Тепловые пункты систем теплоснабжения: определение, виды, устройство, принцип работы

Содержание

определение, виды, устройство, принцип работы

На главную

Блог

Все о теплообменниках и теплотехническом оборудовании

Рубрики

Мы в соцсетях

Подписка на статьи

Фильтр по статьям

Содержание статьи

  • Введение
  • Что такое тепловой пункт – определение
  • Что входит в тепловой пункт?
  • Назначение тепловых пунктов
  • Принцип работы теплового пункта
  • Виды тепловых пунктов
  • Что лучше: ИТП или ЦТП?
  • Выводы

Введение

Горячая вода, отопление, теплый пол, чистый приточный воздух, нагретый до нужной температуры – все это составляющие не только комфорта, но и требование санитарных норм (для больниц, детских садов, школ, интернатов).

Для всех этих систем необходим теплоноситель. Его подготовка для подачи конечному потребителю с требуемыми параметрами осуществляется в Тепловых пунктах. Что такое тепловой пункт, какие виды ТП бывают и чем они отличаются – об этом читайте далее.

Что такое тепловой пункт – определение

Тепловой пункт (ТП) – это помещение, либо здание, в котором происходит подключение систем отопления, вентиляции, горячего водоснабжения к тепловой сети.

Рис. 1. Тепловой пункт

Что входит в тепловой пункт?

Тепловые пункты включают в себя следующее оборудование:

  • Запорную арматуру;
  • Теплообменники;
  • Насосы;
  • Расширительные баки;
  • Регуляторы давления;
  • Приборы для контроля, управления, автоматизации.

Назначение тепловых пунктов

Тепловые пункты предназначены для:

  • Подготовки теплоносителя для внутренних систем до необходимого уровня давления и температуры;
  • Контроля значений температуры и давления теплоносителя;
  • Учета потребленного тепла;
  • Регулирования температуры, либо количества теплоносителя;
  • Распределения теплоносителя по отдельным системам;
  • Защиты систем здания от повышения температуры или давления теплоносителя;
  • Подготовки горячего водоснабжения.

Принцип работы теплового пункта

Рис. 2. Устройство теплового пункта

  1. ТЭЦ или котельные, как источники тепла, нагревают теплоноситель, далее по магистральным сетям он поступает в тепловой пункт.
  2. Температура теплоносителя от ТЭЦ, как правило, составляет 150/70 ᵒС. Воду с такой высокой температурой подавать в системы отопления здания и ГВС нельзя, так как будут нежелательные последствия, такие как ожоги. В связи с этим необходимо понизить температуру теплоносителя. Это решается следующими вариантами:
  • При зависимом присоединении используются элеваторы, либо насосы, которые подмешивают воду из обратной магистрали в подающую.
  • При независимом присоединении используются теплообменники. Таким образом, вода из тепловой сети циркулирует через теплообменник, нагревая внутренний контур.

Подробно о зависимой и независимой системах теплоснабжения можно прочитать в данной статье.

  1. Для того чтобы теплоноситель циркулировал по системам отопления, в тепловом пункте устанавливаются циркуляционные насосы.
  2. С целью исключения нежелательных последствий аварийного повышения давления в магистральных тепловых сетях предусматривают установку регуляторов давления.
  3. Количество тепла, которое подается от магистральных тепловых сетей, рассчитывается на максимальную нагрузку, чтобы в самые холодные зимние дни потребители не замерзли. Когда температура наружного воздуха повышается, то необходимо уменьшить количество тепла, которое подается в отопительные приборы, иначе произойдет перегрев внутреннего воздуха помещений. Таким образом, в тепловом пункте происходит регулирование отпуска тепла.
  4. Вода для систем ГВС также подготавливается в тепловом пункте в теплообменнике.
  5. Обязательным элементом является узел учета тепла. Его наличие обусловлено законом об энергосбережении № 261-ФЗ.
  6. Заключительным элементом является распределительная гребенка, от которой теплоноситель распределяется по необходимым системам.

Виды тепловых пунктов

Тепловые пункты подразделяются на:

  • ЦТП – центральные тепловые пункты. Обслуживают несколько зданий, микрорайон.
  • ИТП – индивидуальные тепловые пункты. Обслуживают только одно здание. Чаще всего размещаются в специальном помещении подвала обслуживаемого здания.
  • БТП – блочные тепловые пункты. Представляют из себя готовое изделие, которое поставляется в здание несколькими блоками – остается только присоединить посредством фланцев. За счет этого сокращаются сроки монтажа и ввода в эксплуатацию ТП. Могут применяться как для ЦТП, так и для ИТП.

Все эти тепловые пункты имеют одно назначение и принцип работы у всех одинаков. Единственное различие – это количество обслуживаемых зданий.

Что лучше: ИТП или ЦТП?

В настоящее время для присоединения здания к наружным тепловым сетям применяют в основном индивидуальные тепловые пункты.

Различия между этими тепловыми пунктами представлены в таблице:

ЦТП

ИТП

Средний температурный режим для всех обслуживаемых зданий. В связи с этим здание, которое расположено ближе к ЦТП будет перегрето, а здание, которое расположено дальше от ЦТП, будет недогрето.

Температурный режим устанавливается индивидуально для конкретного здания.

Невозможно установить оптимальную температуру ГВС для конкретного здания.

Так как все здания, подключенные к ЦТП, имеют различную длину трубопроводов, то горячая вода по-разному остывает по пути от ЦТП до конкретного дома.

Температура горячей воды оптимальна, т.к. теплообменник ГВС установлен  непосредственно в доме, а значит, исключены потери тепла по трубопроводам.

Циркуляция ГВС не обеспечивается должным образом, поэтому в некоторых квартирах из крана с горячей водой некоторое время бежит холодная вода.

Постоянная циркуляция ГВС в доме, следовательно,  у потребителя из крана с горячей водой всегда поступает горячая вода.

Большие потери тепла по трубопроводам от ЦТП до потребителя.

Меньшие потери тепла, так как длина магистральных труб от точки врезки в тепловые сети до ИТП минимальна.

В случае какой либо неисправности в ЦТП без горячей воды и тепла окажутся жители сразу нескольких домов.

Меньшее количество аварийных отключений тепла у потребителей.

Каждый год летом происходит плановое отключение горячей воды у потребителей на продолжительное время для проведения технического обслуживания и профилактического ремонта.

Отключение ГВС не затрагивает сразу большое количество абонентов, профилактическое обслуживание не занимает продолжительное время.

Заключение

  1. Тепловые пункты – это необходимая часть инженерного обеспечения любого здания.
  2. В новом строительстве применяются в основном ИТП, так как они:
  • Обеспечивают наиболее оптимальные параметры теплоносителя;
  • Минимизируют потери тепла при транспортировке теплоносителя по магистралям;
  • Проще в обслуживании и эксплуатации;
  • Обладают более точной регулировкой.
  1. Производители БТП существенно облегчили жизнь монтажным бригадам, так как после того, как модули БТП поставляются на объект, монтажникам остается лишь подключить БТП к трубопроводам и электрическим сетям.

Поделиться:

Особенности схем тепловых пунктов систем теплоснабжения

Библиографическое описание:

Рафальская, Т. А. Особенности схем тепловых пунктов систем теплоснабжения / Т. А. Рафальская. — Текст : непосредственный // Технические науки: проблемы и перспективы : материалы IV Междунар. науч. конф. (г. Санкт-Петербург, июль 2016 г.). — Санкт-Петербург : Свое издательство, 2016. — С. 86-89. — URL: https://moluch.ru/conf/tech/archive/166/10747/ (дата обращения: 06.10.2022).



Проведён анализ основных особенностей существующих схем, автоматизации, степени централизации тепловых пунктов систем централизованного теплоснабжения.

Ключевые слова: система централизованного теплоснабжения, тепловая сеть, тепловой пункт

Тепловой пункт — это промежуточное звено между тепловой сетью и потребителями теплоты, которое обеспечивает связь между тепловой сетью и местными системами отопления, вентиляции и горячего водоснабжения, включая управление ими. Тепловые пункты (ТП) подразделяются на центральные — ЦТП, от которых снабжаются одновременно несколько зданий-потребителей теплоты, и индивидуальные — ИТП, к которым присоединяются системы отопления, вентиляции, горячего водоснабжения и технологические теплоиспользующие установки одного здания [1]. Устройство ИТП обязательно для каждого здания независимо от наличия ЦТП, при этом в ИТП предусматриваются только те функции, которые необходимы для присоединения систем потребления теплоты данного здания, но не предусмотренные в ЦТП [1, п. 1.5]. Как показано в работах [2, 3, 4, 5, 6], существует оптимальная степень централизации ТП. В настоящее время в связи с появлением малогабаритных бесшумных насосов (которые можно устанавливать на трубопроводах непосредственно в подвалах зданий), компактных теплообменников и бесшумных регулирующих клапанов преимущество отдаётся схемам с ИТП [4], поскольку в этом случае производится индивидуальное регулирование систем теплопотребления каждого здания и сокращается металлоёмкость квартальной тепловой сети (тепловая сеть двухтрубная). Однако, в [2] отмечается, что при устройстве ЦТП распределение теплоносителя производится проще, быстрее и точнее из-за наличия меньшего количества точек распределения, что увеличивает гидравлическую устойчивость и, следовательно, надёжность тепловой сети.

Кроме того, заметным преимуществом ЦТП является значительное снижение количества необходимых авторегуляторов. Иногда высказывалось мнение [4, 7, 8], что вариант с ЦТП обязательно приводит к перерасходу теплоты за счет увеличения тепловых потерь в разводящих сетях после ЦТП (четырёхтрубные квартальные сети), а также вследствие того, что каждый городской микрорайон кроме жилых имеет общественные здания, режим потребления тепла в которых заметно отличается от режима потребления в жилых. Однако, как отмечается в [2], наличие общего для квартала режима отопления, не исключает возможности дополнительного местного регулирования на вводе в здания, а наоборот, облегчает схемы и конструкции авторегуляторов. Устройство ИТП в каждом здании позволяет применять пофасадные системы отопления в жилых зданиях или, что более эффективно, индивидуальные регуляторы у отопительных приборов, за счет чего может быть получена экономия теплоты. Разделение режима магистральных и распределительных сетей возможно при устройстве контрольно-распределительных пунктов (КРП), которые могут быть районными (РТП) или групповыми (ГТП) [5].
Основным назначением КРП является поддержание гидравлического режима и защиты распределительных тепловых сетей.

В [3] произведено экономическое сравнение эксплуатационных расходов вариантов схем, имеющих и не имеющих ЦТП и сделан вывод о целесообразности сооружения одного ЦТП на квартал с нагрузкой 15–25 Гкал/час (20–30 МВт) и совмещение его с КРП, что повышает надёжность и маневренность системы теплоснабжения. Система теплоснабжения, имеющая несколько меньших ЦТП на квартал менее экономична за счет увеличения суммарной стоимости ЦТП. Сооружение более крупных ЦТП нецелесообразно, поскольку резко возрастает стоимость прокладки трубопроводов ГВС из-за появления распределительных сетей диаметром до 300–350 мм.

Таким образом, необходимость выбора системы с ЦТП или ИТП должна решаться в каждом случае индивидуально, в зависимости от мощности системы теплоснабжения, рельефа местности и соответственно, гидравлического режима работы тепловой сети, наличия общественных и производственных зданий, имеющихся приборов и средств авторегулирования.

Цель автоматизации ТП состоит в наиболее эффективном решении задачи теплоснабжения — подачи потребителям теплоты (воды) необходимого качества и количества без непосредственного вмешательства человека.

Задачи автоматизации ТП в соответствии с [1] состоят в следующем:

– регулирование отпуска теплоты на отопление и вентиляцию в зависимости от температуры наружного воздуха;

– обеспечение заданной температуры воды в системе горячего водоснабжения;

– автоматическое снижение давления на входе в ТП;

– рассечка сети на две гидравлически изолированные зоны в статических условиях при остановке подкачивающих насосов, в случае недопустимых статических условий, поддержание гидравлического режима в сетях за ЦТП;

– снижение давления на всасывающем патрубке смесительно-подкачивающих насосов;

– включение резервного насоса при остановке одного из работающих;

– при водоразборе автоматическое включение сетевого насоса горячего водоснабжения и отключение циркуляционного насоса;

– при отсутствии водоразбора отключение насоса горячей воды и включение циркуляционного насоса;

– отключение подкачивающих насосов системы отопления при падении давления в подающем трубопроводе;

– прекращение подачи воды в баки-аккумуляторы при достижении верхнего уровня воды в баках; при достижении нижнего уровня — отключение насосов горячей воды;

– регулирование подпитки систем отопления — в ЦТП с независимым присоединением систем отопления;

– измерение параметров теплоносителя и учет расхода теплоты.

Выводы.

Указанные особенности работы современных систем автоматизации ТП позволяют сформулировать общие выводы по рассмотренным системам группового и местного авторегулирования отопительной нагрузки.

  1. Регулирование отпуска теплоты на отопление может производиться по:

– усреднённой температуре наружного воздуха за сравнительно длительный период времени 6–12 ч;

– усреднённой внутренней температуре представительных помещений;

– внутренней температуре устройства, моделирующего тепловой режим зданий;

Выбор каждого из указанных параметров имеет свои достоинства и недостатки. Регулирование параметров теплоносителя только по наружной температуре tн упрощает систему регулирования, но не позволяет учитывать бытовые тепловыделения в зданиях Qбыт, что, однако учитывается при расчете системы отопления и определении её тепловой мощности Qо в соответствии с СП 7. 13130.2013 Отопление, вентиляция и кондиционирование. Регулирование Qо только по температуре внутреннего воздуха tв значительно усложняет систему автоматизации из-за необходимости большого количества датчиков и линий связи, а кроме того, как отмечается в [6], может привести к перерасходу теплоты — при отоплении с открытыми форточками. Оптимальными являются системы комбинированного регулирования с поддержанием заданного графика температуры воды в системе отопления с коррекцией по температуре внутреннего воздуха.

  1. В схемах с ограничением расхода сетевой воды, особенно при повышенном температурном графике необходимо местное количественное регулирование отпуска теплоты в систему отопления.
  2. У абонентов с нагрузкой отопления и горячего водоснабжения система автоматического регулирования (САР) не должна допускать увеличения суммарного расхода сетевой воды выше заданной величины. В противном случае может быть нарушен гидравлический режим сети, вследствие чего удалённые абоненты не будут получать теплоту. Должна быть исключена возможность компенсации недоотпуска теплоты на отопление за счет дополнительного (сверх расчетного) расхода сетевой воды на ТП при максимальной нагрузке горячего водоснабжения при температуре сетевой воды не соответствующей требуемой температуре по графику центрального регулирования. Как показали результаты моделирования режимов ТП [9, 10], необходимо отключать подогреватель II ступени при наружной температуре ниже расчётной, или ограничивать расход воды на вторую ступень подогревателя горячего водоснабжения.

Литература:

  1. СП 41–101–95. Правила по проектированию и строительству тепловых пунктов / Минстрой России. — М.:ГУП ЦПП, 1997. — 78 с.
  2. Громов Н. К. Какие тепловые пункты строить — центральные или индивидуальные / Н. К. Громов // Водоснабжение и санитарная техника.  1974.  № 12.  С. 17–22.
  3. Громов Н. К. Технико-экономические основы применения контрольно-распределительных пунктов в крупных тепловых сетях при закрытой системе теплоснабжения / Н. К. Громов // Теплоэнергетика.  1980.  № 2.  С. 18–22.
  4. Ливчак В. И. За оптимальное сочетание автоматизации регулирования подачи и учета тепла / В. И. Ливчак // АВОК.  1998.  № 4.  С. 44–50.
  5. Ливчак В. И. Оптимальная степень централизации тепловых пунктов в закрытых системах централизованного теплоснабжения / В. И. Ливчак // Водоснабжение и санитарная техника.  1975.  № 8.  С. 26–31.
  6. Соколов Е. Я. О схемах автоматизации абонентских установок крупных городских систем централизованного теплоснабжения / Е. Я. Соколов, Н. М. Зингер // Водоснабжение и санитарная техника.  1980.  № 10.  С. 17–18.
  7. Ливчак В. И. Улучшение работы ЦТП — реальный путь повышения качества и экономичности теплоснабжения жилых микрорайонов / В. И. Ливчак, Н. Н. Чистяков // Водоснабжение и санитарная техника.  1976.  № 4.  С. 20–25.
  8. Математическое обеспечение оптимального выбора оборудования тепловых пунктов // Новости теплоснабжения.  2001.  № 12.  С. 46–48.
  9. Рафальская Т. А. Моделирование и компьютеризация тепловых и гидравлических режимов систем теплоснабжения / Т. А. Рафальская, А. С. Басин // Энергетика: экология, надежность, безопасность: Материалы докладов седьмой всероссийской научно-технической конференции.  Томск: Изд-во ТПУ, 2001. Т. 1.  С.133–136.
  10. Рафальская Т. А. Тепловые и гидравлические режимы систем централизованного теплоснабжения / Т. А. Рафальская // Актуальные вопросы технических наук: теоретический и практический аспекты: коллективная монография [под. ред. И. А. Григорьева]. — Уфа: Аэтерна, 2016. — С. 116–171.

Основные термины (генерируются автоматически): горячее водоснабжение, тепловая сеть, здание, сетевая вода, система отопления, гидравлический режим, горячая вода, наружная температура, наружный воздух, тепловой пункт.

Ключевые слова

тепловая сеть, тепловой пункт, система централизованного теплоснабжения

Похожие статьи

Выбор оптимального перепада

температур в тепловых сетях. ..

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

Режимы работы систем теплоснабжения жилых микрорайонов…

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

Управление

системой горячего водоснабжения зданий

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

сетевая вода, тепловой насос, сетевой подогреватель…

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

Повышение эффективности

систем отопления | Статья в журнале…

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

Графики регулирования

тепловой нагрузки централизованных…

центральное регулирование, горячее водоснабжение, температурный график, сетевая вода, система отопления, график, отопительный период, отопительный сезон, тепловая нагрузка, температура воды.

Анализ эффективности использования индивидуальных

тепловых

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

Исследование эффективности

систем отопления | Молодой ученый

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

Способ повышения

тепловой эффективности систем

горячее водоснабжение, тепловая сеть, здание, система отопления, сетевая вода, гидравлический режим, наружный воздух, наружная температура, горячая вода, тепловой пункт.

Тепловые пункты

Продукция / Комплексные решения

Тепловые пункты представляет собой комплекс оборудования, располагаемый в обособленном месте и состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Основными задачами тепловых пунктов являются:

  • Преобразование вида теплоносителя
  • Контроль и регулирование параметров теплоносителя
  • Распределение теплоносителя по системам теплопотребления
  • Отключение систем теплопотребления
  • Защита систем теплопотребления от аварийного повышения параметров теплоносителя
  • Учет расходов теплоносителя и тепла

 

Виды тепловых пунктов

Тепловые пункты различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых определяют тепловую схему и характеристики оборудования тепловых пунктов, а также по типу монтажа и особенностям размещения оборудования в помещении теплового пункта. Различают следующие виды ТП:

  • Центральный тепловой пункт – ЦТП. Предназначается для обслуживания группы теплопотребителей (отдельных зданий, сооружений и объектов). Обычно располагается в отдельностоящем здании, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Индивидуальный тепловой пункт – ИТП. Предназначается для обслуживания одного потребителя (отдельного здания или его части). Обычно располагается в подвале или техническом помещении здания, но, в некоторых случаях связанных с особенностью подключаемого здания, может распологаться в отдельном сооружении.
  • Блочный тепловой пункт – БТП. Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно и как правило, на одной раме. Обычно используется при необходимости экономии места, или в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.
  • Модульный тепловой пункт – МТП. Изготавливается в заводских условиях и поставляется для монтажа в виде готового модуля.  Оборудование модуля очень компактно монтируется, на единой раме. Обычно используется при необходимости экономии места, и быстрого монтажа на объекте. По своим массогабаритным характеристикам МТП обычно является компактным исполнением индивидуальных тепловых пунктов.


Источники тепла и системы транспорта тепловой энергии

 

Источником тепла для ТП служат теплогенерирующие предприятия (котельные, теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Тепловые сети подразделяются на первичные магистральные теплосети, соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети , соединяющие ТП с конечными потребителями. Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом.

 

Системы потребления тепловой энергии в подключаемом здании

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

Система горячего водоснабжения (ГВС). Предназначена для снабжения потребителей горячей водой[3]. Различают закрытые и открытые системы горячего водоснабжения. Часто тепло из системы ГВС используется потребителями для частичного отопления помещений, например, ванных комнат, в многоквартирных жилых домах.
Система отопления. Предназначена для обогрева помещений с целью поддержания в них заданной температуры воздуха[4]. Различают зависимые и независимые схемы присоединения систем отопления.
Система вентиляции. Предназначена для обеспечения подогрева поступающего в вентиляционные системы зданий наружного воздуха. Также может использоваться для присоединения зависимых систем отопления потребителей.
Система холодного водоснабжения. Не относится к системам, потребляющим тепловую энергию, однако присутствует во всех тепловых пунктах, обслуживающих многоэтажные здания. Предназначена для обеспечения необходимого давления в системах водоснабжения потребителей.
[править] Принципиальная схема теплового пунктаСхема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.


Принципиальная схема теплового пункта

 

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

 

 

Системы отопления и охлаждения — NYSERDA

Назад к Обогрейте и охладите свой дом

 

Отопление — это самая большая статья расходов на энергию в среднем доме, и две трети всех домохозяйств в США используют кондиционеры, что делает их затраты на энергию еще выше. В штате Нью-Йорк на обычные системы отопления и охлаждения (печи, бойлеры, центральные/оконные кондиционеры и т. д.) приходится 37 процентов потребления энергии и 32 процента выбросов парниковых газов.

Современные тепловые насосы позволяют домам оставаться более комфортными круглый год, экономить энергию и сокращать свой углеродный след. Тепловой насос — это универсальная система отопления и кондиционирования воздуха, которая является экологически чистой, чрезвычайно эффективной и доступной в эксплуатации — и все это без использования ископаемого топлива.

Доступно несколько типов тепловых насосов. Ознакомьтесь с приведенной ниже таблицей, чтобы просмотреть доступные варианты, или посетите веб-сайт NYS Clean Heat, чтобы получить подробную информацию о преимуществах тепловых насосов, принципах их работы, инструменте для сравнения вариантов, а также подробную информацию о доступных скидках и вариантах финансирования.

Посетите NYS Clean Heat, чтобы начать работу

Воздушные тепловые насосы Геотермальные тепловые насосы
Центральные системы (канальные) Бесканальные мини-сплит-системы
Обзор Центральные системы подключаются к одному внутреннему блоку (часто печи), проталкивая воздух через ряд воздуховодов, который выбрасывается через вентиляционные отверстия по всему дому. Центральные системы полагаются на наружный компрессор/конденсатор. Бесканальные мини-сплит-системы состоят из наружного компрессорного или конденсаторного блока, который соединяется с внутренним блоком для распределения тепла или переменного тока по всему дому. Геотермальные тепловые насосы, также называемые геотермальными тепловыми насосами, извлекают тепло из земли в холодную погоду через подземную систему трубопроводов, которое затем распределяется по всему дому. В теплые месяцы процесс меняется на обратный, чтобы обеспечить охлаждение.
Ожидаемая продолжительность жизни ~ 15 лет ~ 15 лет ~ 25 лет
Наиболее распространенные варианты источников топлива Электричество Электричество Электричество
Преимущества
  • Может иметь более низкую цену, чем мини-сплиты без воздуховодов (за исключением установки в воздуховоде)
  • Отопление и охлаждение дома в два-четыре раза эффективнее обычных систем отопления и охлаждения, что снижает счета за коммунальные услуги
  • Позволяет контролировать температуру всего дома с помощью одного термостата
  • Не требуют сжигания, что устраняет угарный газ, что делает их более безопасными, чем обычные варианты нагрева и охлаждения
  • Может сочетаться с фотоэлектрическими солнечными батареями и вариантами хранения электроэнергии на месте, чтобы уменьшить зависимость от источников энергии из ископаемого топлива
  • Производить меньше выбросов парниковых газов, делая окружающую среду чище
  • Отопление и охлаждение дома в два-четыре раза эффективнее обычных систем отопления и охлаждения, что снижает счета за коммунальные услуги
  • Позволяет настраивать и контролировать температуру в каждой комнате дома
  • Не требуется существующий воздуховод
  • Менее инвазивны и дороги, чем установка воздуховодов, необходимых для центральных систем
  • Подходящие модели оптимизированы для погодных условий Нью-Йорка — ищите модель для холодного климата
  • .
  • Небольшой размер обеспечивает гибкость дизайна при домашнем размещении
  • Не требуют сжигания, что устраняет угарный газ, что делает их более безопасными, чем обычные варианты нагрева и охлаждения
  • Может сочетаться с фотоэлектрическими солнечными батареями и вариантами хранения электроэнергии на месте, чтобы уменьшить зависимость от источников энергии из ископаемого топлива
  • Производить меньше выбросов парниковых газов, делая окружающую среду чище
  • Требуется минимальное обслуживание
  • Действовать как единая система для обогрева, охлаждения и подачи горячей воды (при наличии пароохладителя) для вашего дома
  • Обеспечивают более стабильную производительность и производительность, чем воздушные тепловые насосы
  • Вы можете сразу сэкономить от 30 до 60 процентов на отоплении и от 20 до 50 процентов на охлаждении при переходе от традиционных систем отопления и охлаждения (таких как мазут, пропан и системы электрического сопротивления)
  • Не требуют сжигания, что устраняет угарный газ, что делает их более безопасными, чем обычные варианты нагрева и охлаждения
  • Может сочетаться с фотоэлектрическими солнечными батареями и вариантами хранения электроэнергии на месте, чтобы уменьшить зависимость от источников энергии из ископаемого топлива
  • Требуется минимальное обслуживание
  • Производить меньше выбросов парниковых газов, делая окружающую среду чище
Соображения
  • Если в доме нет воздуховода, необходимо установить воздуховод
  • Может иметь более высокую цену, чем центральные тепловые насосы и традиционные системы отопления и охлаждения
  • Стоимость установки может быть выше, чем у центральных тепловых насосов
  • В зависимости от местоположения и модели вентиляторы и компрессоры теплового насоса могут быть шумными
  • Может иметь самую высокую цену по сравнению с другими вариантами обогрева и охлаждения
  • Домовладелец должен иметь достаточно места для установки
Эксплуатация и техническое обслуживание
  • Регулярно заменяйте или очищайте воздушные фильтры, чтобы снизить потребление энергии центральным тепловым насосом
  • Ежегодно проверяйте змеевик испарителя теплового насоса и при необходимости очищайте его
  • Один раз в год вызывать квалифицированного подрядчика для обслуживания центрального теплового насоса
  • Очищайте или меняйте фильтры один раз в месяц в часы пиковой нагрузки
  • Поручите квалифицированному подрядчику обслуживать тепловой насос не реже одного раза в год
  • Очищайте или меняйте фильтры один раз в месяц в часы пиковой нагрузки
  • Поручите квалифицированному подрядчику обслуживать тепловой насос не реже одного раза в год

 

Производительность и ожидаемый срок службы этих систем отопления зависят от установки, местоположения, топлива, технического обслуживания и поведения жильцов.

Тепловые трубки для управления температурным режимом

Все, что вам нужно знать о тепловых трубках

Тепловые трубки — это один из наиболее эффективных способов перемещения тепла или тепловой энергии из одной точки в другую. Эти двухфазные системы обычно используются для охлаждения помещений или материалов даже в открытом космосе. Тепловые трубы были впервые разработаны для использования Лос-Аламосской национальной лабораторией для подачи тепла и отвода отработанного тепла из систем преобразования энергии.

Сегодня тепловые трубки используются в самых разных системах охлаждения: от космоса до медицинских устройств, охлаждения силовой электроники, самолетов и многого другого! Если вы не уверены, являются ли тепловые трубы идеальным тепловым решением для вашего проекта, свяжитесь с нами, чтобы обсудить ваше применение, и наши инженеры смогут определить наилучший путь вперед.

Ответы на все вопросы по практическому использованию тепловых трубок

  1. Что такое тепловые трубки?
  2. Как работает тепловая трубка
  3. Когда используются тепловые трубки?
  4. Примеры использования тепловых трубок
  5. Каковы преимущества тепловой трубки?
  6. Существуют ли рекомендации по проектированию тепловых трубок?

Тепловая трубка — это простой инструмент, но принцип ее работы весьма изобретателен:

 

Готовы снизить затраты, повысить срок службы и надежность вашего оборудования?

Часто задаваемые вопросы о тепловых трубках:

Что такое тепловые трубки?

Это герметичный сосуд, который вакуумируется и заполняется рабочей жидкостью, как правило, в небольшом количестве. В трубе используется сочетание испарения и конденсации этой рабочей жидкости для чрезвычайно эффективной передачи тепла.

Наиболее распространенная тепловая трубка имеет цилиндрическое поперечное сечение с фитилем на внутреннем диаметре. Холодная рабочая жидкость движется по фитилю от более холодной стороны (конденсатор) к более горячей стороне (испаритель), где испаряется. Затем этот пар движется к радиатору конденсатора, принося с собой тепловую энергию. Рабочее тело конденсируется, выделяя скрытую теплоту в конденсаторе, а затем цикл повторяется, непрерывно отводя тепло от части системы.

Падение температуры в системе минимально благодаря очень высоким коэффициентам теплопередачи при кипении и конденсации. Эффективная теплопроводность может достигать от 10 000 до 100 000 Вт/м·К для длинных тепловых труб по сравнению с примерно 400 Вт/м·К для меди. Выбор материала зависит от применения и привел к таким сочетаниям, как калий с нержавеющей сталью, вода с медью и аммиак с алюминием, сталью и никелем.

Преимущества включают пассивную работу и очень долгий срок службы при минимальном техническом обслуживании или вообще без него.

Как работает тепловая трубка?

Тепловая трубка состоит из рабочего тела, фитильной конструкции и герметичной защитной оболочки (оболочки). Подводимая теплота испаряет рабочую жидкость в жидком виде на поверхности фитиля в испарительной секции.

Пар и связанная с ним скрытая теплота перетекают в более холодную секцию конденсатора, где они конденсируются, отдавая скрытую теплоту. Капиллярное действие затем перемещает сконденсированную жидкость обратно в испаритель через структуру фитиля. По сути, это работает так же, как губка впитывает воду.

Процессы фазового перехода и циркуляция двухфазного потока в тепловой трубе будут продолжаться до тех пор, пока существует достаточно большая разница температур между секциями испарителя и конденсатора. Жидкость перестает двигаться, если общая температура однородна, но снова начинает двигаться, как только возникает разница температур. Источник питания (кроме тепла) не требуется.

В некоторых случаях, когда нагретая секция находится ниже охлаждаемой секции, для возврата жидкости в испаритель используется сила тяжести. Однако фитиль необходим, когда испаритель находится над конденсатором на земле. Фитиль также используется для возврата жидкости при отсутствии гравитации, например, в приложениях НАСА для микрогравитации.

Когда используются тепловые трубки?

Когда вы спросите, что такое тепловые трубки, вы лучше поймете, когда узнаете, когда они используются. Вы найдете множество простых и сложных систем, которые используют эти трубы в различных вариантах развертывания, основанных на различных принципах работы, требованиях к тепловым характеристикам, требованиях к проводимости, пространственных ограничениях, общей прочности и стоимости.

Наши инженеры-теплотехники согласны с тем, что тепловые трубы — это разумное вложение, если у вас есть устройство или платформа, для которых требуется одно из следующих действий:

  • Перенос тепла из одного места в другое. Например, многие электронные устройства используют это для передачи тепла от микросхемы к удаленному радиатору.
  • Преобразуйте тепло от высокого теплового потока в испарителе в более низкий тепловой поток в конденсаторе, упрощая отвод всего тепла с помощью традиционных методов, таких как жидкостное или воздушное охлаждение. Тепловые потоки до 1000 Вт/см 2 могут быть преобразованы с помощью специальных испарительных камер.
  • Обеспечьте изотермическую поверхность. Примеры включают в себя работу нескольких лазерных диодов при одинаковой температуре и создание очень изотермических поверхностей для калибровки температуры.

Несколько стандартных примеров использования тепловых трубок

Наиболее распространенным применением является система медных тепловых трубок, использующая воду внутри медной оболочки для охлаждения электроники, работающая в диапазоне температур от 20°C до 150°C. .

Одним из преимуществ системы медь/вода является то, что ее легко комбинировать с уже существующими в электронике элементами. Радиаторы с тепловыми трубками присутствуют почти в каждом вычислительном устройстве, и их возможности охлаждения улучшаются в сочетании с тепловыми трубками.

Системы отопления, вентиляции и кондиционирования воздуха часто используют тепловые трубы для рекуперации энергии, поскольку они не требуют энергии.

Они также используются для контроля температуры спутников и космических кораблей. Системы обеспечивают эффективный метод распределения тепла. Эти системы космических кораблей используют чрезвычайно чистые жидкости и построены в соответствии с самыми строгими стандартами, чтобы обеспечить работу в течение 30+ лет. Каждая проблема в космосе имеет решающее значение, и небольшие сбои могут разрушить многомиллионное оборудование.

  • Высокая эффективная теплопроводность. Передача тепла на большие расстояния с минимальным падением температуры.
  • Пассивная работа. Без движущихся частей и для работы не требует подвода энергии, кроме тепла.
  • Изотермический режим. Очень изотермические поверхности с колебаниями температуры до ± 5 мК.
  • Долгий срок службы без обслуживания. Нет движущихся частей, которые могут изнашиваться. Вакуумное уплотнение предотвращает потери жидкости, а защитные покрытия обеспечивают длительную защиту каждого устройства от коррозии.
  • Снижение затрат. За счет снижения рабочей температуры эти устройства могут увеличить среднее время наработки на отказ (MTBF) для электронных сборок. В свою очередь, это снижает потребность в техническом обслуживании и затраты на замену. В системах HVAC они могут снизить потребление энергии для отопления и кондиционирования воздуха со сроком окупаемости в несколько лет.

Существует несколько универсальных преимуществ работы тепловых трубок практически во всех областях применения.

Существуют ли рекомендации по проектированию тепловых трубок?

Общая тепловая нагрузка, которую может нести тепловая труба, зависит от общей длины, длины испарителя и конденсатора, диаметра и ориентации по отношению к силе тяжести. Есть несколько ограничений, которые регулируют теорию тепловых трубок, однако в наземных приложениях предел капиллярности является наиболее ограничивающим фактором. Это происходит, когда способность капиллярного насоса неэффективна для подачи достаточного количества жидкости в испаритель из конденсатора. Это приведет к пересыханию испарителя. Высыхание препятствует продолжению термодинамического цикла, и тепловая трубка больше не работает должным образом.

Тепловые трубы наиболее эффективны, когда испаритель находится ниже конденсатора, создавая обратный путь жидкости, который поддерживается гравитацией, а максимальная мощность уменьшается по мере увеличения неблагоприятной высоты испарителя.

Узнайте больше о рекомендациях по проектированию тепловых труб для стандартных размеров, изгибов и сплющивания…

Ответы на все ваши вопросы по практическому использованию тепловых трубок

Теперь, когда вы знаете основы, мы уверены, что у вас есть более сложные вопросы. Хотя некоторые ответы относятся к вашим потребностям и системным требованиям, эти ответы на стандартные вопросы помогут вам лучше понять, как работают эти устройства:

  • На каком расстоянии может работать тепловая трубка?

Наземные тепловые трубы, работающие против силы тяжести, относительно короткие — обычно не более 2 футов (60 см) в длину и максимальная высота против силы тяжести примерно один фут (30 см).

Тепловые трубы космического корабля обычно имеют длину менее 10 футов (3 м), и допускается дополнительная длина, поскольку они работают в условиях невесомости.

Когда тепловая трубка работает под действием силы тяжести, называемой термосифоном, длина может быть практически неограниченной, и многие из них имеют длину до сотен футов (м).

  • Может ли тепловая трубка работать против силы тяжести?

Могут работать , даже когда испаритель расположен над конденсатором, двигаясь против силы тяжести. Это означает, что капиллярное действие должно возвращать жидкость против перепадов давления жидкости, а также гравитационного напора. Эта установка уменьшит общую максимальную мощность, доступную для перемещения рабочей жидкости. Используйте калькулятор тепловых труб ACT, чтобы точно определить требования и возможности.

  • Какой температурный диапазон для тепловой трубки?

Отдельные двухфазные системы могут переносить по крайней мере некоторое количество тепла между тройной точкой и критической точкой рабочей жидкости, но мощность, передаваемая как вблизи тройной точки, так и вблизи критической точки, очень мала. Существует меньший практический диапазон температур, который показывает индивидуальные возможности и ограничения, например, медно-водяные тепловые трубы обычно работают при температуре от 25°C до 150°C.

  • Какие материалы используются для оболочек тепловых труб, фитилей и рабочих жидкостей?

Нас часто спрашивают, из каких материалов изготавливаются оболочки и фитили, и что можно использовать в качестве рабочих жидкостей. Существует значительное количество материалов, которые можно использовать для каждого из них, но важным требованием является то, что жидкость и материалы должны быть совместимы. Мы составили этот список совместимых материалов, но наиболее распространенными комбинациями оболочка/фитиль и рабочая жидкость являются медь/вода для охлаждения электроники, алюминий/аммиак для терморегулирования космического корабля, медь/фреон и сталь/фреон для систем рекуперации энергии. , а также суперсплавные/щелочные жидкости для металлообработки для высокотемпературных применений.

Процесс выбора материала начинается с согласования рабочей температуры с подходящей рабочей жидкостью. Правильный выбор оболочки, фитиля и рабочих жидкостей позволяет компании ACT построить для вас систему, которая не требует технического обслуживания.

  • Может ли работать водяная тепловая труба после замерзания?

Водяные тепловые трубы передают очень мало энергии при температурах ниже ~ 25°C из-за очень низкой плотности пара, ограничивающей количество передаваемой мощности. При температурах ниже точки замерзания передача тепла происходит только за счет теплопроводности через стенку и фитиль.

Обратите внимание, что правильно спроектированные медно-водяные тепловые трубы могут выдерживать тысячи циклов замораживания/оттаивания без повреждения несущей способности после того, как вода станет жидкой. Это достигается за счет строгого контроля запасов жидкости, чтобы вся жидкость находилась в фитиле. Это предотвращает образование жидкого мостика и повреждение устройства за счет расширения при замерзании.

Обратитесь в ACT для получения информации о правильном использовании тепловых трубок

Теперь, когда вы узнали, что такое тепловые трубки и как они используются, пришло время связаться с ACT для получения дополнительной информации и расценок на установку тепловых трубок в ваше оборудование. Мы поможем вам решить, как наилучшим образом удовлетворить ваши потребности с помощью оборудования, в том числе:

  • Управление температурным режимом
  • Тепловые трубы в сборе
  • Пластины HiK™
  • Блоки испарительной камеры
  • Радиаторы PCM
  • Холодильные тарелки
  • И многое, многое другое.

Мы предоставим вам все необходимое для понимания стоимости и установки стандартных тепловых трубок, а также вариантов, которые работают под действием силы тяжести, работают в зонах, где внутренние жидкости могут замерзнуть, и в других конкретных случаях на Земле и над Землей.

Сократите свои расходы и увеличьте срок службы и надежность вашего оборудования с помощью простой беседы, призванной сделать ваши операции проще и доступнее. Свяжитесь с ACT сегодня, чтобы узнать обо всех аспектах управления температурным режимом, от разработки до производства тепловых труб и других вариантов рекуперации энергии.

Какие плюсы и минусы воздушных тепловых насосов (2022)

Что такое воздушный тепловой насос?

Воздушный тепловой насос (ASHP) работает путем передачи тепла, поглощаемого из наружного воздуха, во внутреннее пространство. Работает через мокрые системы центрального отопления, нагревает радиаторы и обеспечивает горячее водоснабжение. Тепловые насосы работают аналогично холодильнику: они поглощают тепло и передают его в другую среду.

Некоторые воздушные тепловые насосы также могут работать в качестве системы охлаждения в летние месяцы. Чаще всего они размещаются за пределами здания , где имеется достаточно места для установки.

Существует два основных типа воздушных тепловых насосов:

  • Тепловые насосы воздух-воздух, которые поглощают тепло из наружного воздуха, а затем передают его непосредственно в ваш дом через систему вентиляторов для обогрева помещения.
  • Воздушно-водяные тепловые насосы, которые поглощают тепло из наружного воздуха, а затем передают его через вашу систему центрального отопления для обеспечения водяного отопления, радиаторов или напольного отопления в помещении (или всех трех).

Перед переключением рассмотрите как преимущества , так и недостатки воздушных тепловых насосов.

Для того, чтобы к 2050 году достичь нуля, правительство Великобритании планирует установить 19 миллионов тепловых насосов в новостройках. С увеличением использования тепловых насосов, субсидии правительства Великобритании на тепловые насосы делают этот возобновляемый источник энергии еще дешевле в эксплуатации и снижают бремя затрат на воздушные тепловые насосы.

Международное энергетическое агентство в своем последнем специальном отчете подчеркивает, что новые газовые котлы не должны продаваться после 2025 года  , если к 2050 году необходимо достичь целей Net Zero. Ожидается, что тепловые насосы будут лучше, низкоуглеродная альтернатива для отопления домов в обозримом будущем.

Преимущества воздушных тепловых насосов

Использование тепловых насосов имеет множество преимуществ. С воздушным тепловым насосом вы можете сэкономить деньги на счетах за электроэнергию и уменьшить свой углеродный след по сравнению с газовой или электрической системой отопления. Одним из ключевых преимуществ воздушных тепловых насосов является их универсальность и доступность . ASHP может работать как для для целей обогрева или охлаждения и может использоваться для обогрева помещений или нагрева воды.

Наиболее важными важными преимуществами приобретения воздушного теплового насоса являются следующие:

1. Низкий углеродный след охладите свой дом. Если вы переходите с системы отопления, работающей на угле или электричестве, вы можете значительно сократить выбросы углекислого газа. На каждые 3-4 единицы энергии, произведенной воздушным тепловым насосом, используется только 1 единица электроэнергии, что делает его гораздо лучшей альтернативой для сокращения выбросов.

2. Экономьте деньги на счетах за электроэнергию

Переключившись на воздушные тепловые насосы, вы можете сократить свои счета за электроэнергию, поскольку вы будете использовать наружный воздух для обогрева и охлаждения. Ваша экономия будет более значительной, если вы перейдете с электрической или угольной системы. Несмотря на то, что первоначальная стоимость довольно высока, вы будете иметь право на получение значительной части ваших инвестиций за счет платежей RHI. Вы можете сэкономить до 1335 фунтов стерлингов с воздушным тепловым насосом.

Эксплуатационные расходы тепловых насосов зависят от нескольких факторов , от эффективности до количества необходимого тепла и температуры источника тепла.

3. Право на получение RHI

Вы можете получать платежи за выработку собственного тепла в рамках программы Renewable Heat Incentive. Используя этот грант на экологически чистую энергию, вы можете сэкономить еще больше на счетах за электроэнергию .

Тепловые насосы типа «воздух-вода» имеют право на участие в программе отечественный RHI и схема продлена до марта 2022 . Это означает, что если вы установите свой тепловой насос в течение этого срока, вы будете получать платежи за каждую единицу произведенного тепла в течение 7 лет. Внутренние платежи RHI рассчитываются на основе текущих тарифов RHI, SCOP вашего теплового насоса и, конечно же, ваших потребностей в энергии.

Другие типы тепловых насосов также имеют право на выплаты RHI.

4. Может использоваться для обогрева и охлаждения

Воздушные тепловые насосы могут использоваться как для обогрева, так и для охлаждения . В зависимости от модели они могут обеспечивать охлаждение летом и обогрев зимой. Все, что вам нужно проверить, это то, что COP вашего воздушного теплового насоса должен быть выше 0,7 для охлаждения.

Кроме того, воздушные тепловые насосы очень хорошо работают с теплыми полами, поэтому, если вы хотите получить максимальную отдачу от вашей системы, вам следует серьезно подумать об установке теплых полов .

5.

Может использоваться для отопления помещений и горячего водоснабжения

В зависимости от теплового насоса, работающего на воздухе, вы также можете использовать его для нагрева воды . Это зависит от температуры воды в системе отопления (также известной как «температура подачи»). Чтобы иметь возможность нагревать воду, температура подачи должна быть примерно 55°C. Если ваша система предназначена только для отопления помещений, температура подачи будет 35°.

Если вы ищете как для отопления помещений, так и для нагрева воды, то необходимо выбрать АСВД с температурой подающей линии 55°C.

6. Высокий сезонный коэффициент полезного действия (SCOP)

Воздушные тепловые насосы эффективны как зимой, так и летом благодаря выдающемуся SCOP ( сезонный коэффициент полезного действия ). КПД теплового насоса — это способ измерения его эффективности путем сравнения потребляемой мощности, необходимой для производства тепла, с объемом тепловыделения. Цифра «сезонный COP» корректируется с учетом сезонности.

Например, типичный воздушный тепловой насос работает с КПД 3.2, когда наружная температура выше 7°C. Это означает, что тепловой насос имеет КПД 320 %: на каждый кВтч электроэнергии, использованный вентиляторами и компрессором, вырабатывается 3,2 кВтч тепла. Чем выше КПД, тем лучше.

Таким образом, рассматривая КПД воздушного теплового насоса в зависимости от температуры наружного воздуха, вы обнаружите, что, несмотря на некоторые небольшие колебания, они могут эффективно работать круглый год . Чтобы иметь возможность сравнивать тепловые насосы на основе того, насколько на них влияют эти изменения эффективности, используется сезонный COP.

7. Простой процесс установки

Установка воздушного теплового насоса может занять всего два дня . Установка теплового насоса с воздушным источником проще, чем установка теплового насоса с грунтовым источником, потому что вам не нужно копать. Тепловой насос на основе бытового воздуха обычно не требует разрешения на планирование, но всегда рекомендуется проконсультироваться с местными властями, прежде чем начинать процесс. Это идеальный вариант как для модернизации, так и для новых построек. Если вы совмещаете установку воздушного теплового насоса с другими строительными работами, вы также можете снизить стоимость установки.

8. Низкие эксплуатационные расходы

Обслуживание и уход должны выполняться техническим специалистом один раз в год . Поскольку такие воздушные тепловые насосы требуют минимального обслуживания, но есть несколько вещей, которые вы можете сделать, чтобы обеспечить оптимальную производительность вашего теплового насоса, от очистки фильтров до проверки на наличие утечек в системе, проверки уровня хладагента, удаления листьев и пыли из вашей системы отопления. насос и так далее. Любые другие технические задачи должны выполняться только сертифицированным установщиком.

9.

Долгий срок службы

Воздушные тепловые насосы имеют длительный срок службы и при надлежащем обслуживании могут работать до 20 лет . Более того, большинство воздушных тепловых насосов имеют 5-летнюю гарантию . Благодаря нескольким технологическим разработкам современные тепловые насосы могут эффективно работать почти 25 лет, прежде чем им потребуется замена.

10. Не требуется хранение топлива

Для воздушных тепловых насосов не требуется хранение топлива , поскольку в качестве топлива используется наружный воздух. Например, в котлах, работающих на жидком топливе, вам нужно где-то хранить масло, которое займет дополнительное место в вашем доме. Отсутствие зависимости от топлива, такого как нефть или древесные гранулы, также означает, что вам не придется платить дополнительные сборы за поставки топлива .

Недостатки воздушных тепловых насосов

Важным недостатком , о котором следует помнить, является то, что воздушные тепловые насосы имеют меньшую подачу тепла , чем другие альтернативы. Это означает, что вы получите максимальную отдачу от своего ASHP, вам нужен дом с хорошей изоляцией и, в идеале, пол с подогревом. Кроме того, еще одна распространенная проблема с воздушными тепловыми насосами заключается в том, что они могут быть шумными. Таким образом, выбор места для их размещения может иметь большое значение.

Это основной воздушный тепловой насос недостатки :

1. Меньшая подача тепла, чем у котлов

Этот тип отопления  имеет меньшую подачу тепла по сравнению с жидкотопливными и газовыми котлами, поэтому могут потребоваться радиаторы большего размера. Вода, которая циркулирует в радиаторах, подключенных к котлам, может работать при более высокой температуре, чем в системе ASHP.

Таким образом, для того же объема обогрева помещения вам потребуется большая поверхность теплоотдачи.

2. Дополнительные расходы на установку теплых полов

Из-за более низкой подачи тепла воздушные тепловые насосы чаще всего используются с теплыми полами, чтобы получить максимальную отдачу от системы. Это потому, что вам не понадобятся такие высокие температуры для работы — вы не захотите стоять на полу с температурой 40°C.

Это может означать, что затраты на установку могут быть выше , если у вас еще не установлена ​​система подогрева пола .

3. Ваш дом уже должен быть хорошо изолирован

Чтобы воспользоваться всеми преимуществами воздушного теплового насоса, для начала вам потребуется хорошо изолированный дом . Впрочем, это справедливо для любой системы отопления.

Если тепло может легко уйти из вашего дома через окна, двери или стены, вам потребуется больше энергии для поддержания тепла в помещении. Поэтому убедитесь, что ваш дом достаточно хорошо утеплен.

4. Низкая эффективность Ниже 0°C

Хотя воздушные тепловые насосы могут работать при температурах до -20°C, они теряют эффективность при температуре ниже 0°C . Это связано с тем, что они зависят исключительно от наружного воздуха, а по мере снижения температуры снижается и общая тепловая мощность, которую может производить насос.

Геотермальные тепловые насосы, с другой стороны, имеют трубы, проложенные глубоко под землей, имеют более стабильную температуру и мало подвержены влиянию холодного климата.

5. Меньшая экономия по сравнению с магистральным газом по низкой цене

Если у вас есть доступ к дешевому магистральному газу , то разница между ценой на газ и ценой на электроэнергию (для питания воздушного теплового насоса) не будет существенной. Тем не менее, тепловые насосы для многих являются крупным капиталовложением. Тем не менее, будущее Великобритании сосредоточено на значительном увеличении количества установок тепловых насосов, и вы можете ожидать, что у вас будет больше стимулов для перехода на низкоуглеродные технологии.

6. ASHP могут быть шумными

Воздушные тепловые насосы могут быть несколько шумными шумный , когда они работают, сравнимый с обычным кондиционером или от легкого до сильного дождя. Тем не менее, компании постоянно совершенствуют технологии, чтобы улучшить это и снизить уровень шума.

Факторы, которые необходимо принять во внимание перед установкой ASHP

Размышляя об установке воздушных тепловых насосов, необходимо учитывать три основных фактора:

  • Затраты: Стоимость установки воздушного теплового насоса обычно составляет от до 8000 фунтов стерлингов. 18 000 фунтов стерлингов . Дополнительные расходы могут быть понесены в зависимости от выбранного типа системы (нужно ли вам охлаждение в сочетании с обогревом), размера вашего имущества и ваших конкретных требований. Эти затраты намного ниже по сравнению с ценами на геотермальные тепловые насосы, которые варьируются от 20 000 до 45 000 фунтов стерлингов.
  • Изоляция:  Чтобы получить высокую отдачу с точки зрения экономии, важно иметь дом с хорошей теплоизоляцией , особенно с изоляцией чердака. Это гарантирует, что тепло, вырабатываемое в доме, не улетучивается, что позволяет поддерживать постоянное тепло в доме зимой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *