Альтернативные электростанции в россии список – Альтернативные электростанции в россии – Автономный дом

Содержание

Топ 5 проектов по использованию возобновляемых источников энергии в России

Альтернативным источникам энергии в России уделяется особое внимание, как и в других технически развитых странах мира. В связи с географическим положением здесь есть возможность использовать для получения электроэнергии солнце, силу ветра и воды, тепло земли и биотопливо.

Наиболее распространена на территории России гидроэнергетика. Доля вырабатываемой ею энергии превышает 20%. На втором месте стоят солнечные электростанции, а за ними идут ветровые, хотя сейчас эти направления развиваются более активно. Среди новейших на сегодня можно выделить 5 воплощенных проектов по использованию альтернативных источников энергии.

Бурибаевская солнечная электростанция (СЭС)

В связи с широким распространением возобновляемых источников энергии в России стали вводить все больше солнечных электростанций. Бурибаевская СЭС была построена в 2015 году близ села Бурибай республики Башкортостан. Введена в эксплуатацию компанией Авелар Солар Технолоджи в конце октября 2015 года. Первая мощность составила 10 МВт. Вторую такую же ввели в эксплуатацию в декабре 2016 года.

Для Башкирии эта СЭС стала первой. Сегодня она входит в список 7 солнечных электростанций общей мощностью 59 МВт. На оптовый рынок электроэнергии Бурибаевская СЭС была выведена в начале марта 2016 года. Основные характеристики электростанции:

  • всего на объекте установлено 176 тыс. солнечных модулей, произведенных на заводе компании Hevel Solar;
  • СЭС занимает площадь в 40 Га;
  • 70% комплектующих были произведены на российских предприятиях;
  • в пасмурную погоду вырабатывает 20-25% энергии от установленной мощности, в зимнее время – до 70%.

Исянгуловская солнечная электростанция

Это одна из действующих солнечных электростанций, использующих нетрадиционный источник энергии в России. Была введена в эксплуатацию 29 ноября 2017 года. Ее электрическая мощность составляет 9 МВт. Строительство объекта стартовало в апреле 2017. Для реализации проекта был задействован земельный участок площадью 17 Га. Сегодня на ней размещены 36,7 тыс. фотомодулей.

Расположена Исянгуловская СЭС в Зианчуринском районе Башкортостана. По показателям удельной выработки энергии эта республика находится на одном уровне с Центральной и Южной Европой, где солнечная энергетика широко распространена.

Соль-Илецкая солнечная электростанция

Соль-Илецкая СЭС была введена в эксплуатацию в мае 2017 года. Электростанция располагается на территории Оренбургской области неподалеку от села Томар-Уткуль в Соль-Илецком районе. Площадь объекта составляет 100 Га. На ней расположены 201 080 фотоэлектрических модулей. Пиковая мощность каждого из них составляет 120 Вт. Модули были изготовлены на заводе Hevel Solar в Новочебоксарске.

Высокая эффективность использования возобновляемого источника энергии в России на Соль-Илецкой СЭС обусловлена новой микроморфной тонкопленочной технологией. Изготовленные модули преобразовывают не только видимый, но и инфракрасный спектр солнечного излучения. Это повышает выработку электроэнергии на 30%. Установленная мощность Соль-Илецкой СЭС составляет 25 МВт. Она связана с энергосистемой Оренбургской области по воздушной линии электропередачи 35 кВ.

Ветропарк «Фортум» в Ульяновской области

Ульяновская ветряная электрическая станция (ВЭС-1) была включена в реестр мощности в январе 2018 года. Установленная мощность составила 35 МВт. Это первый генерирующий объект, использующий энергию ветра, который начал работу на рынке мощности и электроэнергии.

Проект был утвержден еще в 2015 году. Принцип работы ветряной электростанции несложен. На ветровом поле установлены китайские ветрогенераторы DongFang – 14 шт., каждый с мощностью 2,5 МВт. Максимально полезной нагрузка на ветряках становится при скорости ветра 12 м/с.

По результатам работы уже за январь коэффициент установленной мощности превысил планируемый на 5%: 33% против 28%. По итогам первого квартала ветропарк «Фортум» выработал 21,61 ГВт·ч. Ожидаемый годовой объем составит 85 ГВт·ч. Произведенный электростанцией 1 кВт·ч энергии предотвращает выброс в атмосферу 660 г углекислого газа.

Нижне-бурейская ГЭС

Строительство Нижне-бурейской гидроэлектростанции началось еще в 2010 году, но ввод агрегатов состоялся в 2017. Для расположения было выбрано место в 85 км от устья реки Буреи. Нижне-бурейская ГЭС – яркий пример использования альтернативных источников энергии в России. Электростанция относится к категории средненапорных русловых. Установленная проектом мощность составляет 320 МВт. Зимой гидроэлектростанция гарантировано выдает 147 МВт. В среднем за год ГЭС вырабатывает 1,67 млрд кВт·ч.

Общая длина напорного фронта составляет 745,5 м. Большая его часть представляет собой русловую грунтовую плотину. «Стена в грунте», выступающая противофильтрационным элементом и защитой основания от воды, тянется на протяжении 400 м. Ее высота составляет 42 м. На правом берегу напорный фронт замыкает глухая бетонная стена максимальной высотой 19,75 м и длиной 76 м.

При расчетном напоре пропускная способность ГЭС составляет 1380 м3/с. На комплектное распределительное устройство (КРУЭ) электроэнергия подается с 4 силовых трансформаторов, расположенных со стороны нижнего бьефа. Здание КРУЭ находится на станционной площадке.

Выдача электроэнергии осуществляется по ЛЭП 220 кВ на подстанции Райчихинск и Архара. За счет выработки станцией альтернативного вида энергии в России удается предотвратить сжигание 700 тыс. тонн условного топлива в год.

Альтернативные источники энергии в России используются в промышленных масштабах, причем ежегодно они все увеличиваются. Если раньше упор делали на применение силы воды, то сегодня активно развивают ветровую и солнечную энергетику, что подтверждается новыми проектами. На стадии разработки находятся более 50 солнечных и 22 ветровых электростанции общей мощностью более 2500 МВт.

altenergiya.ru

Альтернативная энергетика — Русский эксперт

Ветрогенераторы на поле рапса в Германии. Прибрежные ветрогенераторы около Копенгагена, Дания Солнечная электростанция в Калифорнии, использующая концентрацию солнечного света системой зеркал Фотоэлементная солнечная электростанция в Японии

Альтернативная энергетика — энергетика, основанная на использовании возобновляемых источников энергии (ВИЭ) — энергии ветра, солнечного излучения, приливов и тепла Земли. Альтернативна энергетике, основанной на сжигании ископаемого топлива, в первую очередь, органического происхождения.

Поскольку ВИЭ не только возобновляемы, но также экологичны и безопасны, некоторые развитые страны мира взяли курс на ускоренное развитие альтернативной энергетики. Особенно далеко в этом направлении продвинулись Дания, Германия и некоторые другие европейские страны, в которых альтернативная энергетика составляет значительную долю в энергосистеме страны.

Не все альтернативные источники энергии одинаково доступны и выгодны. Энергия приливов и геотермальная энергия жёстко локализованы и ограничены, поэтому реальную экономически реализуемую альтернативу сжиганию топлива сегодня могут составить только ветер и солнечная радиация. Биотопливо, например этанол из сахарного тростника, может иметь некоторое значение для обеспечения транспорта при высоких ценах на нефть, но не для энергетики в целом. Следует, впрочем, отметить, что для основной части территории России ветровая и солнечная энергетика также являются достаточно жёстко локализованными и ограниченными.

Традиционная гидроэнергетика (гидроэлектростанции на реках) также относится к ВИЭ, но в силу своей масштабности и традиционности обычно оставляется за скобками, когда речь идёт об альтернативных источниках энергии. Если же применять термин возобновляемая энергетика, то о ГЭС забывать нельзя. И при таком подходе оказывается, что Россия является одним из мировых лидеров в области возобновляемой энергетики, занимая пятое место в мире по генерации энергии гидроэлектростанциями (после КНР, Канады, Бразилии и США, 2014).[1] При этом ряд российских ГЭС относятся к числу крупнейших в мире. Иногда к альтернативной энергетике относят также ядерную энергетику, в которой Россия также лидирует,[2] занимая третье место в мире по генерации энергии ядерными станциями (2015). [3]

[править] Альтернативная и традиционная энергетика

Единого определения альтернативных источников энергии нет. Обычно к ним относят источники не связанные со сжиганием не возобновляемого ископаемого топлива. Однако гидроэнергетика и даже ядерная энергетика может относиться разными авторами и к альтернативным, и к традиционным источникам энергии[1], хотя альтернативность традиционной гидроэнергетики вполне очевидна. Дальнейшие возможности развития гидроэнергетики ограничены. Поэтому далее в качестве альтернатив, доминирующей сегодня традиционной энергетике будут рассмотрены ветровая, солнечная и «не альтернативная» ядерная энергетика, хотя европейские страны, интенсивно развивающие безопасную ветровую и солнечную энергетику, сегодня пытаются избавиться в первую очередь от ядерной, а не традиционной энергетики.

В 2013 году в энергетику ВИЭ объем мировых инвестиций составил 250 млрд долларов, а 1100 млрд долларов инвестировано в добычу, транспортировку и переработку ископаемого топлива и строительство тепловых электростанций на ископаемом топливе (не уране)[2]. В 2012 году МЭА отметило, что потребление угля продолжает расти быстрее всех возобновляемых источников энергии[3].

[править] Традиционная энергетика

К традиционной энергетике относят угольные и газовые тепловые электростанции, а также ТЭЦ, работающие на мазуте. С точки зрения экологии наибольшие нарекания вызывает сжигание угля и мазута. В результате этого в атмосферу выбрасывается большое количество углекислого газа, окиси серы и золы. Увеличение содержания углекислоты в атмосфере, по мнению некоторых учёных, может привести к нежелательному изменению климата планеты. Окись серы вызывает кислотные дожди, зола может сильно загрязнять среду в регионе расположения электростанции. Сжигание газа загрязняет атмосферу во всех отношениях в меньшей степени и пока даёт самую дешёвую традиционную энергию, но разведанные запасы газа в отличие от угля весьма ограничены. При существующем уровне добычи известных запасов хватит на 50-60 лет

[4]. Сегодня традиционная энергетика является основным источником энергии для человечества.

Ядерная энергетика, которую иногда относят к традиционной, имеет существенные отличия. Во-первых, перспективы исчерпания запасов топлива, с учётом технологий наработки нового топлива в реакторах, гораздо более отдалённы. Во- вторых, она не загрязняет атмосферу ни углекислым газом, ни окисью серы. В-третьих, топливо ядерной энергетики не является ценным сырьём для других отраслей промышленности.

Основными достоинствами традиционной и ядерной энергетики являются стабильность выработки энергии и относительная свобода размещения (не локальность). Транспортировка ядерного топлива не вызывает существенных издержек, по трубопроводам газ и нефть можно относительно дёшево перемещать на большие расстояния, рентабельность угольных станций от размещения зависит более существенно, но не драматично.

[править] Энергетика ВИЭ

Очевидными достоинствами ВИЭ являются безопасность, экологичность и практическая неисчерпаемость потока энергии. Однако, ВИЭ имеют и существенные недостатки. Это нестабильность, локальность и сезонность

Нестабильность это основная проблема возобновляемых источников. Выработка энергии ветра и солнца сильно зависит от погоды, которая неуправляема и в долговременном плане непредсказуема. Поток солнечной энергии зависит от времени суток. Поэтому когда доля «альтернативной энергии» достигает существенной величины в общей выработке энергии, возникает проблема её накопления во время пиковой выработки и компенсации потерь во время безветренной или пасмурной погоды и ночью. Например, Дания, которая сегодня более 40 % электроэнергии генерирует ветрогенераторами решает проблему стабильности с помощью соседей. В ветреную погоду энергия накапливается с помощью подъёма воды на специальных норвежских и шведских гидроузлах в верхние водохранилища. В тихую погоду эти гидроузлы работают как ГЭС и возвращают энергию. Германия в ветреные и солнечные дни сбрасывает избыток энергии в Польшу и Чехию. Однако пиковые нагрузки уже создают проблемы для энергосетей этих стран[5]. Для дальнейшего увеличения доли возобновляемой энергии необходима модернизация электросетей в Европе и развитие мощной системы энергонакопителей, в качестве которых сегодня выступают в основном обычные и специализированные гидроэлектростанции. Если выработка альтернативной энергии во всей Европе станет сопоставимой с выработкой энергии традиционной энергетикой, то нестабильность станет проблемой для всей энергосистемы. Технические пути решения этой проблемы пока не ясны, но её решение, безусловно, потребует новых затрат.

Локальность ветроэнергетики связана с тем, что мощность ветрогенератора пропорциональна кубу скорости ветра. При падении скорости в два раза мощность падает в восемь. Примерно также меняется и себестоимость энергии[6]. Поэтому при современном развитии технологий ветрогенераторы рентабельно размещать только на побережье океанов и открытых морей, где постоянно дуют сильные ветры[7]. Локальность солнечной энергетики связана с тем, что суммарный поток солнечной энергии сильно зависит от широты размещения станции и числа солнечных дней в данной местности.

Сезонность ВИЭ связана с тем, что поток солнечной энергии, а иногда и средняя скорость ветра зависят от времени года.

[править] Ветроэнергетика

Глобальный рост установленной мощности ветрогенераторов.

Существуют ветрогенераторы с вертикальной и горизонтальной осью вращения ротора. Конструкция первых проще, но вторые имеют больший КПД, достигающий 30-40 %. Поэтому для промышленной ветроэнергетики используются генераторы с горизонтально осью ротора в основном с мощностями от 1 до 2.5 МВт и диаметром ротора от 50 до 80 м. Существуют и ветрогенераторы мощностью 8 МВт.

Затраты на ветроэнергетику сводятся почти исключительно к строительству, а стоимость энергии постепенно приближается к стоимости «традиционной» энергии. В силу шума и вибрации ветрогенераторы ставят на удалении от жилых домов 300 и более метров, но непосредственно под ветрогенераторами можно продолжать сельскохозяйственное производство. Пока существует множество перспективных площадок для размещения мощностей на берегу и в море. В частности, Германия, Дания и Нидерланды собираются создать на банке Северного моря остров для большой ветроэлектростанции[8]. В 2014—2015 годах в Дании с помощью ветрогенераторов производилось 42 % всего электричества, в Португалии 27 %; в Никарагуа 21 %, в Испании 20 %, в Ирландии 19 %, в Германии 8 %, а в Европейском союзе 7,5 %[9]. К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта[10] и превзошла суммарную установленную мощность атомной энергетики. Однако, существует так называемый capacity factor (Коэффициент использования установленной мощности - КИУМ), который определяет эффективность работы электрогенератора. По данным US Energy Information Administration (EIA), на 2015 год[11] этот коэффициент для атомных электростанций составлял 92.3% от установленной мощности, для ветрогенераторов - 32,2% от установленной мощности. Применять эти значения для генерирующих мощностей во всем мире не совсем правильно, но отношение вряд ли будет сильно отличаться.

На сегодняшний день ветроэнергетика это экономически наиболее перспективный вид ВИЭ и развивается по экспоненте. Её потенциал весьма велик. Ветреная береговая линия континентов протяжённа. Станции можно строить не только на берегу, но и в море. К тому же сегодня промышленная ветроэнергетика использует ветер только на высотах до 200 м от поверхности земли.

[править] Солнечная энергетика

Рост мощности солнечной энергетики в мире

Существуют две основные разновидности солнечных электростанций. На станциях первого типа (гелиоконцентраторы) вода нагревается светом, который концентрируется с помощью системы управляемых зеркал. Эти станции достаточно сложны в конструкции. Станции второго типа представляют батарею фотоэлементов[12]. Стоимость фотоэлементов достаточно высока, а КПД не превышает 20 %.[1] Однако такая станция не только проста в конструкции, но в чистой атмосфере, например в горах, практически не требует обслуживания. Сегодня стоимость энергии фотоэлектрических станций существенно ниже, чем гелиоконцентраторов, и продолжает снижаться. Поэтому фотоэлектрические станции занимают доминирующее положение по количеству произведённой энергии и на рынке. Они широко используются и для промышленного производства, и в домохозяйствах.

Недостатками солнечной энергетики по сравнению с ветроэнергетикой являются:

  • Жёсткая зависимость вырабатываемой мощности от времени суток.[13].
  • Жесткая сезонность в не тропической зоне[13][14].
  • Нерентабельность в высоких широтах.
  • Значительная площадь электростанции[15].
  • Необходимость периодической очистки фотоэлементов.

В связи с этими недостатками, существенными для развития отрасли в отдельно взятой европейской стране, установленные мощности солнечной энергетики сегодня уступают установленным мощностям ветроэнергетики. Стабильность выработки солнечной энергии в качестве основной во все сезоны теоретически могут обеспечить Саудовская Аравия или Египет, но не европейские страны. И даже африканским странам придётся решать проблему ночного энергоснабжения с помощью энергонакопителей.

Тем не менее, солнечная энергетика сегодня также развивается по экспоненте, а её потенциал глобально практически неисчерпаем уже на уровне современных технологий.

  • Среднегодовая мощность солнечного излучения на м² (с учётом погоды и рельефа местности)

  • Солнечные энергоресурсы России

[править] Гипотетические возможности

Теоретически покрытие относительно совсем небольшой площади пустынь северной и южной Африки, Америки, Австралии и Азии современными фотоэлементами и объединение этих электростанций в мировую сеть может в избытке обеспечить человечество чистой и, в силу глобальности, стабильной энергией. Для реализации проекта необходимо решение всего двух проблем, одной технической и одной политической. Во-первых, надо обеспечить доставку этой энергии ко всем местам её потребления. Во-вторых, необходимо одно мировое правительство для всего человечества.

[править] Ядерная энергетика

Ядерная энергетика обеспечивает стабильное энергоснабжение и позволяет практически неограниченно наращивать мощности, а при безаварийной работе не наносит ущерба окружающей среде. Эксплуатация атомной станции относительно дёшева, основные затраты идут на строительство. Стоимость строительства сегодня достигла 4000$/кВт в США, 2000$/кВт −4000$/кВт во Франции и 1600$/кВт в Китае[16]. Главный недостаток ядерной энергетики в том, что в случае аварии значительная территория может быть подвергнута долговременному радиоактивному заражению. Поэтому ряд стран, в первую очередь с высокой плотностью населения, взяли курс на свёртывание ядерной энергетики.

Ядерная энергетика в мире.
⬛ Синий — Эксплуатируются АЭС, строятся новые энергоблоки.
⬛ Голубой — Эксплуатируются АЭС, планируется строительство новых энергоблоков.
⬛ Тёмно-зелёный — Нет АЭС, станции строятся.
⬛ Светло-зелёный — Нет АЭС, планируется строительство новых энергоблоков.
⬛ Жёлтый — Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется.
⬛ Красный — Эксплуатируются АЭС, рассматривается сокращение их количества.
⬛ Чёрный — Гражданская ядерная энергетика запрещена законом.
⬛ Серый — Нет АЭС.

[править] Отказ от ядерной энергетики

Италия закрыла все имевшиеся АЭС и полностью отказалась от ядерной энергетики. Бельгия, Германия, Испания, Швейцария, Тайвань осуществляют долгосрочную политику по отказу от ядерной энергетики. Многие другие страны, не имевшие АЭС, отказались от программ развития ядерной энергетики, что привело к сокращению доли ядерной энергетики в производстве энергии. Однако ведущие экономические державы, кроме Германии, не свёртывают ядерную энергетику, а Китай и Индия активно её развивают.

[править] Немецкий энергетический поворот
Валовое производство электричества в Германии, 2004—2016 гг.

Немецкая программа энергетического поворота поставила цель к 2050 году обеспечивать потребности страны в энергии на 80 процентов из возобновляемых источников. В 2013 году 25 процентов потребляемой в стране электроэнергии производилось из возобновляемых источников. Однако цены на электроэнергию выросли и необходимы вложения для строительства новых электросетей.[17]. Правительство Германии освобождает заводы по производству алюминия от «зелёных» наценок за электроэнергию для сохранения их конкурентоспособности.

Хотя рост доли ВИЭ в электроэнергетике значителен, говорить о переходе на возобновляемые источники пока не приходится. В 2016 году по сравнению с 2004 ВИЭ компенсировали сокращение ядерной энергетики, но доля потребления угля сократилась незначительно, а доля потребления газа даже выросла, ВИЭ включают в себя и сжигание биомассы. Таким образом, основная цель перехода на ВИЭ — сокращение выброса в атмосферу углекислого газа не достигнута.

[править] Внешние издержки различных видов энергетики

Внешними издержками являются затраты, понесённые в связи с влиянием на здоровье людей и окружающую среду, включая риски, которые поддаются количественному измерению, но не входят непосредственно в стоимость электроэнергии. Внешние издержки не включены в строительство и эксплуатацию любых электростанций и оплачиваются не потребителем, а обществом в целом. Европейская комиссия в сотрудничестве с Министерством энергетики США начала в 1991 году проект с целью «представить правдоподобные финансовые показатели на повреждения, которые могут возникнуть в результате различных способов производства электроэнергии для всего ЕС». Согласно выводам комиссии ядерная энергия стоит в среднем 0,4 евроцентов / кВт-ч, так же, как и энергия, полученная на гидроэлектростанциях; уголь — более 4,0 центов (4,1 — 7,3), газ — в пределах 1,3 — 2,3 центов, и только ветроэнергетика имеет лучшие показатели внешних издержек, чем атомная — в среднем 0,1 — 0,2 цента / кВт-ч.[16]

[править] Проблемы применения альтернативных источников энергии

  • Капитальные затраты на строительство солнечные элктростанции (СЭС) без аккумуляторов составляют на настоящий момент не ниже $1’000/кВт установленной мощности;
  • Капитальные затраты на строительство СЭС с аккумуляторами составляют на настоящий момент не ниже $1’800/кВт со свинцово-кислотными аккумуляторами и не ниже $3’400/кВт – с литиевыми;
  • Проблема утилизации аккумуляторов в том масштабе, который потребуется, если они всё же найдут широкое применение в мощных СЭС, далека от решения;
  • Капитальные затраты на строительство ветроэлектростанций (ВЭС) на территории РФ составляют на настоящий момент не ниже $2’000/кВт;
  • Эксплуатационные затраты ветроэлектростанций сравнимы с такими же у ТЭС и значительно выше, чем у ГЭС и АЭС;
  • Проблема воздействия ветроэлектростанций на людей и животных, а также проблема утилизации отдельных частей ВЭС пока далеки от решения;
  • Оба типа станций требуют масштабного отчуждения земель;
  • Оба типа станций генерируют электроэнергию когда могут, а не когда нужно [4].

В то же время:

  • Капитальные затраты на строительство АЭС составляют $2’000-4’000/кВт в зависимости от того, кто строит. Утилизация отработанного топлива давно проработана, а при вводе в работу новых БН реакторов появилась и возможность замкнуть цикл использования топлива;
  • Капитальные затраты на строительство газовой ТЭС составляют не более $1’200/кВт. Утилизация отработавшей своё станции не представляет проблем;
  • Капитальные затраты на строительство угольной ТЭС составляют не более $2’000/кВт. Утилизация отработавшей своё станции не представляет проблем;
  • Все три типа станций генерируют электроэнергию когда нужно и не требуют масштабного отчуждения земель;
  • Капитальные затраты на строительство ГЭС составляют $1’200-2’000/кВт в зависимости от рельефа местности. Этот тип станций тоже генерирует электроэнергию когда требуется, за исключением маловодных лет. Чаще всего требует масштабного отчуждения земель. Утилизация отработавшей своё станции требует массивной рекультивации земель.

[править] Энергетика России

Выработка электроэнергии на российских АЭС в 1992—2014 годах, млрд кВт*ч Добыча газа в России, 2005—2015 гг.

Большая часть территории России находится в достаточно высоких северных широтах, а средняя скорость ветра на ней около 5.5 м/c[18], что в разы увеличивает себестоимость ветровой энергии по сравнению с западным побережьем Европы и США[19]. Среди относительно населённых регионов России рентабельное развитие современной ветроэнергетики возможно на Сахалине и в Мурманской области, где средняя скорость ветра достигает 8 м/с[18].Несколько ветрогенераторов имеется в Крыму. Развитие относительно рентабельной солнечной энергетики возможно в Крыму, где построено 6 и работает 5 фотоэлектростанций[20], Калмыкии и Астраханской области.

В силу этого масштабное развитие альтернативной энергетики в России пока малоперспективно. Стоимость атомной электроэнергии «на машинах станции» в начале этого века в среднем составляла 19,2 копейки за 1 кВт.ч. Средняя стоимость энергии на ТЭС всех видов 36,6 коп./кВт.ч. Даже самая дешёвая энергия газовых станций (23,6 коп./кВт.ч) дороже атомной.[21] Кроме того, газ ценный экспортный ресурс и его добыча не растёт. Развитие газовой энергетики ограничено относительно небольшими разведанными мировыми запасами газа. Остальные виды топлива дают более дорогую энергию и сильно загрязняют атмосферу углекислым газом. По стоимости энергии и экологичности (при отсутствии катастрофических аварий) с АЭС могут соперничать только ГЭС, но развитие гидроэнергетики ограничено наличием рек с большим стоком и перепадом высот. В свете вышесказанного развитию атомной энергетики в России трудно найти альтернативу. 1 ноября 2016 года в России началась промышленная эксплуатация реактора на быстрых нейтронах БН-800[22]. Электрическая мощность — 880 МВт[23] Этот реактор обеспечивает:

  • Формирование экологически чистого «замкнутого» ядерного топливного цикла.
  • Более чем 50-кратное увеличение использования добываемого природного урана, и обеспечение атомной энергетики России топливом на длительную перспективу за счёт своего воспроизводства.
  • Утилизацию отработанного ядерного топлива с АЭС на тепловых нейтронах.
  • Утилизацию радиоактивных отходов путём вовлечения в полезный производственный цикл отвального урана и плутония.

Если учесть, что в России в отличие от Италии, запретившей ядерную энергетику, зимой довольно холодно, то, возможно, стране следует сосредоточиться на более быстром развитии и внедрении технологий эффективной и насколько возможно безопасной ядерной энергетики. Иначе до возникновения проблем с углеводородами можно просто не успеть, а надежд на то, что Африка вскоре начнёт снабжать нас «чистой» и дешёвой солнечной энергией немного.

  1. 1,01,1 Киселева Я. В. ЭНЕРГОРЕСУРСЫ: АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ И ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ. ПРОБЛЕМЫ И РЕШЕНИЯ
  2. ↑ World Energy Investment Outlook (en). Организация экономического сотрудничества и развития, Международное энергетическое агентство (9 июня 2014). Проверено 5 февраля 2015.
  3. ↑ World energy outlook 2012 (IEA)
  4. ↑ На сколько лет хватит газа и нефти, ТАСС. Проверено 1 января 2017.
  5. ↑ «Энергетический поворот» Германии дорого обходится ее соседям
  6. ↑ American Wind Energy Association. The Economics of Wind Energy
  7. ↑ [ http://geochemland.ru/uploads/images/FGAM/041.jpg Сильные и постоянные ветры на западном побережье Европы и США обусловлены также близостью северо-атлантического и северо-тихоокеанского максимумов давления.]
  8. ↑ Германия участвует в создании острова, Germania.one.
  9. ↑ REN21: Renewables Global Status Report 2015
  10. ↑ http://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf
  11. ↑ https://www.eia.gov/electricity/annual/
  12. ↑ Помимо простейших панелей фотоэлементов существует и разновидность станций с предварительной концентрацией света на более эффективном типе фотоэлементов.
  13. 13,013,1 Недостаток, который можно исправить за счёт глобальности системы.
  14. ↑ Своеобразная сезонность потока солнечной энергии имеет место и на экваторе. Самыми жаркими временами года являются весна и осень
  15. ↑ Несущественный недостаток при размещении станций в пустынях и горах.
  16. 16,016,1 Сколько стоит АЭС построить? Или экономика ядерной энергетики
  17. ↑ Энергетический поворот
  18. 18,018,1 Средняя скорость ветра в России
  19. ↑ Мощность ветрогенераторов пропорциональна кубу скорости ветра, аналогично меняется и себестоимость энергии. В силу нелинейной зависимости мощности от скорости для более точной оценки мощности и себестоимости надо знать не среднюю скорость ветра, а её распределение.
  20. ↑ Потребление электроэнергии в Республике Крым в 2014 году сократилось на 478,8 млн киловатчасов (8,1 %) по сравнению с показателями 2013 года. Новости Крыма (26 февраля 2015). Проверено 21 апреля 2015.
  21. ↑ Миф о «недешевой» атомной электроэнергии развеивает дорогая продукция ТЭС.
  22. ↑ БН-800 сдан в промышленную эксплуатацию. AtomInfo.ru (1 ноября 2016). Проверено 3 ноября 2016.
  23. Екатерина Зубкова Возобновляемый атом // «Наука и жизнь». — 2017. — № 1. — С. 20-21. — URL: http://www.nkj.ru/archive/articles/30459/
Экономософия

ruxpert.ru

Список крупнейших электростанции России на карте

Отрасль промышленности под названием «электроэнергетика» является составной частью более обширного понятия «топливно-энергетический комплекс», которая, согласно мнению некоторых ученых, может быть названа «верхним этажом» всей энергетики.

Роль электроэнергетики неоценима и она является одной из самых важных отраслей российской промышленности. Это обусловлено тем фактом, что снабжение электроэнергией требуется для нормального функционирования всего промышленного комплекса и всех видов деятельности человека. Развитие электроэнергетики по своим темпам должно опережать развитие прочих отраслей хозяйства для обеспечения должного количества энергии.

Деление электростанции России по типам

Ведущую роль в электроэнергетике России играют тепловые электростанции, доля которых в отрасли составляет 67%, что в числовом эквиваленте равно 358 электростанциям. При этом внутри теплоэнергетика делится на станции по виду потребляемого топлива. Первое место занимает природный газ, на долю которого приходится 71%, далее следует уголь с 27,5%, на третьем месте жидкое топливо (мазут) и альтернативные виды топлива, объем которых не превышает половины процента от общей массы.

Крупные тепловые электростанции России, как правило, размещаются в местах сосредоточения топлива, что позволяет снизить затраты на доставку. Также особенностью ТЭС является ориентированность на потребителя при одновременном применении топлива, обладающего высокой калорийностью. В качестве примера, можно привести станции, потребляющие в качестве топлива мазут. Как правило, они расположены в крупных нефтеперерабатывающих центрах.

Наряду с привычными ТЭЦ на территории России функционируют ГРЭС, что расшифровывается как государственная районная электрическая станция. Примечательно, что подобное название сохранилось со времен СССР. Слово «районная» в названии означает ориентированность станции на покрытие энергетических затрат определенной территории.

Крупнейшие тепловые электростанции России: список

Общая суммарная мощность вырабатываемой тепловыми электростанциями России энергии составляет более 140 млн. кВт*ч, при этом карта электростанции РФ четко дает возможность проследить наличие того или иного вида топлива.

Крупнейшие электростанции России по федеральным округам:

  1. Центральный:
    • Костромская ГРЭС, которая работает на мазуте;
    • Рязанская станция, основным топливом для которой является уголь;
    • Конаковская, которая может работать на газе и мазуте;
  2. Уральский:
    • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работаю на природном газе;
    • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
    • Троицкая, также работающая на угле;
    • Ириклинская, главным источником топлива для которой является мазут;
  3. Приволжский:
    • Заинская ГРЭС, работающая на мазуте;
  4. Сибирский ФО:
    • Назаровская ГРЭС, потребляющая в качестве топлива мазут;
  5. Южный:
    • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;
  6. Северо-Западный:
    • Киришская на мазуте.

Также в числе крупных электростанций Урала относится Березовская ГРЭС, которая использует в качестве главного топлива уголь, получаемый из Канско-Ачинского угольного бассейна.

Гидроэлектростанции

Карта электростанций России (РФ) была бы не полной без упоминания гидроэлектростанций, которые занимают заслуженное второе место в электроэнергетики РФ. Главным преимуществом применения именно таких станций является использование ими в качестве источника энергии возобновляемые ресурсы, кроме того, подобные станции отличает простота эксплуатации. Самым богатым округом России по количеству ГЭС является Сибирь, благодаря наличию большого количества бурных рек. Использование воды в качестве источника для получения энергии позволяет при снижении уровня капиталовложений получить электроэнергию, которая в 5 раз дешевле, чем вырабатываемая электростанциями Европейской территории.

Список электростанций России, которые вырабатывают энергию при помощи воды расположены на территории Ангаро-Енисейского каскада:

  1. Енисей: Саяно-Шушенская и Красноярская ГЭС;
  2. Ангара: Иркутская, Братская, Усть-Илимская.

При этом гидроэлектростанции нельзя назвать полностью экологичными, поскольку перегораживание рек приводит к значительному изменению рельефа местности, что сказывается на водных экосистемах.

Атомные электростанции

Третьими в списке электростанций России являются атомные станции, которые в качестве топлива используют силу атомной энергии, высвобождающуюся при соответствующей реакции. АЭС обладают большим количеством преимуществ, в числе которых:

  • большое содержание энергии в атомном топливе;
  • полное отсутствие выбросов в атмосферный воздух;
  • для выработки энергии не требуется участия кислорода.

При этом атомные станции относят к объектам повышенной опасности, поскольку при работе данного типа станции существует вероятность наступления техногенной катастрофы, которая может вызвать значительное загрязнение территории. Также к минусам использования АЭС относятся проблемы с захоронениями отходов функционирования станции. Наибольшая часть АЭС на территории России сконцентрирована в Центральном ФО (Курская, Смоленская, Калининская, Нововоронежская станции). Количество АЭС на Урале ограничивается одной Белоярской станцией. Также несколько атомных станций имеется в Северо-Западном и Приволжском федеральном округе.

Подведем итоги

Подводя итоги, можно отметить, что количество электростанций в России составляет 558 действующих объектов, что в достаточной степени покрывает потребность промышленности и населения в электроэнергии.

При этом наиболее дешевыми в эксплуатации являются ГЭС, а самую дешевую энергию вырабатывают АЭС, которые при этом остаются самыми опасными объектами. Факторами, оказывающими влияние на размещение станций, являются наличие сырья и нужды потребителей. Например, электростанции Урала занимают небольшую часть общего числа, поскольку плотность населения в данном регионе намного ниже, чем в центральных районах, которые считаются самыми «богатыми» по количеству ТЭЦ, АЭС и ГРЭС.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Альтернативные источники электроэнергии

Это ветряные, приливные, геотермальные и солнечные электростанции. Они экологически безвредны, но их недостаток в том, что электроэнергии они производят сравнительно мало.

Ветряные электростанции.

Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Производство ветряков очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные установки даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряков вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для их использования необходимы огромные площади, много больше, чем для других типов энергоустановок. В Германии чрезмерное использование энергии ветра привело к ослаблению ветров, которые раньше выдували смог и вредные отходы, выделяемые в окружающую среду фабриками и заводами, с территории городов. Теперь экология этих населённых пунктов заметно ухудшилась.

Приливные электростанции.

Для выработки электроэнергии электростанции такого типа используют энергию прилива. Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым – условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения. Морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона. Оказывается, что, если приливных электростанций построить много, они могут существенно замедлить вращение Земли вокруг свей оси. Вред от такого вмешательства в природу может быть совершенно непредсказуемым и непоправимым.

Геотермальные электростанции.

Преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электричество. Первая геотермальная электростанция (Паужетская) мощностью 5 МВт пущена в 1966 на Камчатке; к 1980 её мощность доведена до 11 МВт. Геотермальные электростанции имеются в США, Новой Зеландии, Италии, Исландии, Японии. К недостаткам геотермальных электроустановок относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы создают в окрестностях немалый шум и могут, к тому же, содержать отравляющие вещества. Кроме того, геотермальную электростанцию построить можно не везде, потому что для ее постройки необходимы определенные геологические условия.

Солнечные электростанции.

 Солнечные электростанции используют энергию Солнца для превращения ее в электрическую. Они состоят из множества солнечных элементов, какие мы можем иногда видеть в калькуляторах. Они не загрязняют окружающую среду вредными веществами, но их мощность мала, так как они превращают в электричество лишь 10-20% энергии солнечных лучей, попадающих на них, и эффективность их работы зависит от погоды. Но главный недостаток солнечных электростанций – материалоемкость. Возведение, например, установки с системой зеркал и парогенератором требует в десятки раз больше стали и цемента, чем строительство ТЭС. А ведь производство этих материалов для окружающей среды тоже бесследно не проходит. Тот же недостаток присущ проектам околоземных солнечных электростанций, предназначенных для передачи энергии на Землю мощными микроволновыми пучками. Строительство подобной системы потребовало бы запуска сотен космических кораблей огромной грузоподъемности, и каждый старт с последующим спуском загрязняли бы земную атмосферу продуктами сгорания ракетного топлива. Кроме того, преобразование микроволновой энергии в потребительскую, сопровождаемое большим выделением тепла, чрезмерно нагревало бы атмосферу со всеми вытекающими отсюда последствиями.

Нет сомнений, что все варианты альтернативной энергетики имеют свои достоинства. Но лишь всестороннее изучение каждого нового проекта позволит избежать при попытке его реализации глубинных изменений нашей биосферы.

studfiles.net

список, типы и особенности. Геотермальные электростанции в России

Россия с советских времен показывает высокие результаты по выработке электричества на тепловых электростанциях. Электростанции России раскиданы в большинстве крупных городов страны. Рассмотрим самые мощные по выработке энергии и их отличительные особенности. Отметим, что большая часть сооружений была возведена еще в 60-80-е годы прошлого века, но с тех времен введены в эксплуатацию и новые конструкции.

Саяно-Шушенская ГЭС

Эта электростанция занимает 7 место среди действующих сооружений в мире по установленной мощности. Саяно-Шушенская ГЭС, расположенная на Енисее, является самой высокой плотиной в России и одной из самых высоких в мире. Ее максимальная пропускная способность составляет 13090 м3/с. В станционной части этой электростанции России находится 21 секция, машинный зал включает в себя 10 гидроагрегатов, а в станционной части – 10 постоянных водоприемников, от которых проложены турбинные водоводы. Плотина Саяно-Шушенской ГЭС способствует поднятию уровня воды в Енисее, за счет чего образуется водохранилище. Проектная мощность станции составляет 6400 МВт.

Красноярская ГЭС

Первые электростанции в России строились в 50-60-е годы прошлого века. Так, Красноярская ГЭС начала возводиться еще в 1955 году, тоже на Енисее. Данная станция называется сердцем энергосистемы Сибири, так как является одним из ведущих поставщиков электроэнергии в этом регионе. На сегодня Красноярская ГЭС входит в десятку крупных станций мира, в штате которой работают больше 550 человек. Окончательно введена в эксплуатацию она была в далеком 1972 году и с тех пор постоянно совершенствовалась. Данная ГЭС состоит из нескольких объектов:

  • гравитационной бетонной плотины;
  • приплотинном здании ГЭС;
  • установки по приему и распределению энергии;
  • судоподъемника с подъодным каналом.

На возведение второй по мощности электростанции России потребовалось почти 6 млн м3 бетона. Станция отличается максимальной пропускной способностью в 14000 м3/сек, а мощность ГЭС составляет 6000 МВт. Плотиной образуется Красноярское водохранилище площадью 2000 км2. Особенность данной электростанции – в единственном в России судоподъемнике, который нужен для пропуска судов. В 1995 году гидроагрегаты ГЭС были изношены на 50%, поэтому было принято решение реконструировать их и модернизировать.

Сургутская ГРЭС

Крупнейшие электростанции России представлены и Сургутской ГРЭС, расположенной в Ханты-Мансийском автономном округе. Станция имеет установленную электрическую мощность в 5597 МВт, работая на попутном нефтяном и природном газе. Ее строительство началось в 80-е годы, когда на территории среднего Приобья наблюдалась нехватка энергопотребления. Согласно первоначальному проекту, всего должно было быть введено 8 энергоблоков, а мощность должна была выделить Сургутскую ГРЭС в число самых мощных тепловых станций.

Братская ГЭС

Крупнейшие электростанции России располагаются на реке Ангаре. Братская ГЭС входит в состав Ангарского каскада ГЭС, являясь лидером по производству электроэнергии во всей Евразии. Решение о возведении станции было принято в 1954 году, а запуск в эксплуатацию состоялся в 1967 году. Уникальные объемы и стабильные водные ресурсы Байкала и Братского водохранилища сказались в том, что данная ГЭС стала играть важную роль для экономического развития страны.

На сегодняшний день Братская ГЭС состоит из 18 агрегатов, а производимая здесь энергия широко используется в различных производствах. Станция состоит из нескольких цехов, за которыми постоянно наблюдает персонал в 300 человек. Так как по Ангаре нет сквозного судоходства, то и гидроузел не имеет судопропускных сооружений. Установленная мощность Братской гидроэлектростанции – 4500 МВт.

Балаковская АЭС

В список электростанций России, которые производят самые большие объемы электроэнергии, мы включили и Балаковскую АЭС, которая является лидером в атомной энергетике страны. Благодаря постоянному совершенствованию оборудования были достигнуты высокие показатели. Эффективность способов увеличения выработки энергии была повышена за счет улучшения конструкции ядерного топлива. На данной станции используются реакторы с двухконтурными энергоблоками.

Курская АЭС

Энергетика является основой экономики и в Курском регионе. Расположенные здесь электростанции России входят в число первых пяти станций, которые вырабатывают большие мощности. Именно электроэнергия данной станции обеспечивает большую часть производств в области. Курская АЭС представляет собой станцию одноконтурного типа, когда теплоносителей выступает обычная очищенная вода, циркулирующая по замкнутому контуру.

Ленинградская АЭС

Ленинградская атомная станция является первой в стране, которая имеет реакторы типа РБМК-1000. Состоит ЛАЭС из четырех энергоблоков, причем основная производимая энергия ухода на общее потребление. Данная станция является крупнейшим производителем энергии в северо-западном регионе России.

Геотермальные источники во благо страны

Существуют различные типы электростанций в России. Так, геотермальная энергетика считается самой перспективной в современном истории, в том числе и в нашей стране. Специалисты сходятся во мнении, что объемов энергии тепла Земли гораздо больше объемов энергии всех мировых запасов нефти и газа. Геотермальные станции целесообразно возводить там, где есть вулканические районы. Вследствие стыка вулканической лавы с водными ресурсами вода интенсивно нагревается, горячая вода выбивается на поверхность в виде гейзеров.

Такие природные свойства позволяют возводить современные геотермальные электростанции в России. Их в нашей стране немало:

  1. Паужетская ГеоЭС. Данная станция была возведена в 1966 году вблизи вулкана Камбальный из-за необходимости обеспечения жилых поселков и производств поблизости электроэнергией. Установленной мощностью на момент запуска была всего 5 МВт, затем мощности были увеличены до 12 МВт.
  2. Верхне-Мутновская опытно-промышленная ГеоЭС располагается на Камчатке и была запущена в 1999 году. Она состоит из трех энергоблоков по 4 МВт мощностью. Строительство велось рядом с вулканом Мутновский.
  3. Океанская ГеоЭС. Эта станция была возведена на Курильской гряде в 2006 году.
  4. Менделе́евская ГеоТЭС. Данная станция возводилась для того, чтобы обеспечить теплоснабжением и электроснабжение город Южно-Курильск.

Как видим, геотермальные электростанции в России до сих пор действуют. Причем ведутся активные работы по модернизации существующих сооружений, что позволит обеспечить районы и предприятия, расположенные вблизи вулканических пород, нужным объемом энергии.

Вслед за прогрессом

Отметим, что развитие энергетики не стоит на месте. Так, стало известно, что в России, в частности, на территории Самарской области, будет возводиться солнечная электростанция. Эксперты говорят, что этот проект станет значимым явлением не только для Самарского региона, но и для всей страны в целом. Планируется строительство солнечных станций еще на территории Ставрополя и Волгограда. Что касается уже существующих сооружений, при должном внимании и своевременной модернизации они смогут обеспечить нужным количеством энергии даже удаленные районы России.

autogear.ru

10 альтернативных источников энергии, о которых вы ничего не знали

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.

Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

recyclemag.ru

Альтернативную энергию разобрали по регионам

Использование альтернативной энергии являет важным и перспективным методом экономии ресурсов не только в рамках одной страны, но и для всей планеты в целом.

Применение возобновляемых источников энергии, к которым относятся вода, включая реки и океаны, солнечная и ветряная энергии и т.д., может изменить не только экономическое положение некоторых российских регионов, снизив их зависимость от удаленных поставок энергоносителей, но и улучшить экологию в стране.

ИОМ Анкетолог провел опрос жителей разных регионов России,  чтобы выяснить, как они оценивают перспективы развития альтернативных источников энергии в месте своего проживания.

В опросе приняли участие 786 жителей России, проживающих в 6 изучаемых регионах (Центральная Россия и Поволжье, Север и Северо-запад, Урал, Сибирь, Юг России, включая Кавказ и Дальний Восток). Опрос проводился на сайте anketolog.ru в режиме онлайн.

Россия в целом

В целом участники этого исследования считают, что развитие альтернативной энергии в России явно отстает от идеала. 40% заявили, что не в курсе того, существуют ли в стране какие-нибудь электростанции на возобновляемых источниках энергии (ВИЭ), а 36% уверены, что ВИЭ нам вообще не подходит.

Тем не менее, кое-кто из респондентов вспомнил, что в России имеются солнечные электростанции (13%) и ветряки (14%).

При ответе на вопрос, какие альтернативные источники энергии вы считаете наиболее перспективными для страны, были названы — ветер (46%), солнце (30%) и речная вода (36%).

Сибирь

На вопрос, какие альтернативные источники энергии уже применяются в вашем регионе, 21% заявили об энергии речной воды [гидроэлектростанции], 8% вспомнили о солнечных батареях, а 4 % — о ветряках.

36% сибиряков полагают, что возобновляемые источники энергии в их регионе не используются,  39% затруднились с ответом.

Тем не менее, большинство жителей этого сурового региона уверены, что их территория вполне подходит для развития альтернативной энергии. В качестве успешных ВИЭ они назвали солнце (20%), ветер (45%) и речную воду (47%).

Центральная Россия и Поволжье

Среди жителей Центральной России и Поволжья ситуация с информированностью о существовании ВИЭ в регионе примерно такая же. Большинство опрошенных склоняются к мнению, что в их регионе альтернативные источники энергии либо не применяются — 38%, либо их использование настолько незначительно, что никто об этом не знает (затруднились с ответом 40%).

Только 17% жителей этого региона указали, что у них все-таки применяется солнечная энергия, 8% вспомнили о применении энергии ветра, а 10%  об энергию речной воды.

Наиболее подходящими для своего региона жители Центральной России и Поволжья назвали  солнечную энергию — 37%, энергию ветра — 38% и энергии речной воды — 27%.

Дальний Восток

На Дальнем Востоке ситуация несколько иная. 39% жителей Дальнего Востока, указали, что в их регионе применяется солнечная энергия. О применении энергии ветра и энергии речной воды сообщили 23% участников проекта.

Наиболее выгодным для своего региона жители Дальнего Востока считают использование солнечной энергии (62%), энергии ветра (62%) и энергии речной воды (61%).

Север и Северо-Запад

На Севере и Северо-Западе России респонденты отмечают использование солнечной энергии (7%), энергии ветра (9%), энергии речной воды (8%). Подавляющее большинство респондентов (45%) затруднились с ответом, а 38% заявили, что в их регионе на данный момент ВИЭ не используются.

Тем не менее, в будущем, по мнению жителей Севера и Северо-Запада, перспективными могут стать следующие альтернативные источники энергии: ветряные электростанции 66%, приливные станции 63%, гидроэлектростанции 37%.

Урал

Большинство жителей Урала считают, что в их регионе альтернативные источники энергии не применяются. Такой ответ дали 41% опрошенных. А 42% респондентов указали, что не имеют информации об использовании такой энергии на Урале.

Подходящей для себя уральцы называют энергию ветра — 49%, энергию речной воды — 42% и солнечную энергию — 17%.

Юг России и Кавказ

Жители самого теплого региона страны заявили о существовании на своей территории солнечных (28%) и ветряных электростанций (23%). 40% затруднились с ответом.

Если говорить о дальнейшем развитии ВИЭ в регионе, то южане заявили о необходимости продолжать развитие солнечных станций (68%), ветряных станций (55%), а также обратить внимание на водные ресурсы, в частности на приливные и речные гидроэлектростанции.

Региональное распределение респондентов:

Сибирь — 31%
Центральная Россия и Поволжье — 38%
Дальний Восток — 2%
Север и Северо-Запад — 12,5%
Урал — 9%
Юг России и Кавказ — 6%

 

Институт Общественного Мнения «Анкетолог» — независимая исследовательская организация, специализирующаяся на опросах интернет-аудитории. Опросы проводятся среди жителей России и стран СНГ.
Пользовательские сервисы ИОМ Анкетолог позволяют создавать и проводить опросы сторонним компаниям.

iom.anketolog.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *