Влияние углекислого газа на организм человека: Влияние углекислого газа в воздухе на самочувствие человека

Содержание

Влияние концентрации углекислого газа на организм человека

АННОТАЦИЯ

В данной работе рассмотрено влияние концентрации углекислого газа на организм человека. Данная тема актуальна в связи с частым нарушением уровня комфортной концентрации СО2 в закрытых помещениях, а также в связи с отсутствием в России нормативов на содержание углекислоты.

ABSTRACT

In this paper, the effect of the concentration of carbon dioxide on the human body is considered. The actual topic is topical in connection with the frequent violation of the level of comfort of CO2 concentration in enclosed premises, as well as in concentration with the absence in Russia of standards for the content of carbon dioxide. 

 

Дыхание — физиологический процесс, гарантирующий течение метаболизма. Для комфортного существования человек должен дышать воздухом, состоящим из 21,5% кислорода и 0,03 – 0,04% углекислого газа. Остальное заполняет двухатомный газ без цвета, вкуса и запаха, один из самых распространённых элементов на Земле – азот.

Таблица 1.

Параметры содержания кислорода и углекислого газа в различных средах [2]

Среда О2 СО2
Атмосферный воздух, % 20,9 0,03
Выдыхаемый воздух, % 16,4 4
Альвеолярный воздух, мм рт. ст. (парциальное давление) 105-110 40
Артериальная кровь, мм рт. ст. 100 40
Венозная кровь, мм рт.
ст.
40 46
Ткани:межтканевая жидкость, мм рт. ст.клетки, мм рт. ст. 20-400,1-10,0 46-6060-70

При концентрации углекислого газа выше 0,1% (1000 ppm [parts per million]) возникает ощущение духоты: общий дискомфорт, слабость, головная боль, снижение концентрации внимания. Также увеличивается частота и глубина дыхания, происходит сужение бронхов, а при концентрации выше 15% – спазм голосовой щели. При длительном нахождении в помещениях с избыточным количеством углекислого газа происходят изменения в кровеносной, центральной нервной, дыхательной системах, при умственной деятельности нарушается, восприятие, оперативная память, распределение внимания.

Существует ошибочное мнение, что это проявления нехватки кислорода. На самом деле, это признаки повышенного уровня углекислого газа в окружающем пространстве.

В то же время углекислый газ, необходим организму. Парциальное давление углекислого газа влияет на кору головного мозга, дыхательный и сосудодвигательный центры, углекислый газ также отвечает за тонус сосудов, бронхов, обмен веществ, секрецию гормонов, электролитный состав крови и тканей. А значит, опосредованно влияет на активность ферментов и скорость почти всех биохимических реакций организма.

Уменьшение содержания кислорода до 15% или увеличение до 80% не существенно влияет на организм. В то время как на изменение концентрации углекислого газа на 0,1% оказывает существенное негативное воздействие. Отсюда можно сделать вывод о том, что углекислый примерно в 60-80 раз важнее кислорода.

Таблица 2.

В зависимость количества выделяемого углекислого газа от вида деятельности человека [1]

СО2 л/час Деятельность
18

Состояние спокойного бодрствования

24 Работа за компьютером
30 Ходьба
36 Легкая физическая нагрузка
32-43 Работа по дому

Современный человек очень много времени проводит в помещении. В условиях сурового климата люди пребывают на улице всего 10 % своего времени.

В помещении концентрация углекислоты растет быстрее, чем понижается концентрация кислорода. Данную закономерность можно проследить по графикам, полученным опытным путем в одном из школьных классов

Рисунок 1. Зависимость уровня углекислого газа и кислорода от времени [1].

Уровень углекислого газа в классе во время урока (а) постоянно растет. (Первые 10 минут – настройка приборов, поэтому показания скачут.) За 15 минут перемены при открытом окне концентрация СО2 падает и затем снова растет. Уровень кислорода (б) практически не меняется.

При концентрации углекислого газа внутри помещения выше 800 — 1000 ppm, люди, работающие там, испытывают синдром больного здания (СБЗ), а здания носят наименование «больные». Уровень примесей, которые могли бы вызвать раздражение слизистых оболочек, сухой кашель и головную боль растет значительно медленнее, чем уровень углекислого газа.

А когда в офисном помещении его концентрация опускалась ниже 800 ppm (0,08%), то и симптомы СБЗ становились слабее. Проблема СБЗ стала актуальна после появления герметичных стеклопакетов и низкой эффективности принудительной вентиляции из-за экономии электроэнергии. Бесспорно, причинами СБЗ могут выступать выделения строительных и отделочных материалов, споры плесени и т д. при ненадлежащей вентиляции концентрация этих веществ будет расти, но не так быстро, как концентрация углекислоты.

Таблица 3.

Как разные количества углекислого газа в воздухе влияют на человека [1]

Уровень СО2, ррm Физиологические проявления
380-400 Идеальный для здоровья и хорошего самочувствия человека.
400-600 Нормальное качество воздуха. Рекомендовано для детских комнат, спален, школ и детских садов.
600-1000 Появляются жалобы на качество воздуха. У людей, страдающих астмой могут учащаться приступы.
Выше 1000 Общий дискомфорт, слабость, головная боль. Концентрация внимания падает на треть. Растет число ошибок в работе. Может привести к негативным изменениям в крови. Может вызывать проблемы с дыхательной и кровеносной системами.
Выше 2000 Количество ошибок в работе сильно возрастает. 70 % сотрудников не могут сосредоточиться на работе.

Проблема повышенного уровня углекислого газа в помещении существует во всех странах. Ей активно занимаются в Европе США и Канаде. В России нет жестких норм на содержание в помещениях углекислого газа. Обратимся к нормативной литературе. В России норма воздухообмена не менее 30 м

3/ч [3]. В Европе – 72 м3/ч [5].

Рассмотрим, как были получены данные цифры:

Главный критерий – это объем углекислого газа, выделяемый человеком. Он, как было рассмотрено ранее, зависит от вида деятельности человека, а также от возраста, пола и т. д. Большинство источников рассматривают 1000 ppm как предельно-допустимую концентрацию углекислоты в помещении для длительного пребывания.

Для расчётов будем использовать обозначения:

  •         V – объем (воздуха, углекислого газа, и т.д.), м3;
  •         Vk – объем комнаты, м3
    ;
  •         VСО2 – объем СО2 в помещении, м3;
  •         v – скорость газообмена, м3/ч;
  •        vв – “скорость вентиляции”, объем воздуха, подаваемого в помещение (и удаляемого из него) за единицу времени, м3/ч;
  •         vd – “скорость дыхания”, объем кислорода, замещаемого углекислым газом в единицу времени. Коэффициент дыхания (неравность объема потребляемого кислорода и выдыхаемого углекислого газа) не учитываем, м3/ч;
  •         vСО2 – скорость изменения объема СО2 , м3/ч;
  •         k – концентрация, ppm;
  •         k(t) – концентрация СО2 от времени, ppm;
  •         kв – концентрация СО2 в подаваемом воздухе, ppm;
  •         kmax
    – максимально допустимая концентрация СО2 в помещении, ppm;
  •         t – время, ч.

Найдем изменение объема СО2 в помещении. Оно зависит от поступления СО2 с приточным воздухом из системы вентиляции, поступления СО2 от дыхания и удаления загрязненного воздуха из помещения. Будем считать, что СО2 равномерно распределяется по помещению. Это значительное упрощение модели, но дает возможность быстро оценить порядок величин.

dVСО2(t) = dVв * kв + vd * dt – dVв * k(t)

Отсюда скорость изменения объема СО2:

vСО2(t) = vв * kв + vd – vв * k(t)

Если человек вошел в помещение, то концентрация СО2 будет расти до тех пор, пока не придет к равновесному состоянию, т.

е. удаляться из комнаты будет ровно столько, сколько поступила с дыханием. То есть скорость изменения концентрации будет равна нулю:

vв * kв + vd – vв * k = 0

Установившаяся концентрация будет равна:

k = kв + vd / vв

Отсюда легко выяснить необходимую скорость вентиляции при допустимой концентрации:

vв = vd / (kmax – kв)

Для одного человека с vd = 20л/час (=0.02 м3/ч), kmax = 1000ppm (=0.001) и чистым воздухом за окном с vв = 400ppm (=0.0004) получим:

vв = 0.02 / (0.001 – 0.0004) = 33 м3/ч.

Мы получили цифру, данную в СП. Это минимальный объем вентиляции на человека. Она не зависит от площади и объема комнаты, только от “скорости дыхания” и объема вентиляции. Таким образом, в состоянии спокойного бодрствования концентрация СО2 вырастет до 1000 ppm, а при физической активности будет превышение норм.

Для других значений kmax объем вентиляции должен быть:

Таблица 4.

Требуемый воздухообмен для поддержания заданной концентрации СО2

Концентрация СО2, ppm Требуемый воздухообмен, м3
1000 33
900 40
800 50
700 67
600 100
500 200

Из этой таблицы можно найти требуемый объем вентиляции при заданном качестве воздуха.

Таким образом, воздухообмен 30 м3/ч, принятый нормативным в России не позволяет чувствовать себя комфортно в помещении. Европейский стандарт воздухообмена 72 м3/ч позволяет одерживать концентрацию углекислого газа, не влияющую на самочувствие человека.

Список литературы:

1. И. В. Гурина. «Кто ответит за духоту в помещении» [Электронный ресурс]. Режим доступа: http://swegon.by/publications/0000396/ (Дата обращения: 25.06.2017)
2. Кислород и углекислый газ в крови человека. [Электронный ресурс]. Режим доступа: http://www.grandars.ru/college/medicina/kislorod-v-krovi.html (Дата обращения: 23.06.2017)
3. СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха» стр. 60 (приложение К).
4. Что такое углекислый газ? [Электронный ресурс]. Режим доступа: http://zenslim.ru/content/%D0%A3%D0%B3%D0%BB%D0%B5%D0%BA%D0%B8%D1%81%D0%BB%D1%8B%D0%B9-%D0%B3%D0%B0%D0%B7-%D0%B2%D0%B0%D0%B6%D0%BD%D0%B5%D0%B5-%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%80%D0%BE%D0%B4%D0%B0-%D0%B4%D0%BB%D1%8F-%D0%B6%D0%B8%D0%B7%D0%BD%D0%B8 (Дата обращения: 13. 06.2017)
5. EN 13779 Ventilation for non-residential buildings – p.57 ( Table A/11)

Диоксид углерода — все про углекислый газ в нашей статье

  • Главная
  • Блог

Опубликовано: 27.11.2018Обновлено: 27.03.2023

Что такое диоксид углерода и какие имеет химические свойства? Источники образования СО2. Влияние диоксида углерода на человека и атмосферу. Негативное воздействие. Область применения СО2. Диоксид углерода один из самых распространенных химических соединений на земле. Наверняка Вы хотя бы раз слышали о его вреде для атмосферы и ускорении наступления глобального потепления. Мы подготовили для Вас подробный обзор со всеми характеристиками этого вещества. В этой статье сможете найти ответы на такие вопросы, как: что такое СО2? какой вред может причинить человеку и окружающей среде? есть ли польза от этого соединения?

Диоксид углерода: понятие, химические и физические свойства

В научной литературе диоксид углерода характеризуется, как химическое соединение, в формуле которого присутствуют следующие компоненты: 1 атом углерода и 2 атома кислорода. Известны и другие названия этого вещества: углекислота, двуокись углерода или СО2.

Ответим на вопрос, что такое СО2 с точки зрения его химических и физический свойств:

  • в обычных условиях имеет вид бесцветного газа, у которого практически полностью отсутствует какой-либо запах. Если же его концентрация повышается, то отмечается запах газированной воды с кисловатым ароматом.
  • диоксид углерода также может принимать форму бесцветной жидкости (образуется при температуре +20 и давлении более 6 МПа) или твердого вещества (сухой лед). Переход в твердое состояние происходит при снижении температуры до -78 градусов,
  • при контакте с водой происходит реакция, в результате чего образуется угольная кислота,
  • под воздействием высоким теператур диоксид углерода превращается в угарный газ,
  • плотность этого соединения находится на уровне 1,98 кг/м3, что в 1,5 раза тяжелее воздуха,
  • сам по себе углекислый кислород не имеет свойства гореть, однако может поддерживать горение активных металлов (например, магния, бария и т. д.)

Откуда берется СО2?

Все источники диоксида углерода на земле можно разделить на две большие категории: естественные (углекислый кислород образуется независимо от воли человека) и искусственные (образование этого соединения является результатом деятельности человечества). Ниже предлагаем подробно рассмотреть обе эти категории.

Естественные источники

Углекислый газ это вещество, которое активно вырабатывается в природе без какого-либо стороннего вмешательства. Происходит это следующими способами:

  1. Выделение СО2 человеком при дыхании — установлено, что человеческий организм выделяет примерно 1 кг этого соединения в сутки. Происходит этот процесс по следующей схеме: вначале углекислый газ образуется в качестве конечного продукта метаболизма, после чего по венозной системе он через легкие выводится наружу вместе с дыханием.
  2. Выработка СО2 растениями в условиях недостаточного освещения — принято считать, что зеленые насаждения активно поглощают этот газ. Однако, если света не хватает, то запускается обратная реакция. Именно поэтому наличие густой растительности в плохо проветриваемом помещении — не самое лучшее решение. В темное время суток концентрация углекислого газа будет расти, что негативно скажется на самочувствии человека.
  3. Другие естественные источники образования СО2 — сюда можно отнести извержение вулканов, гниение и разложение органических соединений, массивные лесные пожары. Во время всех этих процессов идет активная выработка диоксида углерода.

В природе углекислый газ встречается не только в чистом виде. Он также содержится во многих полезных ископаемых, например: нефти, известняке, торфе и т.д. Кроме того, большие запасы этого соединения находятся в мировом океане.

Искусственные источники

Концентрация СО2 в атмосфере начала резко расти с приходом индустриальной эпохи. Активная выработка этого газа является результатом деятельности человека. В чем это выражается:

  1. Выработка СО2 в качестве продукта сгорания топлива — главным источникам выступает большое количество наземного, воздушного и водного транспорта. В процессе его работы в окружающую среду попадают ядовитые выхлопные газы.
  2. Рост промышленных производств — СО2 активно выделяется из дымовых газов, часто выступает побочным продуктом различных химических процессов. К отраслям, лидирующим по объему выбросов этого газа в атмосферу, можно отнести: металлургическую, химическую, пищевую, энергетическую.

Немалый “вклад” в рост концентрации СО2 на земле также вносит активная вырубка лесов. Сокращение количества зеленых насаждений только усугубляет ситуацию.

Роль диоксида углерода в человеческом организме

Вокруг часто говорят о вреде повышения концентрации СО2 для человека и атмосферы, однако нельзя не отметить ту большую роль, которую играет это химическое соединение в нашем организме.

В первую очередь углекислый газ это важное вещество, которое обеспечивает ауторегуляцию кровотока. При повышении СО2 в ткани или крови происходит следующий эффект:

  • расширяются капилляры,
  • кровоток увеличивается,
  • кислород начинает активно поступать к тканям, а накопившаяся углекислота выводиться.

Еще один полезный эффект СО2 для человека — положительное воздействие на миокард, что выражается в повышении его чувствительности. В итоге увеличивается частота и сила сердечных сокращений, растет сердечный выброс и объем крови (ударный и минутный). Такое воздействие дает возможность корректировать состояние гипоксии и гиперкапнии.

Также СО2 играет большую роль для дыхательной системы человека. Дыхание стимулируется именно за счет повышения уровня этого газа в крови.

Углекислый газ активно используется в аппаратах искусственного дыхания. Его подмешивают к кислороду. Такая смесь помогает запустить дыхательную систему.

СО2 в природе

Определенную роль углекислый кислород также играет и для окружающей среды. Это химическое соединение содержится в атмосфере, литосфере, биосфере и гидросфере. Здесь его роль заключается в обеспечении обмена углерода между этими оболочками земли.

Так как СО2 является парниковым газом, то от его концентрации напрямую зависит климат на планете. Связано это с тем, что он создает парниковый эффект — поглощает и удерживает инфракрасное излучение. Без этого свойства средняя температура воздуха на всей планете была бы на 30 градусов меньше.

Вред повышения концентрации СО2 для человека и земли

Углекислый газ начинает вредить только при повышении допустимой концентрации. Какие здесь могут быть негативные последствия:

  • Ухудшение общего самочувствия — при превышении концентрации СО2 выше 1000 ppm человек становится вялым, появляется сонливость и становится тяжело дышать. Когда уровень углекислого газа поднимается свыше 1400 ppm, заметно падает работоспособность, засыпать становится трудно. При достижении объема СО2 3000 ppm и выше у человека учащается пульс, может начаться тошнота. Появление перечисленных симптомов обычно происходит при длительном нахождении в непроветриваемом помещении. Чтобы решить эту проблему можно установить в комнате систему приточной вентиляции. Тогда в вашем доме будет всегда свежий воздух, обогащенный кислородом.
  • Повышенная концентрация СО2 пагубно сказывается не только на здоровье человека. Рост числа производств и выхлопных газов усиливает парниковый эффект. Для всей планеты это грозит глобальным потеплением, то есть повышение средней температуры климатической системы Земли. Какие последствия это может повлечь за собой: рост уровня моря из-за таяния ледников, частое наступление природных катаклизмов, увеличение площади пустынь, сильное закисление воды в океане, вследствие чего гибнут многие его обитатели, резкое изменение климата и т.д.

Область применения СО2

Отвечая на вопрос, что такое СО2, нельзя не отметить роль этого химического соединения в промышленной сфере. Сегодня оно активно используется в самых разных отраслях, начиная с производства пищевых продуктов и заканчивая медициной.

Рассмотрим несколько наиболее распространенных областей применения СО2:

  1. Пищевая промышленность — здесь данный газ используется в качестве разрыхлителя для теста, консерванта (пищевая добавка Е290). Также углекислый газ является незаменимым компонентом при производстве газированной воды, лимонада и других напитков.
  2. Авиамоделирование — СО2 в баллончиках является источником энергии, обеспечивающей работу двигателей самолетов.
  3. Лабораторные исследования — в этой области СО2 больше используется в виде “сухого льда”. Он играет роль хладагента.
  4. Пожарная безопасность — сегодня для тушения пожаров активно используются автоматические углекислотные установки.

Как видно, углекислый газ играет большую роль для человека и всей планеты, участвуя в различных биологических, климатических и химических процессах. Перед человеком же стоит задача в контроле концентрации этого химического соединения. И если на глобальном уровне мы едва ли сможем изменить ситуацию, то обезопасить свое жилье от высоких объемов СО2 вполне в наших силах!

Физиология, задержка углекислого газа – StatPearls

Шивани Патель; Джулия Х. Мяо; Экрем Йетискул; Аня Анохина; Сапан Х. Маймундар.

Информация об авторе и организациях

Последнее обновление: 26 декабря 2022 г.

Введение

В организме человека двуокись углерода образуется внутриклеточно как побочный продукт метаболизма. СО2 транспортируется кровотоком в легкие, где он в конечном итоге удаляется из организма с выдохом. CO2 играет различные роли в организме человека, включая регуляцию pH крови, дыхательную активность и сродство гемоглобина к кислороду (O2). Колебания уровня CO2 строго регулируются и могут вызывать нарушения в организме человека, если не поддерживать нормальный уровень.

Проблемы, вызывающие озабоченность

Задержка CO2 известна как гиперкапния или гиперкарбия. Гиперкапния часто вызывается гиповентиляцией или неспособностью удалить избыток CO2 и может быть диагностирована по газам артериальной или венозной крови. Повышение уровня СО2 в кровотоке может привести к респираторному ацидозу. Нормальный дыхательный драйв и, следовательно, выдыхание СО2 в основном поддерживаются рефлексом хеморецепторов. Рефлекс хеморецепторов важен для того, чтобы организм мог реагировать на изменения рО2, рСО2 и рН. Хеморецепторы можно разделить на периферические и центральные. Периферические хеморецепторы расположены в каротидных и аортальных телах. Каротидное тело является основным датчиком повышенного рСО2, пониженного рО2 и общего пониженного рН. Гломусные клетки каротидного тела передают изменения рН периферических артерий в центральную нервную систему через языкоглоточный нерв. [1]

Центральные хеморецепторы расположены вблизи вентролатеральных поверхностей продолговатого мозга. В то время как периферические хеморецепторы в первую очередь чувствительны к изменениям O2 и CO2, центральные хеморецепторы реагируют на изменения pCO2 и pH. Центральные хеморецепторы способны быстро обнаруживать изменения PCO2. Гематоэнцефалический барьер проницаем для СО2, что позволяет химически чувствительным клеткам в мозговом веществе реагировать на повышение уровня СО2 в крови и последующее снижение рН. Снижение pH спинномозговой жидкости в конечном итоге увеличивает минутную вентиляцию, определяемую произведением частоты дыхания и дыхательного объема. Интересно, что центральные хеморецепторы больше реагируют на гиперкапнический ацидоз, чем на изокапнический ацидоз, отчасти, вероятно, из-за непроницаемости гематоэнцефалического барьера для ионов H+. [2] В результате симпатический отток в сосудистую сеть увеличивается, и предпринимаются усилия для увеличения частоты дыхания.[3][4][5]

Сотовый уровень

Клеточное дыхание преобразует поступившие питательные вещества в виде глюкозы (C6h22O6) и кислорода в энергию в виде аденозинтрифосфата (АТФ). CO2 образуется как побочный продукт этой реакции.

О2, необходимый для клеточного дыхания, получают при вдыхании. Образовавшийся CO2 удаляется из организма с выдохом.

Вовлеченные системы органов

Вместе дыхательная и кровеносная системы играют заметную роль в регуляции CO2. В то время как дыхательная система отвечает за газообмен, система кровообращения отвечает за транспортировку крови и ее компонентов в ткани и из них. Газообмен происходит в легких и тканях. Во время вдоха воздух проходит в альвеолы, основное место газообмена в легких. На альвеолярно-капиллярной границе О2 свободно диффундирует в кровь, а СО2 диффундирует из крови в альвеолярные пространства. Напротив, газообмен в тканях приводит к диффузии СО2, образующегося при дыхании, из тканей в кровь, в то время как О2 удаляется из гемоглобина в эритроцитах для пополнения запасов кислорода в тканях. [6][7]

 В долгосрочной перспективе респираторный ацидоз компенсируется задержкой бикарбонатов в почках, что повышает рН до нормальных значений.

Функция

CO2 является регулятором рН крови. В крови СО2 переносится в нескольких различных формах. Приблизительно 80–90 % растворяется в воде, 5–10 % растворяется в плазме и 5–10 % связывается с гемоглобином.

Сопутствующее тестирование

Анализ газов артериальной крови (ABG) необходим для оценки пациентов с подозрением на гиперкапнию. Гиперкапния определяется как PaCO2 выше 42 мм рт. Если PaCO2 больше 45 мм рт. ст., а PaO2 меньше 60 мм рт. ст., говорят о гиперкапнической дыхательной недостаточности.

Патофизиология

В кровотоке растворенный CO2 нейтрализуется бикарбонатно-углекислотной буферной системой, где он образует слабую кислоту, угольную кислоту (h3CO3). h3CO3 может диссоциировать на ион водорода и ион бикарбоната. Эта буферная система позволяет организму поддерживать физиологический рН.[8][9][10][11]

Когда уровни CO2 высоки, происходит сдвиг вправо в упомянутой выше реакции. В результате повышается концентрация ионов Н+ в кровотоке, снижается рН и возникает состояние ацидоза. Напротив, при низком уровне СО2 в реакции происходит сдвиг влево, что приводит к алкалотическому состоянию.

Карбоангидраза катализирует превращение CO2 и воды в H+ и бикарбонат.

Карбоангидраза помогает поддерживать кислотно-щелочной баланс в кровотоке и присутствует в высоких концентрациях в эритроцитах. Когда уровень CO2 в крови начинает расти, организм может реагировать гипервентиляцией или гиповентиляцией соответственно.

CO2, связанный с гемоглобином, образует карбаминосоединение. В условиях, когда концентрации CO2 и H+ высоки, сродство гемоглобина к O2 снижается. Когда концентрация СО2 низкая, сродство гемоглобина к О2 увеличивается. Это известно как эффект Бора. Наоборот, если концентрация О2 высока, увеличивается выброс СО2 из тканей. Это известно как эффект Холдейна.

Клиническое значение

Необходимо тщательно собрать анамнез, чтобы понять любые факторы, которые могут ускорить появление признаков и симптомов гиперкапнии. У пациентов с гиперкапнией могут наблюдаться тахикардия, одышка, гиперемия кожи, спутанность сознания, головные боли и головокружение. Если гиперкапния развивается постепенно с течением времени, симптомы могут быть слабыми или могут отсутствовать совсем. Другие случаи гиперкапнии могут быть более тяжелыми и приводить к дыхательной недостаточности. В этих случаях могут наблюдаться такие симптомы, как судороги, отек диска зрительного нерва, депрессия и мышечные подергивания. Если у пациента с ХОБЛ проявляются признаки и симптомы гиперкапнии, следует немедленно обратиться за медицинской помощью до того, как уровень CO2 достигнет опасного для жизни уровня.[12][13]

Гиперкапнию следует лечить путем устранения ее основной причины. Неинвазивный аппарат ИВЛ с положительным давлением может оказать поддержку пациентам с неадекватным дыхательным приводом. Если неинвазивная вентиляция неэффективна, может быть показана интубация. Бронхолитики также могут быть использованы у пациентов, страдающих обструктивным заболеванием дыхательных путей.

В недавних исследованиях также была показана эффективность использования пищеводного баллона для лечения гиперкапнии у пациентов с острым респираторным дистресс-синдромом.

Контрольные вопросы

  • Доступ к бесплатным вопросам с несколькими вариантами ответов по этой теме.

  • Комментарий к этой статье.

Ссылки

1.

Wong-Riley MT, Liu Q, Gao XP. Взаимодействие периферических и центральных хеморецепторов и значение критического периода в развитии контроля дыхания. Респир Физиол Нейробиол. 2013 01 января; 185 (1): 156-69. [Бесплатная статья PMC: PMC3467325] [PubMed: 22684042]

2.

Патнэм Р.В., Филоса Дж.А., Ритуччи Н.А. Клеточные механизмы, участвующие в передаче сигналов CO (2) и кислоты в химиочувствительных нейронах. Am J Physiol Cell Physiol. 2004 г., декабрь; 287 (6): C1493-526. [PubMed: 15525685]

3.

Vasileiadis I, Alevrakis E, Ampelioti S, Vagionas D, Rovina N, Koutsoukou A. Нарушения кислотной базы у пациентов с астмой: литература и комментарии по их патофизиологии. Дж. Клин Мед. 25 апреля 2019 г.; 8(4) [бесплатная статья PMC: PMC6518237] [PubMed: 31027265]

4.

Baillieul S, Revol B, Jullian-Desayes I, Joyeux-Faure M, Tamisier R, Pépin JL. Диагностика и лечение синдрома центрального апноэ сна. Эксперт Respir Med. 2019 июнь; 13 (6): 545-557. [PubMed: 31014146]

5.

Bigatello L, Pesenti A. Физиология дыхания для анестезиолога. Анестезиология. 2019 июнь; 130 (6): 1064-1077. [PubMed: 30998510]

6.

де Карвалью М., Свош М., Пинто С. Диафрагмальная нейрофизиология и респираторные маркеры при БАС. Фронт Нейрол. 2019;10:143. [Бесплатная статья PMC: PMC6393326] [PubMed: 30846968]

7.

Eikermann M, Santer P, Ramachandran SK, Pandit J. Последние достижения в понимании и лечении послеоперационных респираторных заболеваний. F1000рез. 2019; 8 [Бесплатная статья PMC: PMC6381803] [PubMed: 30828433]

8.

Атайде RAB, Оливейра Филью JRB, Лоренци Филью Г, Джента PR. Синдром гиповентиляции ожирения: текущий обзор. J Брас Пневмол. 2018 ноябрь-декабрь;44(6):510-518. [Бесплатная статья PMC: PMC6459748] [PubMed: 30726328]

9.

Comellini V, Pacilli AMG, Nava S. Преимущества неинвазивной вентиляции при острой гиперкапнической дыхательной недостаточности. Респирология. 2019 апр; 24(4):308-317. [PubMed: 30636373]

10.

Frat JP, Coudroy R, Thille AW. Неинвазивная вентиляция легких или высокопоточная оксигенотерапия: когда лучше выбрать одно, а какое другое? Респирология. 2019 августа; 24 (8): 724-731. [PubMed: 30406954]

11.

Thille AW, Frat JP. Неинвазивная вентиляция как неотложная терапия. Curr Opin Crit Care. 2018 дек;24(6):519-524. [PubMed: 30299309]

12.

Berbenetz N, Wang Y, Brown J, Godfrey C, Ahmad M, Vital FM, Lambiase P, Banerjee A, Bahhai A, Chong M. Неинвазивная вентиляция с положительным давлением ( CPAP или bilevel NPPV) при кардиогенном отеке легких. Cochrane Database Syst Rev. 2019 Apr 05;4(4):CD005351. [Бесплатная статья PMC: PMC6449889] [PubMed: 30950507]

13.

Диас Милиан Р., Фоли Э., Бауэр М., Мартинес-Велес А., Кастресана М.Р. Экспираторный коллапс центральных дыхательных путей у взрослых: последствия анестезии (часть 1). J Cardiothorac Vasc Anesth. 201933 сентября (9): 2546-2554. [PubMed: 30279064]

Физиология, задержка углекислого газа – StatPearls

Шивани Патель; Джулия Х. Мяо; Экрем Йетискул; Аня Анохина; Сапан Х. Маймундар.

Информация об авторе и организациях

Последнее обновление: 26 декабря 2022 г.

Введение

В организме человека двуокись углерода образуется внутриклеточно как побочный продукт метаболизма. СО2 транспортируется кровотоком в легкие, где он в конечном итоге удаляется из организма с выдохом. CO2 играет различные роли в организме человека, включая регуляцию pH крови, дыхательную активность и сродство гемоглобина к кислороду (O2). Колебания уровня CO2 строго регулируются и могут вызывать нарушения в организме человека, если не поддерживать нормальный уровень.

Проблемы, вызывающие озабоченность

Задержка CO2 известна как гиперкапния или гиперкарбия. Гиперкапния часто вызывается гиповентиляцией или неспособностью удалить избыток CO2 и может быть диагностирована по газам артериальной или венозной крови. Повышение уровня СО2 в кровотоке может привести к респираторному ацидозу. Нормальный дыхательный драйв и, следовательно, выдыхание СО2 в основном поддерживаются рефлексом хеморецепторов. Рефлекс хеморецепторов важен для того, чтобы организм мог реагировать на изменения рО2, рСО2 и рН. Хеморецепторы можно разделить на периферические и центральные. Периферические хеморецепторы расположены в каротидных и аортальных телах. Каротидное тело является основным датчиком повышенного рСО2, пониженного рО2 и общего пониженного рН. Гломусные клетки каротидного тела передают изменения рН периферических артерий в центральную нервную систему через языкоглоточный нерв. [1]

Центральные хеморецепторы расположены вблизи вентролатеральных поверхностей продолговатого мозга. В то время как периферические хеморецепторы в первую очередь чувствительны к изменениям O2 и CO2, центральные хеморецепторы реагируют на изменения pCO2 и pH. Центральные хеморецепторы способны быстро обнаруживать изменения PCO2. Гематоэнцефалический барьер проницаем для СО2, что позволяет химически чувствительным клеткам в мозговом веществе реагировать на повышение уровня СО2 в крови и последующее снижение рН. Снижение pH спинномозговой жидкости в конечном итоге увеличивает минутную вентиляцию, определяемую произведением частоты дыхания и дыхательного объема. Интересно, что центральные хеморецепторы больше реагируют на гиперкапнический ацидоз, чем на изокапнический ацидоз, отчасти, вероятно, из-за непроницаемости гематоэнцефалического барьера для ионов H+. [2] В результате симпатический отток в сосудистую сеть увеличивается, и предпринимаются усилия для увеличения частоты дыхания.[3][4][5]

Сотовый уровень

Клеточное дыхание преобразует поступившие питательные вещества в виде глюкозы (C6h22O6) и кислорода в энергию в виде аденозинтрифосфата (АТФ). CO2 образуется как побочный продукт этой реакции.

О2, необходимый для клеточного дыхания, получают при вдыхании. Образовавшийся CO2 удаляется из организма с выдохом.

Вовлеченные системы органов

Вместе дыхательная и кровеносная системы играют заметную роль в регуляции CO2. В то время как дыхательная система отвечает за газообмен, система кровообращения отвечает за транспортировку крови и ее компонентов в ткани и из них. Газообмен происходит в легких и тканях. Во время вдоха воздух проходит в альвеолы, основное место газообмена в легких. На альвеолярно-капиллярной границе О2 свободно диффундирует в кровь, а СО2 диффундирует из крови в альвеолярные пространства. Напротив, газообмен в тканях приводит к диффузии СО2, образующегося при дыхании, из тканей в кровь, в то время как О2 удаляется из гемоглобина в эритроцитах для пополнения запасов кислорода в тканях. [6][7]

 В долгосрочной перспективе респираторный ацидоз компенсируется задержкой бикарбонатов в почках, что повышает рН до нормальных значений.

Функция

CO2 является регулятором рН крови. В крови СО2 переносится в нескольких различных формах. Приблизительно 80–90 % растворяется в воде, 5–10 % растворяется в плазме и 5–10 % связывается с гемоглобином.

Сопутствующее тестирование

Анализ газов артериальной крови (ABG) необходим для оценки пациентов с подозрением на гиперкапнию. Гиперкапния определяется как PaCO2 выше 42 мм рт. Если PaCO2 больше 45 мм рт. ст., а PaO2 меньше 60 мм рт. ст., говорят о гиперкапнической дыхательной недостаточности.

Патофизиология

В кровотоке растворенный CO2 нейтрализуется бикарбонатно-углекислотной буферной системой, где он образует слабую кислоту, угольную кислоту (h3CO3). h3CO3 может диссоциировать на ион водорода и ион бикарбоната. Эта буферная система позволяет организму поддерживать физиологический рН.[8][9][10][11]

Когда уровни CO2 высоки, происходит сдвиг вправо в упомянутой выше реакции. В результате повышается концентрация ионов Н+ в кровотоке, снижается рН и возникает состояние ацидоза. Напротив, при низком уровне СО2 в реакции происходит сдвиг влево, что приводит к алкалотическому состоянию.

Карбоангидраза катализирует превращение CO2 и воды в H+ и бикарбонат.

Карбоангидраза помогает поддерживать кислотно-щелочной баланс в кровотоке и присутствует в высоких концентрациях в эритроцитах. Когда уровень CO2 в крови начинает расти, организм может реагировать гипервентиляцией или гиповентиляцией соответственно.

CO2, связанный с гемоглобином, образует карбаминосоединение. В условиях, когда концентрации CO2 и H+ высоки, сродство гемоглобина к O2 снижается. Когда концентрация СО2 низкая, сродство гемоглобина к О2 увеличивается. Это известно как эффект Бора. Наоборот, если концентрация О2 высока, увеличивается выброс СО2 из тканей. Это известно как эффект Холдейна.

Клиническое значение

Необходимо тщательно собрать анамнез, чтобы понять любые факторы, которые могут ускорить появление признаков и симптомов гиперкапнии. У пациентов с гиперкапнией могут наблюдаться тахикардия, одышка, гиперемия кожи, спутанность сознания, головные боли и головокружение. Если гиперкапния развивается постепенно с течением времени, симптомы могут быть слабыми или могут отсутствовать совсем. Другие случаи гиперкапнии могут быть более тяжелыми и приводить к дыхательной недостаточности. В этих случаях могут наблюдаться такие симптомы, как судороги, отек диска зрительного нерва, депрессия и мышечные подергивания. Если у пациента с ХОБЛ проявляются признаки и симптомы гиперкапнии, следует немедленно обратиться за медицинской помощью до того, как уровень CO2 достигнет опасного для жизни уровня.[12][13]

Гиперкапнию следует лечить путем устранения ее основной причины. Неинвазивный аппарат ИВЛ с положительным давлением может оказать поддержку пациентам с неадекватным дыхательным приводом. Если неинвазивная вентиляция неэффективна, может быть показана интубация. Бронхолитики также могут быть использованы у пациентов, страдающих обструктивным заболеванием дыхательных путей.

В недавних исследованиях также была показана эффективность использования пищеводного баллона для лечения гиперкапнии у пациентов с острым респираторным дистресс-синдромом.

Контрольные вопросы

  • Доступ к бесплатным вопросам с несколькими вариантами ответов по этой теме.

  • Комментарий к этой статье.

Ссылки

1.

Wong-Riley MT, Liu Q, Gao XP. Взаимодействие периферических и центральных хеморецепторов и значение критического периода в развитии контроля дыхания. Респир Физиол Нейробиол. 2013 01 января; 185 (1): 156-69. [Бесплатная статья PMC: PMC3467325] [PubMed: 22684042]

2.

Патнэм Р.В., Филоса Дж.А., Ритуччи Н.А. Клеточные механизмы, участвующие в передаче сигналов CO (2) и кислоты в химиочувствительных нейронах. Am J Physiol Cell Physiol. 2004 г., декабрь; 287 (6): C1493-526. [PubMed: 15525685]

3.

Vasileiadis I, Alevrakis E, Ampelioti S, Vagionas D, Rovina N, Koutsoukou A. Нарушения кислотной базы у пациентов с астмой: литература и комментарии по их патофизиологии. Дж. Клин Мед. 25 апреля 2019 г.; 8(4) [бесплатная статья PMC: PMC6518237] [PubMed: 31027265]

4.

Baillieul S, Revol B, Jullian-Desayes I, Joyeux-Faure M, Tamisier R, Pépin JL. Диагностика и лечение синдрома центрального апноэ сна. Эксперт Respir Med. 2019 июнь; 13 (6): 545-557. [PubMed: 31014146]

5.

Bigatello L, Pesenti A. Физиология дыхания для анестезиолога. Анестезиология. 2019 июнь; 130 (6): 1064-1077. [PubMed: 30998510]

6.

де Карвалью М., Свош М., Пинто С. Диафрагмальная нейрофизиология и респираторные маркеры при БАС. Фронт Нейрол. 2019;10:143. [Бесплатная статья PMC: PMC6393326] [PubMed: 30846968]

7.

Eikermann M, Santer P, Ramachandran SK, Pandit J. Последние достижения в понимании и лечении послеоперационных респираторных заболеваний. F1000рез. 2019; 8 [Бесплатная статья PMC: PMC6381803] [PubMed: 30828433]

8.

Атайде RAB, Оливейра Филью JRB, Лоренци Филью Г, Джента PR. Синдром гиповентиляции ожирения: текущий обзор. J Брас Пневмол. 2018 ноябрь-декабрь;44(6):510-518. [Бесплатная статья PMC: PMC6459748] [PubMed: 30726328]

9.

Comellini V, Pacilli AMG, Nava S. Преимущества неинвазивной вентиляции при острой гиперкапнической дыхательной недостаточности. Респирология. 2019 апр; 24(4):308-317. [PubMed: 30636373]

10.

Frat JP, Coudroy R, Thille AW. Неинвазивная вентиляция легких или высокопоточная оксигенотерапия: когда лучше выбрать одно, а какое другое? Респирология. 2019 августа; 24 (8): 724-731. [PubMed: 30406954]

11.

Thille AW, Frat JP. Неинвазивная вентиляция как неотложная терапия. Curr Opin Crit Care. 2018 дек;24(6):519-524. [PubMed: 30299309]

12.

Berbenetz N, Wang Y, Brown J, Godfrey C, Ahmad M, Vital FM, Lambiase P, Banerjee A, Bahhai A, Chong M. Неинвазивная вентиляция с положительным давлением ( CPAP или bilevel NPPV) при кардиогенном отеке легких. Cochrane Database Syst Rev. 2019 Apr 05;4(4):CD005351. [Бесплатная статья PMC: PMC6449889] [PubMed: 30950507]

13.

Диас Милиан Р.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *