Бесшумный контактор для электрокотла – установка модульного контактора в электрокотел

установка модульного контактора в электрокотел

Здравствуйте всем читателям моего сайта!

В продолжении темы электрокотлов для дома- хочу рассказать одну историю из практики.

Обратился ко мне клиент с просьбой помочь в решении одной проблемки.

Установленный дома электрокотел очень громко включался/отключался при работе.

Котел с тремя тэнами мощностью на 6 кВт, подключен на одну фазу, вот что я выяснил предварительно по телефону.

Так же присутствует простейшая автоматика регулирования температуры которая действует на вкл./откл. контактора, который и издает громкие “шлепки” при переключении.

Все бы ничего, но электрокотел установлен не в отдельном помещении- котельной, а в кухне недалеко от спальни и очень мешает отдыхать… Представляете- спите ночью и вас будит периодическое “БА-БАХ!”, “БА-БАХ!” )))

Выяснив все это, поехал на место смотреть чем можно помочь в этом случа как сделать электрокотел бесшумным.

Оказалось что электрокотел уже пережил одну замену контактора, до этого был установлен малогабаритный контактор КМЭ с номинальным током контактов на 20 ампер (со слов хозяев). Он сломался и был заменен на точно такой же но бОльшей величины- КМЭ-3210.

Из- за чего сменили контактор как мне объяснили- перестала включаться одна ТЭНа на электрокотле и контактор сильно искрил при работе. Проработал этот контактор совсем немного и его контакты подгорели, соединение электрической цепи нарушилось и ток на одну ТЭНу перестал “проходить”, естественно греть этот ТЭН прекратил.

Меня это немного удивило, так как нагрузка из трех ТЭН для пускателя полностью соответствовала, 6 кВт это примерно 28 ампер, а контакты у контактора были запаралелены и через них коммутировалась только фаза, а это получается что через три контакта мог протекать ток до 60 мапер длительное время без всяких последствий.

А тут получается что от половины допустимого тОка в 30 ампер контакты вышли из строя…

Что то тут не так. На всякий случай проверяю ТЭН мультиметром по сопротивлению (кстати соединены они по схеме “звезда”)- все нормально, сопротивление одинаковое как и должно быть, ведь ТЭН то одинаковой мощности по 2 кВт.

Проверяю сопротивление ТЭН относительно корпуса- тоже все чисто, изоляция хорошая.

Включаю автомат на электрокотел и меряю напряжение- так вот где “собака порылась!”))) А напряжение то низкое- всего 190 вольт!

Вот и причина быстрого выхода из строя контактов.

От низкого напряжения подвижная часть магнитопровода в контакторе плохо подтягивалась к неподвижной- вследствие этого был плохой поджим силовых контактов между собой, а уже из- за этого- повышенный износ контаков что привело к их подгару и поломке.

Кстати о том как низкое напряжение влияет на включение контактора можете посмотреть в моих статьях

“Закон Ома на примере пускателя” и “Поиздеваемся над пускателем?”

С причиной выхода из строя контактора разобрался, хозяевам порекомендовал обратиться в электроснабжающую организацию насчет низкого напряжения, далее надо все таки решать вопрос о шумнов включении контактора.

Вот она- причина “бабахания”- контактор КМЭ:

Электрокотел в другое место перенести сложно уже, на дворе зима наступает, тут уже не до переделки системы отопления, поэтому я предложил заменить контактор КМЭ на модульный контактор, так как при срабатывании последний издает гораздо меньший шум и к тому же меньше по габаритам чем КМЭ-3210.

Был приобретен модульный контактор от фирмы IEK КМ-25-40 с номинальным током контактов 25 ампер. Каждый ТЭН в 2 кВт это не более 10 ампер, а контакт расчитан на 25 ампер, так что по нагрузке тут все в порядке.

Вышла небольшая проблемка с крепежом модульного контактора- посадочное место не подходило для него, пришлось поверх установить дин-рейку, ну это как говорится дело техники)))

Подключается контактор аналогично как и КМЭ, тут переделывать ничего не стал, с клемника три провода идут на нижние контакты (на клемнике эти три провода перемычками соединены с фазнам проводом), а с верхних уходят по проводам на клавиши-переключатели установленные на съемной лицевой части корпуса электрокотла.

Нулевой провод напрямую идет на зажимы ТЭН и еще один нулевой- через термодатчик- на катушку контактора. На второй вывод катушки подключен фазный провод с клемника.

А вот обратная сторона съемной части корпуса электрокотла:

После сборки схемы включил автомат и проверил работу контактора- звук при включении стал значительно тише и практически не слышен! Клиент остался очень доволен)))

Для тех кто читает мой сайт я специально записал видео где показал как работал контактор КМЭ и как включается электрокотел после установки модульного контактора.

На видео получился звук довольно громкий- на самом деле звук включения модульного контактора не громче звука перещелкивания клавишь-переключателей- обратите внимание смотря видеоролик!

И еще для самых внимательных- когда показывал включение от КМЭ то видно что третья лампочка на клавише плохо загорается- как от плохого контакта…

На самом деле так оно и оказалось- в контакторе один из проводов, идущий на эту клавишу был вставлен в зажим вместе с изоляцией и контакт был очень плохой. Видимо электрик, подключавший этот котел был или невнимателен или кудато очень торопился)))

Итак, смотрите видео:


Буду рад вашим комментариям, если есть какие то технические вопросы- то прошу задавать их на форуме, именно там я отвечаю на вопросы- 

ФОРУМ.

Подписывайтесь на мой канал на ЮтубеСмотрите еще много видео по электрике для дома!

Узнайте первым о новых материалах сайта!

Просто заполни форму:

ceshka.ru

Контакторы, симисторы… Кто лидирует?

Контакторы, симисторы… Кто лидирует?

Если ТЭН можно назвать сердцем электрокотла, то его мозгом, несомненно, является система управления мощностью, основанная на том или ином коммутационном устройстве. Есть ли среди них безусловные лидеры — попробуем разобраться.

Начнем с теории

Коммутационный аппарат — это электрическое устройство, предназначенное для включения и отключения тока в электрической цепи. Казалось бы, чего проще — просто выключатель, однако человечество придумало огромное количество устройств, предназначенных для этих целей.

Глобально все эти устройства можно разделить на две группы:

1. Контактный коммутационный аппарат, осуществляющий коммутацию путем перемещения его контакт-деталей относительно друг друга

2. Бесконтактный коммутационный аппарат, осуществляющий коммутацию без перемещения его деталей

Виды же коммутационных аппаратов гораздо более многочисленны — выключатели, контакторы, реле, реостаты, тиристоры, симисторы.

ЭВАН в своих электрокотлах использует два вида контактной коммутации — это контакторы и реле, а также бесконтактную коммутацию на основе симисторов.

Контактор (лат. contāctor «соприкасатель») — двухпозиционный электромагнитный аппарат, предназначенный для частых дистанционных включений и выключений силовых электрических цепей в нормальном режиме работы.

Контактор состоит из катушки медных проводов, внутри которой находится цилиндр (сердечник) из мягко-магнитного сплава. Этот цилиндр механически подсоединен к одному или нескольким электрическим контактам. Когда катушка получает питание, благодаря электромагнитному эффекту сердечник движется вверх, и контакт замыкается (цепь работает).

Основными техническими данными контакторов являются номинальный рабочий ток и номинальное напряжение коммутируемой цепи. Ключевое достоинство контакторов — это широкий диапазон коммутируемых токов, что позволяет использовать данное устройство на очень мощных приборах.

Принципиальная схема конструкции
трёхфазного контактора:

  • 1 — Катушка
  • 2 — Пружина
  • 3 — Подвижная часть
  • 4 — Замыкающиеся контакты

Ещё одна важная характеристика контактора — его износостойкость, т. е. способность обеспечить работу при большом числе операций. Контактор обеспечивает порядка миллиона срабатываний. Хотя это число и кажется достаточно большим, оно всё равно конечно. Ограниченный ресурс — один из недостатков контактора. Одна из задач, которые решают конструкторы ЭВАН, — увеличение срока жизнедеятельности используемых контакторов за счет снижения числа срабатываний. Это возможно, например, путем оптимизации гистерезиса — разности температур между отключением и включением. Ещё один способ снижения числа срабатываний — увеличение числа ступеней мощности. Учитывая, что потребность в работе котла на полную мощность возникает в основном только в пиковые наиболее холодные периоды, в остальное время прибор может работать на уменьшенной нагрузке. При одноступенчатом управлении мощностью котел, нагрев температуру до требуемых значений, выключается, при снижении температуры ниже уровня гистерезиса включается на полную мощность. При невысоких температурах наружного воздуха эти циклы сокращаются — прибору требуется мало времени для нагрева до нужных температур, соответственно, растет число срабатываний контактора. В случае многоступенчатого управления мощностью, которое реализовано в электрокотлах классов КОМФОРТ, ЛЮКС, ПРОФЕССИОНАЛ, пользователь может ограничить мощ- ность котла. Если за окном достаточно тепло, котел работает на одной или нескольких ступенях мощности, продолжительность цикла нагрева увеличивается, число срабатываний коммутирующих устройств уменьшается. Чем больше ступеней мощности имеет прибор, тем более тонкая возможна подстройка. Наиболее совершенны в этом аспекте котлы класса VIP (PIKKUWATTI, TEHOWATTI, ECOWATTI, FIL), производимые в Финляндии, в которых число ступеней мощности составляет от 7 до 15. Кроме того, погодозависимая автоматика, которой оснащены электрокотлы этого класса, на основании анализа внешней и внутренней температуры воздуха сама устанавливает то число ступеней мощности, на котором работа котла наиболее оптимальна в настоящий момент.

Есть у контакторов особенность, которая в ряде случаев может принести неудобства владельцу. Это звук щелчка, сопровождающий включение и выключение устройства. Справедливости ради нужно отметить, что уровень шума может быть и довольно незначительным — это зависит от производителя коммутационных устройств. Если котел располагается в котельной или в каком‑то отдельном помещении, этим свойством контакторов вообще можно пренебречь. Однако часто, особенно когда речь идет об отоплении небольших объектов, выделить под котел отдельное помещение просто нет возможности.

Чтобы обеспечить комфорт использования оборудования, для таких случаев в электрокотлах ЭВАН в качестве устройства коммутации используется реле.

Реле по механизму работы аналогично контакторам, однако элементы реле намного меньше и легче элементов контакторов, поэтому срабатывание происходит гораздо тише, на уровне, комфортном для пользователя. Вместе с тем, у реле есть и ограничения использования. Ресурс его существенно меньше, чем ресурс контактора, и, чем выше коммутируемый ток, тем меньше ресурс реле. Поэтому в котлах ЭВАН реле используется в основном на устройствах с невысокой мощностью, например, в WARMOS от 5 до 12 кВт. Отдельный случай это котел класса «ЛЮКС» WARMOSQX, где для обеспечения комфорта потребителей вся мощ- ностная линейка реализована на базе реле. Чтобы обеспечить и тихую работу прибора, и достаточный ресурс используемых реле, в WARMOS-QX установлено 9 ТЭНов, каждый из которых управляется своим реле. В результате каждое отдельно взятое реле работает с небольшими токами, продлевая свой ресурс.

Интересный факт! Симистор был изобретен в городе Саранске на заводе «Электровыпрямитель» в 1962–1963 гг. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США.

Решением, в котором отсутствуют недостатки контактных коммутационных устройств, является симистор.

Симистop (симметричный триодный тиристор), или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока.

Симистор представляет собой «двунаправленный тиристор» и имеет три электрода: один управляющий и два основных для пропускания рабочего тока. Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой.

Но для нас важнее не то, как работает симистор, а то, какие преимущества он привносит в работу электрокотла.

Первое и наиважнейшее достоинство — ресурс полупроводниковых приборов неограничен, т. е. число срабатываний не имеет значения. Кроме того, у электромеханических устройств, помимо ограничения количества циклов переключений, есть и еще одно важное негативное свойство — низкая частота коммутации цепи нагрузки. Она определяется и механическими свойствами, и тем, что при возрастании частоты коммутации реле и контактор начинают нагреваться. В то время как симисторы допускают коммутацию нагрузки на каждом полупериоде сетевого напряжения.

Второе, и тоже наиважнейшее, — отсутствие щелчков, приборы на симисторной системе управления работают бесшумно, следовательно, могут располагаться в любом удобном для владельца помещении.

Ещё одно преимущество симисторов в том, что бесконтактные коммутаторы, по определению, не искрят. В то время как коммутация при помощи электромеханических устройств неизбежно сопровождается искрообразованием, которое может приводить к обгоранию контактов.

Для управления мощностью в симистровой схеме на каждый ТЭН должен быть установлен свой симистор. И в этом, кстати, симистор проигрывает контакторам. Контактор может управлять группой ТЭНов. Например, в продукции ЭВАН мощностью свыше 30‑кВт один контактор устанавливается на 3 ТЭНа.

С другой стороны, симисторная схема позволяет использовать различные механизмы для ограничения мощности. Первый способ, аналогичный работе электромеханических коммутаторов, — симистр включает или выключает ТЭН, которым он управляет. Соответственно, число ступеней мощности равно или меньше числу симисторов и ТЭНов. Второй, вариант, реализованный в котлах WARMOS-RX, — широтноимпульсная модуляция (ШИМ). В этом случае управление средней мощностью нагрузки осуществляется с помощью серии импульсов. Усреднённая мощность регулируется изменением ширины импульсов (длительности импульсов и пауз между ними) при неизменной их величине. За счет использования ШИМ в WARMOS-RX на трех симисторах и трех ТЭНах реализовано пять ступеней мощности и обеспечена симметричность нагрузки.

Ещё одно преимущество от использования симисторной схемы с широтно-импульсной модуляцией, которые отмечают конструкторы ЭВАН, — это возможность ограничения удельной поверхностной нагрузки ТЭН.

Казалось бы, вот он, идеальный коммутационный аппарат. Но и симистор не лишён минусов.

При своей работе симистор выделяет тепло — 1—1,5 Вт на 1А. Выделяемое тепло необходимо отводить. Это обстоятельство является самым серьезным недостатком бесконтактных коммутаторов, так как требует дополнительного места для элемента охлаждения. Соответственно, чем больше мощность приборов, тем существеннее сказывается данный недостаток — охлаждающие элементы увеличивают габариты прибора и его стоимость.

В котлах WARMOS-RX используется наиболее эффективный вариант — жидкостное охлаждение.

Что же в итоге? Любое из рассмотренных коммутационных устройств имеет как недостатки, так и достоинства. Именно поэтому ЭВАН предлагает электроотопительные котлы с различными типами управления мощностью. Выбор всегда остается за покупателем, наша задача — помочь ему сделать этот выбор осознанно.

Михаил Лежин, ведущий инженер конструкторско-технологического отдела:

— Если температура на поверхности ТЭН превышает 100oС и сохраняется таковой на протяжении длительного времени, слой теплоносителя, находящегося в контакте с ТЭН, может переходить в парообразное состояние. При снижении температуры ТЭН — возвращаться в жидкое. Когда в качестве теплоносителя используется вода, то такой процесс приводит к образованию накипи — соли жесткости, содержащиеся в воде в растворенном состоянии, при переходе в пар выпадают на поверхность ТЭНа. Если же в качестве теплоносителя используется незамерзающая жидкость, то её переход в парообразное состояние может нести необратимые последствия — при возврате обратно в жидкое меняется химический состав. При работе WARMOS-RX в режиме ограничения мощности снижается время работы ТЭНа на полной мощности, как следствие ограничивается удельная поверхностная нагрузка ТЭНов и температура их поверхности. В результате минимизируются процессы парообразования, что служит дополнительной защитой ТЭНа от накипи и позволяет безопасно применять незамерзающие теплоносители.

Андрей Гусаров, директор по экспорту компании «Каукора»

— Как известно, из‑за нагрева симистора его необходимо охлаждать, например, алюминиевым охладителем, который поддерживает внутреннюю температуру компонента на достаточно низком уровне. При этом чем больше мощность котла и, соответственно, тока, тем массивнее комплект компонентов в случае с симисторами, что требует большего пространства для безопасной и надежной работы. С учетом мощностей наших котлов, а она достигает 1600 кВт, мы не применяем симисторное подключение. В наших котлах мы используем контакторы одного из ведущих мировых производителей Eaton / Moeller. В целом, я не могу отдать первенство ни контакторам, ни симисторам. В каждом случае производитель должен определять, чего он хочет добиться и какой механизм целесообразно использовать в том или ином приборе. Цена котла в любом варианте зависит от компоновки / задачи. И конечно, первостепенное значение имеет качество используемых компонентов и материалов.

www.evan.ru

контактор для электрокотла

контактор для электрокотла .


Нажми для просмотра
Контактор, установлен ный в электрокот ле очень громко “шлепает ” при включении чем сильно осложнял…
 
 
 
Тэги:
 

Нажми для просмотра
Как сделать так, что бы котел не создавал лишнего шума. Купить твердотель ное реле: .
 
 
 
Тэги:
 

Нажми для просмотра
Как сделать так, что бы котел не создавал лишнего шума? И так друзья, представля ю вашему вниманию Лайфхак…
 
 
 
Тэги:
 

Нажми для просмотра
В этом видео я расскажу про контактор или, как его еще называют, магнитный пускатель. Покажу схему подключе…
 
 
 
Тэги:
 

Нажми для просмотра
Контактор – принцип работы, устройство и схема подключени я модульного контактора . Что такое конта…
 
 
 
Тэги:
 

Нажми для просмотра
Рассматрив аются контакторы LC1D25M7 Schneider Electric и КМИ-10910 ИЭК. Надписи, характерис тики, стандарты.
 
 
 
Тэги:
 

Нажми для просмотра
Реле напряжения и контактор – рассмотрен ы скрытые нюансы совместног о использова ния.
 
 
 
Тэги:
 

Нажми для просмотра
Заказать сборку или проект электрощит а для ВАШЕГО объекта. Вдумчиво, современно , безопасно, удобно: 89250575807…
 
 
 
Тэги:
 

Нажми для просмотра
Разбор схем управления магнитными пускателям и с подробным описанием характерис тик входящих в их элементо…
 
 
 
Тэги:
 

Нажми для просмотра
Для тех, кто не знаком с устройство м и сферой применения магнитных пускателей . О главном просто и понятно…
 
 
 
Тэги:
 

Нажми для просмотра
Замена пускателя твердотель ным реле и установка дистанцион ного управления через приложение в телефоне.
 
 
 
Тэги:
 

Нажми для просмотра
Закрываем на ключ розетку находящуюс я в проходном месте. Нам не жалко чужих киловатт, нам жалко своё оборуд…
 
 
 
Тэги:
 

Нажми для просмотра
Записаться на бесплатный мастер-кла с “Проекти рование систем электросна бжения” можно тут …
 
 
 
Тэги:
 

Нажми для просмотра
Итак, после попадания с громко работающим и контактора ми (АСКО Укрэм) и абсолютным незнанием менеджеров …
 
 
 
Тэги:
 

funer.ru

Контакторы до 63А

Контакторы стандартные серии ES Контакторы Эко серии ES

Номинальный ток: 40, 63 А
Группа контактов: 2НО, 2НЗ, 3НО, 2НО + 2НЗ, 3НО + 1НЗ, 4НО, 4НЗ
Количество модулей по 17,5 мм: 3
Напряжение управления : 24, 230 В ~ 50 Гц


Контактор 40, 63 А

  • Сечение подключаемого провода для катушки:
многопроволочный проводник: 1,5 – 6 мм²
однопроволочный проводник: 1,5 – 10 мм²
  • Сечение подключаемого провода для основной цепи:
многопроволочный проводник: 4 – 6 мм²
однопроволочный проводник: 4 – 25 мм²

Возможность установки дополнительного контакта состояния

Номинальный ток: 25 А
Группа контактов: 1 НО, 1 НЗ, 2 НО, 2 НЗ,   1 НО + 1 НЗ, 3 НО, 2 НО + 2 НЗ, 3 НО + 1 НЗ, 4 НО, 4 НЗ
Количество модулей по 17,5 мм: 1, 2
Напряжение управления: 8/12, 24, 230 В ~ 50 Гц

Контактор 25А

  • Сечение подключаемого провода для катушки:
многопроволочный проводник: 1,5 – 6 мм²
однопроволочный проводник: 1,5 – 10 мм²
  • Сечение подключаемого провода для основной цепи:
многопроволочный проводник: 1,5 – 6 мм²
однопроволочный проводник: 1,5 – 10 мм²

Возможность установки дополнительного контакта состояния

Контакторы бесшумные серии ES Контакторы и реле с ручным управлением Эко серии ES
Номинальный ток: 25, 40, 63 А
Группа контактов: 2НО, 3НО, 2НО + 2НЗ, 3НО + 1НЗ, 4НО, 4НЗ
Количество модулей по 17,5 мм: 1, 2, 3
Напряжение управления: 12, 24, 230 В ~ 50 Гц, 12, 24 В DC  

Контактор 25 А

  • Сечение подключаемого провода для катушки:
многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2
  • Сечение подключаемого провода для основной цепи:
многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2

Контактор 40, 63 А
Сечение подключаемого провода для катушки: многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2

  • Сечение подключаемого провода для основной цепи:
многопроволочный проводник: 4 – 6 мм2
однопроволочный проводник: 4 – 25 мм2

Возможность установки дополнительного контакта состояния

Номинальный ток: 16, 25 А
Группа контактов: 1НО + 1НЗ, 2НО,
2НЗ, 3НО, 2НО + 2НЗ, 4НО
Количество модулей по 17,5 мм: 1, 2
Напряжение управления: 8/12, 24, 230 В ~ 50 Гц

Контактор 16, 25 А

  • Сечение подключаемого провода для катушки:
многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2
  • Сечение подключаемого провода для основной цепи:
многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2

Возможность установки дополнительного контакта состояния

Интерфейсное реле серии EN

Контакторы День/Ночь серии ET (стандартные и Эко)

Номинальный ток:

  • макс. – 5 А/250 В ~
  • мин. – 10 мА/12 B DC 1 перекл.

Количество модулей по 17,5 мм: 1
Напряжение управления: 12 – 24, 230 В ~ 50 Гц, 12 – 24 B DC

  • Сечение подключаемого провода для катушки:
многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2
  • Сечение подключаемого провода для основной цепи:

многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2

Возможность установки дополнительного контакта состояния

Номинальный ток: 25, 40 А
Группа контактов: 2 НО, 3 НО, 4 НО
Количество модулей по 17,5 мм: 1, 2, 3
Напряжение управления: 230 В ~ 50 Гц

Контактор 25 А

  • Сечение подключаемого провода для катушки:
Многопроволочный проводник: 1,5 – 6 мм2
Однопроволочный проводник; 1,5 – 10 мм2
  • Сечение подключаемого провода для основной цепи:
многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2

Контактор 40 А

  • Сечение подключаемого провода для катушки:
многопроволочный проводник: 1,5 – 6 мм2
однопроволочный проводник: 1,5 – 10 мм2
  • Сечение подключаемого провода для основной цепи:

многопроволочный проводник: 4 – 6 мм2
однопроволочный проводник: 4 – 25 мм2

Возможность установки дополнительного контакта состояния

www.hagersystems.ru

Схема подключения электрокотла к электросети


Электрокотел, установленный в системе отопления, зачастую является самым энергоёмким устройством во всем доме, более того, его потребляемая мощность нередко выше, чем у всего остального электрооборудования помещений вместе взятого.

И это не удивительно, ведь даже негласное правило выбора котла для дома гласит, что 1кВт (киловатт) мощности, требуется для обогрева 10 квадратных метров дома. Следуя ему, для отопления относительно небольшого (по современным меркам) дома в 100кв.м., потребуется электрокотел мощностью 10кВт.

Конечно, это правило общее, в реальных же условиях, при выборе мощности котла, учитывается множество факторов, но в целом, ориентировочные, средние требования к котлу правило отражает верно.



Поэтому, для такого “прожорливого” потребителя электроэнергии как электрокотел, от стабильной работы которого зимой зависит очень многое, важно сделать правильную электропроводку, подобрать надежную защитную автоматику и верно выполнить подключение. 

Чтобы лучше понимать принцип подключения котла, необходимо знать из чего он обычно состоит и как работает. Речь пойдет о самых распространённых, ТЭНовых котлах, сердцем которых являются Трубчатые ЭлектроНагреватели (ТЭН).



Проходящий через ТЭН электрический ток разогревает его, этим процессом управляет электронный блок, следящий за важными показателями работы котла, с помощью различных датчиков. Также электрокотел может включать циркуляционный насос, пульт управления и т.п.



В зависимости от потребляемой мощности, в быту обычно используются электрокотлы рассчитанные на питающее напряжение 220 В – однофазные или 380 В – трехфазные.

Разница между ними простая, котлы на 220В редко бывают мощнее 8 Квт, чаще всего в отопительных системах используются приборы не более чем на 2-5кВТ, это связано с ограничениями по выделенной мощности в однофазных питающих линиях домов.

Соответственно электрокотлы на 380В бывают более мощными и могут эффективно отапливать большие по площади дома.
Схемы подключения, правила выбора кабеля и защитной автоматики для котлов на 220В и 380В различаются, поэтому мы рассмотрим их раздельно, начнем с однофазных.


 Схема подключения электрокотла к электросети 220 В (однофазного)

 


Как видите, питающую линию котла на 220 В защищает дифференциальный автоматический выключатель, совмещающий в себе функции автоматического выключателя (АВ) и Устройства защитного отключения (УЗО). Так же, в обязательном порядке к корпусу устройства подключается заземление.

ТЭН или ТЭНы (если их несколько) в таком котле рассчитаны на напряжение 220В, соответственно к одному из концов трубчатого электрического нагревателя подключается фаза, а к другому ноль.

Для подключения котла требуется проложить трехжильный кабель (Фаза, Рабочий ноль, Защитный ноль – заземление).

Если же вам не удалось найти подходящий дифференциальный автоматический выключать или просто он слишком дорог в выбранной вами линейке защитной автоматики, его всегда можно заменить связкой Автоматический выключатель (АВ) + Устройство защитного отключения (УЗО), в таком случае схема подключения однофазного котла к электросети выглядит так:

 

Теперь осталось выбрать кабель нужной марки и сечения и номиналы защитной автоматики, для правильной электропроводки к электрокотлу.


В выборе необходимо отталкиваться от мощности будущего котла, а лучше всего рассчитывать с запасом, ведь в будущем, реши вы поменять котел, выбрать старшую модель (более мощную) вы уже не сможете, без серьезной переделки проводки.

Не буду загружать вас лишними формулами и расчетами, а просто выложу таблицу выбора кабеля и защитной автоматики в зависимости от мощности однофазного электрокотла 220 В. При этом в таблице будут учтены оба варианта подключения: через дифференциальный выключатель и через связку Автоматический выключатель + УЗО.

Для прокладки будут указаны характеристики медного кабеля марки ВВГнгLS, минимально допустимого ПУЭ (правилами устройства электроустановок) для использования в жилых зданиях, при этом расчеты сделаны для трассы от счетчика до электрокотла длинной 50 метров, если у вас это расстояние больше, возможно потребуется корректировка значений.

Таблица выбора защитной автоматики и сечения кабеля по мощности электрокотла 220 В


Устройство защитного отключения (узо) всегда выбирается на ступень выше стоящего с ним в паре автоматического выключателя, если же вам не удается найти УЗО необходимого номинала, можете взять защиту следующей ступени, главное не брать ниже положенного.
Особых сложностей и разночтений при подключении элекрокотла на 220В обычно не возникает, переходим к трехфазному варианту.


Схема подключения электрокотла к электросети 380 В (трехфазного)


Общая электрическая схема подключения электрокотла 380 В, выглядит следующим образом:


Как видите, линия защищена трехфазным автоматическим выключателем дифференциального тока, к корпусу котла обязательно подключено заземление.

Как обычно, по традиции, выкладываю схему подключения трехфазного электрокотла со связкой автоматический выключатель (АВ) плюс устройство защитного отключения (УЗО) в цепи, которая нередко бывает дешевле и доступнее Диф. автомата.



Выбор номиналов защитной автоматики и сечения кабеля для трезфазных электрокотлов различной мощности удобно делать по следующей таблице:


В трехфазных электрокотлах обычно установлено сразу три ТЭНа, бывает и больше. При этом практически во всех бытовых котлах каждый из трубчатых электронагревателей рассчитан на напряжение 220 В и подключён следующим образом:



Это так называемое подключение «звезда», для этого случая и подводится к котлу нулевой проводник.

Сами ТЭН подключаются к сети следующим образом: перемычкой соединены по одному из концов каждого из трубчатых электронагревателей, к оставшимся трем свободным поочередно подключаются фазы: L1, L2 и L3.

Если же в вашем котле стоят ТЭН, рассчитанные на напряжение 380 В, схема их соединения совершенно другая и выглядит она так:


Такое подключение ТЭН электрокотла называется «треугольник» и при одинаковом напряжении 380 В, как в предыдущем способе «Звезда», мощность котла значительно увеличивается. Нулевой проводник при этом не требуется, подключаются лишь фазные провода, электрическая схема подключения при этом соответственно выглядит вот так:

Не отступайте от схем подключения допустимых для вашего электрокотла, если там стоят ТЭН на 220В при трехфазном подключении, не переделывайте схему на «треугольник». Как вы понимаете, теоретически их можно переподключить и получить на ТЭН напряжение 380 В, соответственно и повышение их мощности, но при этом они у вас скорее всего просто сгорят.

 

Как определить правильную схему подключения ТЭН звездой или треугольником и, соответственно, на какое напряжение они рассчитаны?


Если утеряна инструкция по подключению вашего электрокотла или просто нет возможности к ней обратиться, определить правильную схему подключения в бытовых условиях можно так:


1.  В первую очередь осмотрите клеммы ТЭН, скорее всего производителем контакты уже подготовлены под определенную схему. Так, например, для подключения «звездой» и ТЭНах на 220В, три клеммы будут объединены перемычкой.

2.  Само наличие нулевой клеммы – «N», свидетельствует о том, что ТЭН на 220 В и подключать их требуется по схеме «Звезда». При этом её отсутствие, вовсе не означает, что ТЭН на 380 В.

3. Самый же надежный вариант узнать наряжение ТЭН – это посмотреть маркировку, указанную либо на фланце, к которому закреплены трубчатые электронагреватели


Либо на самом ТЭН в обязательном порядке выдавливаются его параметры:

Если же у вас не получается наверняка узнать напряжение, на которое расчитан ваш электрический котел и схему подключения его ТЭН, а подключить «очень надо», советую использовать схему «Звезда». При этом варианте, если Тэн окажутся расчитаны на 220 В, они будут работать в штатном режиме, а если на 380 В, то просто будут выдавать меньшую мощность, но главное не сгорят.


Вообще, случаи бывают разные, и все их охватить в формате одной статьи очень тяжело, поэтому обязательно пишите в комментариях свои вопросы, дополнения, истории из личного опыта и практики, это будет полезно многим!

rozetkaonline.ru

РадиоКот :: Блок управления электрокотла

РадиоКот >Схемы >Цифровые устройства >Автоматика >

Блок управления электрокотла

Известно, что тепло для кота- первое дело. Поэтому для обогрева нашей Мурки был приобретен небольшой электрокотел с ТЭН’ом на 3КВт. Управление котлом сделано после пробного периода эксплуатации и попыток создать экономичный режим расхода электроэнергии.

Конструкция изделия показана на рисунке:

 
Возможности схемы управления:
1. поддержание температуры котла в трех временных интервалах,
от 7час до Т1-выключено (дневной сон кошки, питомцы ушли на работу),
от Т1 до Т2-температура t1 (вечерняя прогулка кошки, питомцы после работы готовят кошачий ужин),
от Т2 до 7час- температура t2(период льготного ночного тарифа, максимальный разогрев системы).
2.автоматическое отключение ТЭН при включении нагрузки с большим приоритетом (например, насосной станции).
3. управление нагрузкой мощностью до 4-5 КВт.
4. установка значений Т1, Т2, t1, t2 и текущего времени.
5. ручное управление нагрузкой.
6. сохранение данных контроллера и ЖКИ при отключении питания 220В.
Схема показана на рисунке.


Температура котла определяется путем измерения времени заряда через терморезистор конденсатора, подключенного к порту RB5. Точность измерений оказалась достаточной- +/- 2 градуса в диапазоне 10 – 75 градусов. Терморезистор высокоомный и цепь его подключения несимметричная, но длина соединительного кабеля от него до устройства может быть большой (2-3 метра), наводки при этом не заметны.
Питание производится от блока с напряжением 5,2В через развязку на диодах Шоттки. Резервирование питания при этом происходит за счет небольшой разности напряжения резервного аккумулятора, – четыре аккумулятора по 1,25В = 5В; при пропадании сети они запитывают контроллер и ЖКИ (без индикации). Напряжение +12В дает преобразователь на МС34063: это напряжение используется в цепи термосопротивления (для линеаризации экспоненты заряда) и в токовом датчике приоритетных нагрузок.
Входной сигнал для токового датчика снимается с токового трансформатора Т1, усиливается компаратором LM393, выпрямляется и управляет транзисторным ключом VT1. Ключ соединен с оптосимистором MOC3042, управляющим симистором BT136. Для подключения ТЭН использован миниконтактор IEK с четырьмя запараллеленными контактными группами (сигнальные контакты у него такие же как и силовые).
Ключ на транзисторе VT2 подает на порт RB4 ‘единицу’ во время отключения нагрузки. Если отключение вызвано срабатыванием токового датчика, то последующее включение производится с задержкой около 1 минуты. Это позволяет исключить излишние срабатывания контактора при последовательном включении приоритетных нагрузок, – например, после включения водяного насоса обычно включается нагреватель бойлера горячей воды.
Примерный вид ЖКИ показан на следующем рисунке.

Переход от установки одного параметра к другому производится нажатием кнопки SB2 ‘Меню’, изменение параметра производится переключением двухпозиционного тумблера SB3 из нейтрального положения в ‘ + ‘ или ‘ – ‘ .
Кнопкой SB4 производится сброс контроллера. Кнопкой SB5 отключается индикация ЖКИ, поскольку постоянно она не требуется.
Двухполюсный переключатель SB6 предназначен для ручного управления нагрузкой.
Программа контроллера, разработанная в MPLAB, представлена в прилагаемых файлах. Пояснения к ней, написанные при разработке, находятся в рисунках.

Пояснения и документация к конструкции не оформлены, поскольку не думается, что данную конструкцию будут копировать. Однако общий подход к энергопотреблению при ограниченной подключенной мощности и не дешевой электроэнергии может быть интересен.

Файлы:
Пояснения к программе
Программа в MPLAB

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Модульный контактор КМ-40. Схема подключения и устройство

Здравствуйте, уважаемые гости и читатели сайта «Заметки электрика».

В своих статьях по сборке различных электрических схем (схема пуска трехфазного двигателя, схема реверса трехфазного электродвигателя, схема реверса однофазного двигателя, простейшая схема АВР) я применял самые распространенные контакторы и пускатели типа ПМЕ, ПМЛ, КМИ и другие.

В данной статье я хочу рассказать Вам про контакторы модульного исполнения или другими словами, модульные контакторы, сокращенно КМ, которые также нашли широкое распространение, особенно, в жилом секторе.

Напомню, что по определению ГОСТа Р 50030.4.1-2002, п.2.1.1 контактор — это:

По способу воздействия силы, необходимой для замыкания контактов, контакторы делятся на:

  • электромагнитные
  • электропневматические
  • пневматические
  • запираемые

Модульные контакторы относятся к электромагнитным контакторам.

Какие же преимущества имеют модульные контакторы перед обычными контакторами?

Модульные контакторы стали очень востребованными устройствами, особенно при сборке квартирных щитов и различных систем автоматики: управление освещением, нагревательными установками, вентиляцией, насосами и т.п. В первую очередь это объясняется их конструкцией.

Контакторы модульного исполнения идеально вписываются с остальными модульными устройствами, установленными на DIN-рейке, при этом не нарушая эргономики пространства в щите.

Модульные контакторы более бесшумные и обладают меньшими вибрациями при работе по сравнению с обычными контакторами, что только положительно сказывается на их применении в местах с постоянным пребыванием людей: квартиры, больницы, офисы, учебные заведения и т.п.

Сравните уровень шума и вибраций при включении обычных и модульных контакторов, посмотрев данный видеоролик.

(видео будет добавлено в ближайшее время)

Под руку мне попался двухполюсный модульный контактор КМ-40-11 от EKF, на примере которого мы и рассмотрим его конструкцию, устройство и схему подключения.

 

Расшифровка, схема подключения и технические данные КМ-40-11

Структура условного обозначения КМ-40-11:

  • КМ — контактор модульный
  • 40 — номинальный ток, А
  • 11 — количество и тип контактов (есть следующие исполнения: 11, 20, 31 и 40, см. таблицу ниже)

Модульные контакторы КМ от EKF выпускаются на номинальные токи от 16 до 63 (А). Вот их стандартный ряд значений: 16, 20, 25, 40, 50 и 63 (А).

Вот таблица модульных контакторов всех типов от EKF. Красным я выделил рассматриваемый в данной статье КМ-40-11.

Контактор КМ-40-11 является двухполюсным и имеет 2 силовых контакта: 1NO (нормально-открытый) с обозначением (1-2) и 1NC (нормально-закрытый) с обозначением (R3-R4).

Схема подключения модульного контактора КМ-40-11 изображена на его лицевой стороне:

  • +А1 и -А2 — это выводы катушки
  • (1-2) — 1NO (нормально-открытый) силовой контакт
  • (R3-R4) — 1NC (нормально-закрытый) силовой контакт

Внимание! В указанной на корпусе схеме имеется несоответствие.

Нормально-открытый контакт 1NO (1-2) расположен справа, а нормально-закрытый контакт 1NC (R3-R4) – слева. На схеме же указано наоборот. Перед подключением контактора я машинально решил проверить исправность его контактов, а в итоге обнаружил такое несоответствие — вот тому подтверждение.

Позже, разобрав контактор, я вновь убедился в этом. Видимо, при сборке контактора перепутали расположение мостиковых контактов и собрали их не в соответствие со схемой. Так что будьте бдительны и проверяйте все электротехнические изделия на соответствие указанных схем. Сделать это не сложно и не долго, применив обычный цифровой мультиметр или «аркашку».

К изучению (для новичков): подробное руководство пользования цифровым мультиметром.

Помимо схемы подключения, на лицевой стороне  контактора указаны его основные характеристики:

  • номинальное рабочее напряжение 230 (В)
  • номинальный ток контактов 40 (А)
  • АС-1: 8,4 (кВт)
  • АС-3: 3,7 (кВт)

Что означают аббревиатуры АС-1 и АС-3?

Например, если с помощью контактора КМ-40-11 управлять неиндуктивной или слабоиндуктивной однофазной нагрузкой (категория применения АС-1 и АС-7а), например, лампами накаливания, люминесцентными или светодиодными лампами, то их максимальная мощность при напряжении 230 (В) не должна превышать 8,4 (кВт) или 40 (А).

Если же в качестве нагрузки будет однофазный электродвигатель с короткозамкнутым ротором  или бытовой вентилятор (категория применения АС-3 и АС-7b), то его максимальная мощность не должна превышать 3,7 (кВт) или 22 (А).

Ниже я разместил таблицу мощностей и токов нагрузок контакторов КМ от EKF всех типов в зависимости от категории применения. Красными прямоугольниками я выделил рассматриваемый в данной статье КМ-40-11.

Остальные технические характеристики указаны в руководстве по эксплуатации, знакомьтесь:

  • выдерживаемое импульсное напряжение 6 (кВ)
  • напряжение срабатывания 195-253 (В)
  • напряжение возврата 46-172 (В)
  • пусковой ток катушки 30 (мА) для КМ-16 и КМ-20; 60 (мА) для КМ-25, КМ-32 и КМ-40; 95 (мА) для КМ-50 и КМ-63
  • рабочий ток (ток удержания) катушки 18 (мА) для КМ-16 и КМ-20; 12 (мА) для всех остальных типов
  • мощность, потребляемая катушкой не более 5 (Вт)
  • скорость замыкания контактов 20 (мс)
  • скорость размыкания контактов 30 (мс)
  • рабочее положение — вертикальное
  • режим работы — продолжительный
  • механическая износостойкость — 1 млн. циклов
  • электрическая износостойкость — 150 тыс. циклов
  • температура эксплуатации от -25°С до +45°С
  • степень защиты — IP20

В руководстве было указано, что напряжение катушки контактора составляет 220-240 (В) переменного тока. Я уже встречался с некоторыми типами модульных контакторов, у которых катушка могла работать, как от переменного напряжения, так и от постоянного — питание катушки у них осуществлялось через выпрямительный мост.

Вот меня и смутило то, что на схеме КМ-40-11 была указана полярность выводов катушки +А1 и -А2.

Я решил проверить это, разобрав контактор. Забегу немного вперед и скажу, что визуально в конструкции контактора я не увидел выпрямительного моста, но при подключении к катушке постоянного напряжения =220 (В) контактор успешно срабатывал, причем даже гораздо лучше, чем от переменного — с меньшим шумом и вибрацией.

Заодно я решил измерить (на всякий случай) омическое сопротивление катушки. Оно составило 1296 (Ом).

Таблица сечений присоединительных проводов для катушки и силовых контактов.

 

Конструкция и устройство модульного контактора КМ-40-11

Модульный контактор устанавливается только на стандартную DIN-рейку с размером 35 (мм).

Его установка и снятие осуществляется с помощью фиксирующей защелки.

Габаритные размеры контакторов КМ от EKF, в зависимости от количества модулей, указаны в таблице ниже:

Обратите внимание, что на лицевой части контактора имеется индикатор его состояния в виде стеклянного окошечка с красным флажком. Если в окошечке появится красный флажок, то это символизирует о том, что контактор включен.

Для нанесения диспетчерского наименования (маркировки) контактора на нем предусмотрена специальная площадка с прозрачной крышкой.

Чтобы наглядно увидеть конструкцию модульного контактора, нужно его разобрать, что я сейчас и сделаю.

С помощью тоненькой отвертки вскроем 3 защелки и снимем верхнюю часть корпуса.

Откроется доступ к катушке и магнитной системе.

В верхней части находится неподвижный магнитопровод (сердечник), установленный на силиконовых амортизаторах, которые подавляют (уменьшают) уровень шума при срабатывании контактора.

Неподвижная часть магнитопровода легко снимается вверх.

Неподвижный магнитопровод набран из листов электротехнической стали (из холоднокатаной или горячекатаной – точно определить не могу), изолированных друг от друга, для уменьшения вихревых токов в «железе». Это отчетливо видно на фотографии. Также на нем размещены два короткозамкнутых кольца, которые уменьшают вибрации при срабатывании контактора.

Соединение неподвижной и подвижной частей магнитопровода имеет гладкую отшлифованную поверхность.

Если по каким-то причинам в этом месте образуется грязь или ржавчина, то контактор при включенном положении будет сильно гудеть.

Планирую в ближайшее время написать подробную статью о частых неисправностях в контакторах, встречающихся на моей практике. 

Затем нужно снять винтовые зажимы выводов катушки и силовых контактов. У катушки они просто снимаются вверх, а у контактов сначала их нужно слегка раскрутить и потом уже снять.

После этого нужно вытащить из направляющих силовые неподвижные контакты.

Они изготовлены из меди или медного сплава.

Теперь можно снять подвижную часть магнитопровода в сборе с катушкой, подвижной контактной системой (траверсой) и системой рычагов для индикации состояния (красный флажок).

Возвратная противодействующая пружина находится в центре катушки и возвращает подвижные контакты в исходное положение при отключении катушки от напряжения.

У контактора КМ-40-11 применяются мостиковые контакты, которые обеспечивают разрыв с двух сторон. Контакты выполнены из серебросодержащего материала, что увеличивает их электрическую износоустойчивость и срок эксплуатации, уменьшает переходное сопротивление.

Фотография, практически полностью, разобранного модульного контактора КМ-40-11 от EKF.

Принцип работы модульного контактора

Зная устройство модульного контактора, рассмотрим принцип его работы, не вникая в недры теории электромагнетизма.

При подаче переменного напряжения 220 (В) на катушку контактора по ней начинает протекать электрический ток, который создает магнитный поток. Силовые магнитные линии замыкаются через подвижный сердечник, неподвижный сердечник и воздушный зазор между ними. В этот момент подвижный сердечник намагничивается и притягивается к неподвижному сердечнику, тем самым замыкая или размыкая контакты контактора.

При снятии напряжения с катушки, возвратная (противодействующая) пружина возвращает подвижную часть магнитопровода в исходное положение, тем самым возвращая контакты в исходное состояние.

В начале статьи я говорил, что контактор срабатывал при подключении к катушке, как переменного, так и постоянного напряжения 220 (В).

О принципе работы модульного контактора и его разборке смотрите в этом видеоролике:

Дополнение: у рассматриваемого модульного контактора КМ-40-11 я нашел небольшой недостаток — у него нет возможности добавить дополнительные контакты, в отличие от того же модульного контактора ABB ESB 24-40 с дополнительной приставкой ЕН 04-11. А ведь иногда это бывает так необходимо.

Прошу производителей рассмотреть данный факт и принять меры по реализации этой идеи.

P.S. На этом все. Спасибо за внимание. С уважением, Дмитрий, автор сайта «Заметки электрика».

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *