов может использоваться в качестве нагревающей жидкости в косвенном теплообменнике для процесса охлаждения.

  • Непрямая теплопередача приводит к более качественному конечному продукту, поскольку сыпучий продукт не вступает в прямой контакт с воздухом или жидкостью, что устраняет риск загрязнения. Медленный контролируемый нисходящий поток через пластины непрямого теплообменника также предотвращает истирание и разрушение материала, поэтому характеристики конечного материала не меняются. Кроме того, благодаря конструкции массового расхода, материал течет с постоянной скоростью, что приводит к стабильной и равномерной конечной температуре, что обеспечивает эффективное хранение и транспортировку независимо от температуры окружающей среды.
  • Вертикальная ориентация теплообменника непрямого действия обеспечивает небольшую занимаемую площадь для установки, что упрощает увеличение мощности, модернизацию оборудования и установку новых объектов.
  • Подобно прямому теплообменнику, эта непрямая система не имеет движущихся частей, что снижает затраты на техническое обслуживание. Каждую отдельную пластину можно снимать для очистки или замены по мере необходимости, что сокращает время простоя и обеспечивает годы надежной работы.
ЗАКЛЮЧЕНИЕ

Основное различие между системами прямой и косвенной теплопередачи – это расход воздуха, необходимый для достижения теплопередачи.Охлаждение, нагрев, обработка и очистка воздуха приводят к высокому потреблению энергии в процессах прямого нагрева. В то время как в косвенных теплообменниках воздух не требуется, это снижает затраты на энергию и позволяет реализовать системы повторного использования и рекуперации энергии. Благодаря значительному снижению энергопотребления и технологических затрат, системы косвенного теплообмена становятся более жизнеспособным решением для минеральной, сельскохозяйственной и порошковой промышленности.

Чтобы узнать больше о системах косвенного теплообмена и о том, как их можно использовать для нагрева и сушки сыпучих сыпучих материалов, посетите:

http: // solexthermal.ru / products-solutions /


Эта запись была отмечен Обогрев а также последнее обновление 2 октября 2020 г.


Вернуться к статьям

Raypak – – Непрямые теплообменники

Для некоторых низкотемпературных применений обогреватель бассейна кажется очевидным выбором, но на самом деле не подходит. Например, чрезмерная соленость бассейнов с морской водой повреждает теплообменник, а морские обитатели чувствительны к ионам меди, которые постепенно высвобождаются теплообменником.Для таких применений Raypak рекомендует вместо этого использовать водяной котел в качестве теплового двигателя с непрямым теплообменником из нержавеющей стали для передачи тепла в бассейн без ущерба для химического состава воды или теплообменника котла. Эти теплообменники делают такую ​​систему трубопроводов компактной и простой в проектировании. Обратитесь к таблице химического состава воды в руководстве, чтобы узнать, какой сплав выбрать.

ОСНОВНЫЕ ДАННЫЕ

Модель
Нержавеющий сплав
Тепловая мощность (BTUH) *
РП-045 316L 45 000
РП-075 316L 75 000
РП-125 316L 125 000
РП-185 316L 185 000
РП-245 316L 245 000
РП-305 316L 305 000
РП-495 316L 495 000
РП-995 316L 995 000
B TI-180 Титан ** 185 000
B TI-300 Титан ** 305 000
B TI-500 Титан ** 495 000

* Эти значения являются номинальными, исходя из разницы температур 140F между входящей системой отопления и нагретой водой.

** Титан широко используется в промышленных средах с соленой водой. Используйте его, если химические условия превышают допустимые для сплава 316L, используемого в серии RP.

Определение косвенного теплообменника – Law Insider

Косвенный теплообменник означает оборудование для сжигания, в котором пламя и / или продукты сгорания отделены от любого контакта с основным материалом в процессе металлическими или огнеупорными стенками, включая , но не ограничиваясь этим, паровые котлы, испарители, плавильные котлы, теплообменники, ребойлеры колонны, подогреватели сырья фракционирующей колонны, подогреватели сырья реактора и реакторы, работающие на топливе, такие как подогреватели парового риформинга углеводородов и пиролизные нагреватели.

Косвенный теплообменник означает оборудование для сжигания, в котором пламя или продукты сгорания отделены от любого контакта с основным материалом в процессе металлическими или огнеупорными стенками, включая, помимо прочего, паровые котлы, испарители, плавильные котлы, теплообменники, ребойлеры колонны, подогреватели сырья фракционирующей колонны и реакторы, работающие на топливе, такие как подогреватели паровой установки риформинга углеводородов и подогреватели пиролиза.

Косвенный теплообменник означает оборудование для сжигания, в котором пламя и / или продукты сгорания отделены от любого контакта с основным материалом в процессе металлическими или огнеупорными стенками, которое включает, помимо прочего, паровые котлы, испарители, плавильные котлы, теплообменники, ребойлеры колонн, подогреватели сырья фракционирующей колонны и реакторы, работающие на топливе, такие как подогреватели паровых установок риформинга углеводородов и пиролизные нагреватели.

Косвенный теплообменник “означает оборудование для сжигания, в котором пламя и / или продукты горения отделены от любого контакта с основным материалом в процессе металлическими или огнеупорными стенками, включая, помимо прочего, паровые котлы. , испарители, плавильные котлы, теплообменники, ребойлеры колонны, подогреватели сырья фракционирующей колонны, подогреватели сырья реактора, топливные реакторы, такие как паровые подогреватели установки риформинга углеводородов и подогреватели пиролиза.

Косвенный теплообменник означает любое оборудование, используемое для изменения температура одной жидкости за счет использования другой жидкости, в которой две жидкости разделены непроницаемой поверхностью, так что не происходит смешивания двух жидкостей.

В чем разница между нагревателями с прямым и косвенным нагревом?

Понимание разницы между нагревателями прямого и косвенного нагрева имеет решающее значение при выборе системы отопления, подходящей для вашей работы. Узнайте больше о каждом блоке здесь:

Нагреватели прямого нагрева

Обогреватели с прямым нагревом похожи на газовый гриль-барбекю или вашу газовую плиту. При нагревании пропаном или природным газом устройства пропускают воздух непосредственно через пламя, чтобы нагреть воздух.

Преимущества использования нагревателей прямого нагрева включают:

  • КПД – нагреватели прямого нагрева преобразуют 100% используемого топлива в прямое тепло, что снижает расход топлива и эксплуатационные расходы
  • Простота транспортировки – Нагреватели прямого нагрева представляют собой довольно простые элементы оборудования, которые можно перемещать туда, где требуется тепло.
  • Мощный – Большое количество тепла (БТЕ) ​​вырабатывается в меньших единицах по сравнению с нагревателями непрямого действия.
  • Некоторым агрегатам не требуется электричество
  • Снижение затрат на аренду – нагреватели с прямым нагревом дешевле
  • Снижение затрат на техническое обслуживание – Простота обслуживания
  • Встроенный термостат – в большинстве моделей используется термостат для контроля температуры
  • Безопасность для неконтролируемого использования – многочисленные резервные функции безопасности позволяют нагревателям прямого огня работать без присмотра.Обогреватели Priority Rentals имеют сертификаты CSA и UL.

Некоторые недостатки использования нагревателей прямого нагрева:

  • Требуется вентиляция – В помещении должен быть некоторый уровень воздухообмена. Нагреватели прямого нагрева нельзя использовать в плотно закрытой конструкции, если окна и двери не могут быть открыты для воздухообмена.
  • Добавляет в воздух влагу и окись углерода.

Применение нагревателей прямого нагрева

Как правило, обогреватели прямого нагрева используются на строительных площадках, на открытом воздухе или в складских помещениях.Поскольку у обогревателей с прямым нагревом есть открытое пламя, подобное плите или грилю, эти устройства следует зарезервировать для помещений с хорошей вентиляцией и меньшим пешеходным движением. Нагреватели прямого нагрева идеальны, поскольку они экономичны, эффективны и удобны в транспортировке. Общие приложения включают:

  • Строительные площадки
  • Склады
  • Пищевая промышленность
  • Горнодобывающая промышленность
  • Нефтехимическая промышленность

Нагреватели косвенного нагрева

Обогреватели косвенного нагрева похожи на домашнюю печь для сжигания жидкого топлива или газа с дымоходом.В установках для нагрева пропана или природного газа пламя удерживается в камере сгорания, которая нагревает «теплообменник». Более холодный воздух проходит над теплообменником и вокруг него, нагревая таким образом воздух. Вы можете узнать больше о косвенных нагревателях и посмотреть, как мы устанавливаем один из наших агрегатов.

Нагреватели косвенного нагрева имеют ряд положительных моментов, например:

  • 100% чистый, сухой воздух – Циркулируемый воздух никогда не контактирует напрямую с пламенем.
  • Встроенные термостаты – почти во всех обогревателях косвенного нагрева используется термостат
  • Может работать в плотно закрытых помещениях – обогреватели непрямого нагрева не выделяют углекислый газ в помещение.

Некоторые отрицательные стороны нагревателей косвенного нагрева:

  • Более высокая стоимость – стоимость аренды почти в четыре раза больше, чем стоимость аренды
  • с прямым огнем.
  • Более низкая эффективность – эффективность использования топлива обычно близка к 80%
  • Требуется электричество – для обогревателей косвенного нагрева всегда нужна электрическая розетка
  • Требуется вытяжная вентиляция – Вы должны либо выпустить вытяжку наружу, либо направить горячий воздух внутрь. Это затрудняет установку и снятие косвенных обогревателей из-за установки и демонтажа воздуховодов.
  • Трудно транспортировать – нагреватели косвенного нагрева намного больше и менее портативны.

Применение нагревателей косвенного нагрева

Обогреватели косвенного нагрева идеально подходят для плотно закрытого рабочего места, в котором отсутствует работающая система обогрева. В обогревателях косвенного нагрева используется замкнутая система отопления, которая ограничивает выбросы CO2, что делает эти устройства безопасным вариантом для населенных пунктов. Общие приложения включают:

  • Торговые площади
  • Строительные площадки
  • Больницы и медицинские учреждения
  • Университеты
  • Химическая промышленность

В Priority Rental мы предлагаем широкий выбор обогревателей прямого и косвенного нагрева в аренду или на покупку.Чтобы получить более общий обзор предлагаемых нами обогревателей, посетите нашу страницу о портативных обогревателях.

Почему прямой впрыск пара лучше, чем теплообменник

Зарегистрированная экономия энергии до 30% была зафиксирована при замене кожухотрубного или пластинчато-рамного теплообменника на нагреватель с прямым впрыском пара от Hydro-Thermal.

Теплообменники нагреваются через металлический барьер, который не позволяет полностью передавать энергию. В среднем 20% энергии (разумной) теряется на конденсат и возвращается в котел.Нагреватели с прямым впрыском пара более энергоэффективны за счет использования 100% энергии пара для нагрева технологических жидкостей или технической воды. Подогреватели прямого пара Hydro-Thermal – это не обычные эдукторы пара, а запатентованный 3-ходовой клапан с основными преимуществами по сравнению со всеми другими методами нагрева жидкости и обеспечивающий 100% тепловой КПД.

Получить предложение

Дополнительные причины для замены теплообменников или барботеров на нагреватель с впрыском пара от Hydro-Thermal:

  • Меньше обслуживания и больше времени работы
  • Точный контроль требуемых условий процесса и температуры
  • Меньшая занимаемая площадь
  • Гидро-термический опыт, обучение, услуги поддержки и гарантия

Узнайте, насколько эффективнее наши водонагреватели с прямым впрыском пара, с помощью нашего калькулятора экономии энергии пара.Помимо точной температуры, эти водонагреватели помогут снизить ваши повседневные эксплуатационные расходы и повысить рентабельность инвестиций.


Устранение горячих точек на теплообменнике

Ваш теплообменник нагревается неравномерно?

Поскольку в теплообменниках используется косвенная передача тепла через поверхности, они покрываются отложениями продукта или жесткой воды, что приводит к снижению эффективности теплообменника. Также могут возникнуть горячие и прохладные точки, что приведет к неравномерному нагреву и низкому качеству продукта.

Благодаря нашей запатентованной конструкции с самоочисткой, замена теплообменника на пароварки с прямым впрыском пара решает эти проблемы. Производитель детских смесей повысил качество продукции и повысил прибыль, когда они перешли с теплообменника на наш Jetcooker ™.

Ваш текущий паровой нагреватель с 3-ходовым клапаном накаливается и засоряется?

Некоторые паровые нагреватели загрязняются и накапливаются из-за их внутренней работы и пружинных частей, что приводит к их засорению и необходимости частых ванн с кислотой.Это снижает производительность и увеличивает затраты на техническое обслуживание.

Замена этих нагревателей на гидротермический водонагреватель решает эту проблему, поскольку он единственный с уникальной заглушкой штока и диффузором, позволяющим впрыскивать точное количество пара со скоростью звука через засоренный поток, вызывая эффект самоочистки. При правильном выборе размера для условий процесса и области применения наш энергоэффективный паровой нагреватель практически исключает образование накипи и загрязнений, что делает его самым надежным технологическим нагревателем на рынке.

Завод по переработке пищевых продуктов заменил трехходовой клапан нашего конкурента нашим нагревателем и увеличил время безотказной работы на 20%!

Вам интересно узнать о нашей запатентованной технологии прямого впрыска пара? Кликните сюда, чтобы узнать больше.

Вам интересно, какие приложения идеально подходят для прямого впрыска пара? См. Раздел «Где это работает» для получения списка отраслей.

Хотите узнать больше о наших продуктах? Для получения дополнительной информации нажмите здесь.

Теплообменник для сыпучих материалов – несущая вибрация

Самой последней разработкой Carrier в обрабатывающей промышленности является теплообменник для сыпучих материалов, или BMHX.В этом оборудовании используется конструкция с гравитационной подачей материала для перемещения материала между термопластами, охлаждения, нагрева или сушки материала по мере его движения сверху вниз.

Свяжитесь с нами по поводу нашего тестового образца, доступного в современной испытательной лаборатории Carrier.

Непрямое охлаждение и нагрев

Продукт охлаждается или нагревается, когда он движется по пластинам с водой или другими теплоносителями, протекающими внутри них. Продукт, соприкасающийся с этими пластинами, охлаждается за счет теплопроводности, и поскольку нет прямого контакта между материалом и теплоносителем, нет риска загрязнения или необходимости в пылеулавливании или скрубберах.

Низкий уровень выбросов

Поскольку движущийся воздух не используется в процессе охлаждения или нагрева, нет проблем с выбросами или пылью, что делает его идеальным для помещений или материалов со строгими требованиями к выбросам.

Высокое качество материалов

Материал медленно движется поршневым потоком через теплообменник, уменьшая деградацию продукта и предотвращая истирание оборудования. Закрытая среда в теплообменнике для сыпучих материалов означает, что он может стабильно работать в различных внешних условиях.

Компактность

Разработанный для вертикального перемещения изделия, BMHX занимает меньше места по сравнению с другими технологиями охлаждения и нагрева.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *