Динамический диапазон расходомера что это – Руководство по выбору расходомера. Часть 2

Содержание

Какие существуют расходомеры и в чем разница

Расходомеры – это приборы, измеряющие объем или массу вещества: жидкости, газа или пара, которые проходят через сечение трубопровода в единицу времени. В быту расходомеры называют «счетчиками», но это неверно, потому что счетчик – только одна из составляющих конструкции расходомера. Особенности конструкции зависят от типа прибора. Сейчас используют 6 типов расходомеров, у каждого из которых – свои сильные и слабые стороны.

Электромагнитные расходомеры

В основе устройства электромагнитных расходомеров – закон электромагнитной индукции, известный как закон Фарадея. Когда проводящая жидкость, например вода, проходит через силовые линии магнитного поля, индуцируется электродвижущая сила. Она пропорциональна скорости движения проводника, а направление тока – перпендикулярно направлению движения проводника.

В электромагнитных расходомерах жидкость течет между полюсами магнита, создавая электродвижущую силу. Прибор измеряет напряжение между двумя электродами, рассчитывая тем самым объем проходящей через трубопровод жидкости. Это надежный и точный метод, потому что сам прибор не влияет на скорость течения жидкости, а за счет отсутствия движущихся частей оборудование долговечное.

Преимущества электромагнитных расходомеров:

  • Умеренная стоимость.
  • Нет движущихся и неподвижных частей в поперечном сечении.
  • Большой динамический диапазон измерений.

Недостатки:

  • На работу прибора влияют магнитные и проводящие осадки.

Принцип работы электромагнитного расходомера

Ультразвуковые расходомеры

В конструкции расходомеров есть передатчик ультразвуковых сигналов (УЗС). Когда жидкость движется по трубопроводу, происходит снос ультразвуковой волны. Из-за этого меняется время, за которое сигнал от передатчика достигает приемника. Время прохождения увеличивается против потока жидкости и уменьшается, если ультразвуковой сигнал идет по направлению потока. Ультразвуковые расходомеры рассчитывают объемный расход жидкости на основе разности времени прохождения УЗС по течению потока и против него – эта разность пропорциональна скорости движения и объему воды.

Достоинства ультразвуковых расходомеров:

  • Невысокая стоимость.
  • Нет движущихся и неподвижных частей в поперечном сечении.
  • Средний динамический диапазон измерений.
  • Возможность монтажа на трубопроводы большого диаметра.

Недостатки:

  • Чувствительность измерений к отражающим и поглощающим ультразвук осадкам.
  • Чувствительность к вибрациям.
  • Чувствительность к перекосам потока для однолучевых расходомеров.

Расходомеры перепада давления

Принцип действия этого типа расходомеров основан на измерении перепадов давления, которые возникают, когда поток жидкости, газа или пара проходит через шайбу, сопло или другое сужающее устройство. Скорость потока в этом месте меняется, давление возрастает: чем выше скорость потока, тем больший расход.

Преимущества:

  • Отсутствие движущихся частей.

Недостатки:

  • Механические препятствия в сечении: шайба или сопло.
  • Малый динамический диапазон измерений.
  • Чувствительность к любым осадкам на сужающем устройстве.

Вихревые расходомеры

Вихревые расходомеры измеряют частоту колебаний, которые возникают в потоке жидкости или газа, когда они обтекают препятствия. При обтекании препятствий образуется вихрь, от которого приборы и получили свое название.

Преимущества:

  • Отсутствие движущихся частей.

Недостатки:

  • Механические препятствия в сечении расходомера.
  • Малый динамический диапазон.
  • Температурная чувствительность.
  • Неустойчивость характеристик при осадках на теле обтекания.
  • Влияние вибраций на результаты измерений.

Принцип работы вихревого расходомера

Тахометрические расходомеры

Тахометрические расходомеры измеряют скорость вращения, количество оборотов крыльчатки или турбины в потоке воды, газа или пара. Принцип действия не меняется в зависимости от того, установлена ли в приборе крыльчатка или турбина; разница только в том, что ось вращения крыльчатки находится перпендикулярно движению потока, а турбины – параллельно потоку жидкости или газа.

Преимущества:

  • Невысокая стоимость.
  • Работают без источника питания.

Недостатки:

  • Механические препятствия в сечении расходомера.
  • Малый динамический диапазон.
  • Неустойчивость измерений.
  • Невысокая надежность.
  • Примеси и посторонние предметы в воде влияют на результаты измерений.
  • Небольшой срок эксплуатации.

Принцип работы тахометрического расходомера

Кориолисовы расходомеры

Принцип действия этих расходомеров опирается на эффект Кориолиса: изменение фаз механических колебаний U-образных трубок, по которым движется жидкость, газ или пар. Сдвиг фаз зависит от массового расхода. Сила Кориолиса, которая воздействует на стенки колеблющейся трубки, меняется под напором воды или пара.

Преимущества:

  • Прямое измерение массового расхода.
  • Осадки не влияют на измерения.
  • Нет препятствий во внутреннем сечении.
  • Измерение расхода жидкостей не зависит от их электрической проводимости.

Недостатки:

  • Высокая стоимость.
  • Строгие требования к технологии изготовления.
  • Влияние вибраций на метрологические характеристики.

Сравнив достоинства и недостатки разных видов оборудования, несложно понять, почему самыми востребованными остаются электромагнитные расходомеры: они недорогие, точные и практичные. Через каталог компании «Интелприбор» вы можете заказать измерительные модули высокого качества. Мы не только поможем выбрать оборудование, но также установим его и обеспечим техобслуживание.

intelpribor.ru

Динамический диапазон измерения расходов сетевой воды. Расходомеры. Доплеровские ультразвуковые расходомеры

Современные вихревые расходомеры превосходят по характеристикам и возможностям своих предшественников, которые использовали большие тела обтекания, блокирующие 43% площади поперечного сечения трубы. В конструкции современных ультразвуковых расходомеров используются тела обтекания малого диаметра для получения большей амплитуды перемещения. В результате этого, значительно улучшены характеристики потери давления в системе и динамический диапазон прибора.

Назначение и области применения

Вихревые расходомеры-счетчики предназначены для измерения объемного и массового расхода жидкостей, газов и пара. Расходомеры состоят из блока электроники и первичного преобразователя. Блок выполнен в виде цилиндрического корпуса с отсеками для смотрового окна и разъемов. На корпусе расположены кабельные вводы и переходник для преобразователя. Применяются расходомеры для измерения и учёта расхода веществ технологических процессов в промышленности и коммунальном хозяйстве.

  • Идеально подходит для сред с высокой температурой и высокой скоростью пара
  • Производство энергии — паровые установки
  • Промышленное применение — установки ОВКВ, региональное управление энергопотреблением
  • Коммерческое применение — управление энергопотреблением зданий, студенческих городков и сооружений
  • Нефтегазовая промышленность — распределение природного газа
  • Нефтехимическая промышленность — массовая балансировка, подогрев технологических реакций

Правильный выбор датчиков напрямую влияет на финальный результат производственного круговорота, поэтому электронные расходомеры являются одним из важнейших звеньев цепи технического процесса. – это одни из самых востребованных на отечественном рынке приборов для учёта расхода веществ. Свою популярность они заслужили благодаря надёжности, простоте в эксплуатации, высокой точности измерений и, что немаловажно, своей доступности. История вихревых расходомеров начинается в 60х годах двадцатого века, но современные датчики сделали огромный шаг вперёд по сравнению со своими предками.

Что же такое вихревой расходомер и какой принцип действия

Простой пример эффекта образования вихрей – это флаг, волнующийся на ветру из-за завихрений, которые создаются движением воздуха, обтекающего флагшток. Поток измеряемого вещества проходя по внутреннему сечению арматуры расходомера, встречает на своём пути препятствие – тело обтекания, установленное в расходомере, проходя через него, увеличивает скорость, уменьшая давление. Таким образом, после преодоления препятствия создаются завихрения, называемые вихревой дорожкой Кармана. Ультразвуковой луч, генерируемый прибором, проходит через поток вихрей ниже по течению от тела обтекания. При прохождении вихрей несущая ультразвукового сигнала изменяется.

Это изменение несущей доступно для измерения и смещается пропорционально количеству образовавшихся вихрей. Цифровая обработка сигналов позволяет определить число вихрей. Эта величина преобразуется в скорость потока. Программа преобразует скорость в объемный расход в единицах измерения, выбранных оператором. В вихревых расходомерах компании используется самые маленькие тела обтекания среди расходомеров такого типа, которые обеспечивают высокую чувствительность, исключительную работоспособность при очень низких расходах. Большой динамический диапазон и низкие потери давления. При использовании встроенного термометра сопротивления и внешнего датчика давления программное обеспечение расходомера позволит скомпенсировать изменения давления и температуры для точного измерения массового расхода (расходомеры газов).

Для усиления выходного сигнала в некоторых расходомерах устанавливают несколько обтекаемых тел. Сами же тела могут иметь различные формы, например, треугольную или круглую. Одним из важнейших достоинств такого типа расходомеров является отсутствие каких-либо движущихся частей, что несомненно оказывает положительное влияние на срок службы прибора. Это одни из самых долговечных и неприхотливых приборов.

Подтипы вихревых расходомеров

Все вихревые расходомеры можно разделить на три группы по типу преобразователей.

  1. Вихревые расходомеры с обтекаемым телом – поток вещества огибает тело обтекания, установленное в трубопроводе, меняется траектория движения и увеличивается скорость струй, создаются завихрения, уменьшается давление в трубе. За миделевым сечением тела скорость снижается, а давление увеличивается. На передней стороне тела обтекания образуется повышенное давление, на задней стороне — пониженное. Образование вихрей с обеих сторон происходит поочередно. За обтекаемым телом образуется вихревая дорожка Кармана.

  2. Вихревые расходомеры с прецессией воронкообразного вихря – принцип действия заключается в том, что поток закручивается перед попаданием в более широкую часть трубы, вызывая пульсации давлени

stroykes.ru

Пределы измерений, динамический диапазон

Пределы измерения определяются интервалом (xmin, xmax), внутри которого с помощью данной системы можно измерить нужную величину с требуемой точностью. Динамический диапазон измерительной системы равен отноше­нию xmax / xmin. Величина xmax обычно определяется предельным значением допустимо!”! нелинейности, которая проявляется при больших входных сиг­налах. Величина xmin, как правило, определяется ошибками из-за смещения нуля п шумом, которым становится тем более значительным, чем меньше сигнал xmin — это наименьшее значение х, для которого может быть обеспе­чена заданная точность.

Возьмем, например, случай, когда надо с погрешностью ±3% измерить ток с помощью стрелочного прибора, собственная погрешность которого ±1% от всей шкалы. Динамический диапазон в этом случае равен лишь 3. Другой пример: с помощью измерительного усилителя нужно измерить на­пряжение с погрешностью 1%. Смещение пуля, отнесенное ко входу усили­теля, меньше10 мкВ. Из-за нелинейности входное напряжение не должно превосходить 10 В, чтобы погрешность не превышала 1%. В этом примере динамический диапазон равен 10³.

Отклик системы

Реакция измерительной системы на приложенное ко входу воздействие на­зывается откликом системы. Отклик измерительной системы должен давать верное представление о воздействии; цель собственно измерения, очевид­но, состоит не столько в том, чтобы определять характеристики самой из­мерительной системы! Когда, значения измеряемых физических величин меняются со временем (то есть в случае, когда измеряются динамические величины), важно точно знать, как измерительная система будет отслежи­вать эти изменения: поведение системы в динамике должно обеспечивать верное воспроизведение измеряемой величины.

Динамические свойства линейной измерительной системы Целиком определяются ее откликом на единичный скачок на входе (ее переходной характеристикой). Зная переходную характеристику можно найти время установления или время считывания измерительной системы. На рис.2.36 показаны сигнал x(t) на входе, имеющий вид скачка, и отклик y‘(t) измерительной системы. Здесь отклик нормирован по отношению к чувствительности по постоянному току S(0), так что в пределе при t → ∞ значения входного и выходного сигналов совпадают. Время установления отсчитывается от мо­мента, когда происходит скачок на входе, до такой точки на оси времени, вслед за которой выходной сигнал y‘(t), попав в заданный интервал 0 — уо, уо + y0) допустимых отклонений от конечного значения у0, остается в этом интервале. Отношение ± у0 / у0 представляет собой относительную по­грешность измерительной системы. Время установления служит мерой быс­тродействия измерительной системы.

Динамическое поведение линейной измерительной системы также цели­ком определено, если известно, как она реагирует на синусоидальное коле­бание меняющейся частоты; то есть в том случае, когда мы знаем частот­ную характеристику.

Определение частотной характеристики измерительной системы приво­дит нас к (комплексной) зависимости чувствительности от частоты s(co). Чувствительность системы S(w) состоит из двух характеристик: из ампли­тудно-частотной характеристики |S(w)| и фазо-частотной характеристики АгgS(w). Этими двумя зависимостями динамическое поведение линейной системы определяется полностью. Характеристикой частотных свойств слу­жит ширина полосы f0. Значение f0 представляет собой частоту, на которой мощность выходного сигнала падает вдвое по сравнению с максимальной мощностью на выходе. Следовательно, на частоте f0 амплитуда выходного сигнала уменьшается в √2 раз по сравнению с ее значением на низких частотах. Поэтому значение амплитудно-частотной характеристики на час­тоте f0 равно S(0)/√2 при условии, что на постоянном токе соответствую­щая величина равна S(0). Графики, приведенные на рис. 2.37, служат иллю­страцией сказанного. Так как 20log10(1/√2)≈-3 , частоту f0 называют также частотой спада на 3 дБ (сокращенно: точкой «-3 дБ»). Белы и децибелы служат логарифмической мерой отношения мощностей. Эта мера рассмот­рена в приложении A3.

Рис. 2.36. Отклик y(t) линейной измерительной системы на входное воздей­ствие х(t) в форме скачка. Переходная характеристика нормализована таким образом, что у'(t) = y(t) / S(0), где S(0) — чувствительность системы по постоянному току. Время установления прибора при допустимой погрешности ±Dy0 / y0 равно ts.

Рис. 2 37 Частотная характеристика S(f), состоящая из двух зависимос­тей: амплитудно-частотной характеристики | S(f)| и фазо-частотной ха­рактеристики Arg S(f )Ширина полосы системы равна f0.

Соотношение между входной величиной x(t) и выходной величиной y(t), а значит, и динамическое поведение линейной динамической системы мож­но представить в виде линейного дифференциального уравнения.

Если у зависит от х, то дифференциальное уравнение, описывающее соотношение между у и х, содержит не только функции от у и от х, но также и производные по времени от этих функций. В линейном дифферен­циальном уравнении имеются только такие члены, в которые функция у и ее производные входят в первой степени. Порядок дифференциального урав-нения равен наивысшему из порядков входящих в него производных

У многих измерительных систем, различных по своей природе (электри­ческих, тепловых, акустических и т. д.), динамическое поведение оказыва­ется сходным. Если описывать эти системы в обобщенном виде в терминах Vи I-величин, то мы будем получать одни и те же дифференциальные уравнения. Следовательно, при изучении динамических систем можно огра­ничиться только дифференциальными уравнениями определенного вида. С точки зрения динамического поведения особенно важным является поря­док дифференциального уравнения. С учетом этого говорят об (измеритель­ной) системе п-го порядка и об отклике n-го порядка, если поведение систе­мы можно описать с помощью дифференциального уравнения n-го порядка. На практике большинство измерительных систем можно с достаточной точ­ностью описать линейным дифференциальным уравнением второго или бо­лее низкого порядка. Поэтому наше рассмотрение будет включать только случаи, когда п принимает одно из трех значений: О, 1 или 2.

studfiles.net

Особенности выбора расходомера

Содержание

1. Общие сведения об измерении расхода и массы веществ

2. Основные виды расходомеров

2.1 Расходомеры переменного перепада давления

2.2 Расходомеры обтекания

2.2.1 Ротаметры

2.2.2 Поплавковые и поршневые расходомеры

2.3 Тахометрические расходомеры

2.3.1 Камерные расходомеры

2.3.2 Электромагнитные расходомеры

2.3.3 Расходомеры переменного уровня

2.4 Тепловые расходомеры

2.4.1 Вихревые расходомеры

2.5 Акустические расходомеры

2.6 Фазовые расходомеры

2.6.1 Частотно-пакетные расходомеры

2.7 Напорные устройства

2.7.1 Кориолисовые расходомеры

3. Выбор средства контроля

3.1 Обоснование выбора типа расходомера

3.2 Обоснование выбора марки ультразвукового расходомера

3.3 Конструкция ультразвукового расходомера UFM 3030

3.4 Принцип работы выбранного расходомера

3.5 Технические характеристики ультразвукового расходомера UFM 3030

3.5.1 Ультразвуковой электронный конвертор UFC 030

3.5.2 Ультразвуковой первичный преобразователь UFS 3000

3.5.3 Ультразвуковой расходомер UFS 3030

3.6 Электрические схемы подключения расходомера

3.7 Монтажные схемы подключения расходомера

Вывод

Заключение

Список литературы

1. Основные сведения об измерении расхода и массы веществ

Измерение расхода и массы веществ (жидких, газообразных, сыпучих, твердых, паров и т. п.) в химических производствах широко применяется как в товароучетных и отчетных операциях, так и при контроле, регулировании и управлении технологическими процессами.

Расход вещества – это масса или объем вещества, проходящего через данное сечение канала средства измерения расхода в единицу времени. В зависимости от того, в каких единицах измеряется расход, различают объемный расход или массовый расход. Объемный расход измеряется в м3/с (м3/ч и т. д.), а массовый – в кг/с (кг/ч, т/ч и т. д.).

Расход вещества измеряется с помощью расходомеров, представляющих собой средства измерений или измерительные приборы расхода. Многие расходомеры предназначены не только для измерения расхода, но и для измерения массы или объема вещества, проходящего через средство измерения в течение любого, произвольно взятого промежутка времени. В этом случае они называются расходомерами со счетчиками или просто счетчиками. Масса или объем вещества, прошедшего через счетчик, определяется по разности двух последовательных во времени показаний отсчетного устройства или интегратора. По принципу действия разделяются на следующие основные группы: переменного перепада давления; обтекания – постоянного перепада давления; тахометрические; электромагнитные; переменного уровня; тепловые; вихревые; акустические. Кроме того, известны расходомеры, основанные на других принципах действия: резонансные, оптические, ионизационные, меточные и др. Однако многие из них находятся в стадии разработки и широкого применения пока не получили.

2. Основные виды расходомеров

2.1 Расходомеры переменного перепада давления

Одним из наиболее распространенных средств измерений расхода жидкостей и газов (паров), протекающих по трубопроводам, являются расходомеры переменного перепада давления, состоящие из стандартного сужающего устройства, дифманометра, приборов для измерения параметров среды и соединительных линий. В комплект расходомерного устройства также входят прямые участки трубопроводов до и после сужающего устройства с местными сопротивлениями.

Сужающее устройство расходомера является первичным измерительным преобразователем расхода, в котором в результате сужения сечения потока измеряемой среды (жидкости, газа, пара) образуется перепад (разность) давления, зависящий от расхода. В качестве стандартных (нормализованных) сужающих устройств применяются измерительные диафрагмы, сопла, сопла Вентури и трубы Вентури. Диафрагма- тонкий диск с отверстием круглого сечения, центр которого лежит на оси трубопровода (используются в трубах от 50 мм до 2 м). Сопло- выполнено в виде насадки с круглым концентрическим отверстием, имеющим плавную сужающую часть на входе и развитую цилиндрическую часть на выходе. Сопло Вентури- состоит из цилиндрического входного участка, плавно сужающейся части, переходящей в короткий цилиндрический участок, и расширяющейся конической части (диффузора).

Достоинствами диафрагм являются: простота изготовления, дешевизна изготовления, простота проверки конструкции. Недостатками являются: малый срок службы, большая остаточная потеря давления (

).

К достоинствам сопл относятся: маленькая потеря давления, способность при одном и том же перепаде давлений измерять больший расход. Недостатками являются: сложность в изготовлении и проверке.

В качестве измерительных приборов применяются различные дифференциальные манометры, снабженные показывающими, записывающими, интегрирующими, сигнализирующими и другими устройствами, обеспечивающими выдачу измерительной информации о расходе в соответствующей форме и виде.

Измерительная диафрагма представляет собой диск, установленный так, что центр его лежит на оси трубопровода (рис. VIII.1). При протекании потока жидкости или газа (пара) в трубопроводе с диафрагмой сужение его начинается до диафрагмы. На некотором расстоянии за ней под действием сил инерции поток сужается до минимального сечения, а далее постепенно расширяется до полного сечения трубопровода. Перед диафрагмой и после нее образуются зоны завихрения. Давление струи около стенки вначале возрастает из-за подпора перед диафрагмой. За диафрагмой оно снижается до минимума, затем снова повышается, но не достигает прежнего значения, так как вследствие трения и завихрений происходит потеря давления рпот.

Таким образом, часть потенциальной энергии давления потока переходит в кинетическую. В результате средняя скорость потока в суженном сечении повышается, а статическое давление в этом сечении становится меньше статического давления перед сужающим устройством. Разность этих давлений (перепад давления) служит мерой расхода протекающей через сужающее устройство жидкости, газа или пара.

Из рисунка VIII.1 видно, что давление по оси трубопровода, показанное штрихпунктирной линией, несколько отличается от давления вдоль стенки трубопровода только в средней части графика. Через отверстия 1 и 2 производится измерение статических давлений до и после сужающего устройства. При этом расход для несжимаемых жидкостей находится по формулам:

или

,

где

плотность вещества (),площадь поперечного сечения отверстия диафрагмы (сужающее устройство), расход вещества,абсолютное давление до сужающего устройства, абсолютное давление после сужающего устройства,

коэффициент расхода учитывает неравномерное распределение скоростей по сечению потока, обусловленное вязкостью вещества и трением о стенки трубопровода. Этот коэффициент для разных сужающих устройств определяется опытным путём. Здесь

коэффициент сужения струи (

площадь поперечного сечения наиболее суженного участка струи), поправочные коэффициенты на неравномерность распределения скоростей в сечениях I и II,

(

средняя скорость вещества в сечении I , средняя скорость вещества в отверстии диафрагмы), местное сопротивление потоку.

При измерении расхода сжимаемых жидкостей и газов (паров) необходимо учитывать уменьшение плотности

вследствие понижения давления при прохождении вещества через сужающее устройство, в результате чего массовый и объёмный расходы уменьшаются. Поэтому для расчёта расхода используют следующие формулы:

или

,

где

коэффициент расширение измеряемой среды,плотность среды перед входом потока в отверстие диафрагмы. Две последние формулы применимы только в том случае, если скорость потока в сужающем устройстве меньше скорости звука (критическая скорость) в измеряемой среде.

mirznanii.com

Вихревые расходомеры: принцип работы, особенности применения

Современные вихревые расходомеры превосходят по характеристикам и возможностям своих предшественников, которые использовали большие тела обтекания, блокирующие 43% площади поперечного сечения трубы. В конструкции современных ультразвуковых расходомеров используются тела обтекания малого диаметра для получения большей амплитуды перемещения. В результате этого, значительно улучшены характеристики потери давления в системе и динамический диапазон прибора.

Содержание статьи

Назначение и области применения

Вихревые расходомеры-счетчики предназначены для измерения объемного и массового расхода жидкостей, газов и пара. Расходомеры состоят из блока электроники и первичного преобразователя. Блок выполнен в виде цилиндрического корпуса с отсеками для смотрового окна и разъемов. На корпусе расположены кабельные вводы и переходник для преобразователя. Применяются расходомеры для измерения и учёта расхода веществ технологических процессов в промышленности и коммунальном хозяйстве.

  • Идеально подходит для сред с высокой температурой и высокой скоростью пара
  • Производство энергии — паровые установки
  • Промышленное применение — установки ОВКВ, региональное управление энергопотреблением
  • Коммерческое применение — управление энергопотреблением зданий, студенческих городков и сооружений
  • Нефтегазовая промышленность — распределение природного газа
  • Нефтехимическая промышленность — массовая балансировка, подогрев технологических реакций

Правильный выбор датчиков напрямую влияет на финальный результат производственного круговорота, поэтому электронные расходомеры являются одним из важнейших звеньев цепи технического процесса. Вихревые расходомеры – это одни из самых востребованных на отечественном рынке приборов для учёта расхода веществ. Свою популярность они заслужили благодаря надёжности, простоте в эксплуатации, высокой точности измерений и, что немаловажно, своей доступности. История вихревых расходомеров начинается в 60х годах двадцатого века, но современные датчики сделали огромный шаг вперёд по сравнению со своими предками.

Что же такое вихревой расходомер и какой принцип действия к содержанию

Простой пример эффекта образования вихрей – это флаг, волнующийся на ветру из-за завихрений, которые создаются движением воздуха, обтекающего флагшток. Поток измеряемого вещества проходя по внутреннему сечению арматуры расходомера, встречает на своём пути препятствие – тело обтекания, установленное в расходомере, проходя через него, увеличивает скорость, уменьшая давление. Таким образом, после преодоления препятствия создаются завихрения, называемые вихревой дорожкой Кармана. Ультразвуковой луч, генерируемый прибором, проходит через поток вихрей ниже по течению от тела обтекания. При прохождении вихрей несущая ультразвукового сигнала изменяется.

Это изменение несущей доступно для измерения и смещается пропорционально количеству образовавшихся вихрей. Цифровая обработка сигналов позволяет определить число вихрей. Эта величина преобразуется в скорость потока. Программа преобразует скорость в объемный расход в единицах измерения, выбранных оператором. В вихревых расходомерах компании используется самые маленькие тела обтекания среди расходомеров такого типа, которые обеспечивают высокую чувствительность, исключительную работоспособность при очень низких расходах. Большой динамический диапазон и низкие потери давления. При использовании встроенного термометра сопротивления и внешнего датчика давления программное обеспечение расходомера позволит скомпенсировать изменения давления и температуры для точного измерения массового расхода (расходомеры газов).

Для усиления выходного сигнала в некоторых расходомерах устанавливают несколько обтекаемых тел. Сами же тела могут иметь различные формы, например, треугольную или круглую. Одним из важнейших достоинств такого типа расходомеров является отсутствие каких-либо движущихся частей, что несомненно оказывает положительное влияние на срок службы прибора. Это одни из самых долговечных и неприхотливых приборов.

Подтипы вихревых расходомеров к содержанию

Все вихревые расходомеры можно разделить на три группы по типу преобразователей.

  1. Вихревые расходомеры с обтекаемым телом – поток вещества огибает тело обтекания, установленное в трубопроводе, меняется траектория движения и увеличивается скорость струй, создаются завихрения, уменьшается давление в трубе. За миделевым сечением тела скорость снижается, а давление увеличивается. На передней стороне тела обтекания образуется повышенное давление, на задней стороне — пониженное. Образование вихрей с обеих сторон происходит поочередно. За обтекаемым телом образуется вихревая дорожка Кармана.

  2. Вихревые расходомеры с прецессией воронкообразного вихря – принцип действия заключается в том, что поток закручивается перед попаданием в более широкую часть трубы, вызывая пульсации давления. В качестве преобразователя сигнала обычно служат пьезоэлементы.

  3. Вихревые расходомеры с осциллирующей струей – в подобного рода расходомерах пульсации давления создаются специальной конструкцией самого датчика, благодаря которой струя измеряемого вещества вытекает из специально предусмотренного отверстия в корпусе расходомера и создаёт пульсации давления.

Плюсы и минусы вихревых расходомеров к содержанию

Подводя итог стоит отметить плюсы и минусы вихревых расходомеров, тезисно обобщим всё о расходомеров этого типа. Вихревые расходомеры применяются для измерения объёмного и массового расхода любых жидких и газообразных сред. Приборы хорошо справляются со своими обязанностями при температурах среды до 500 градусов Цельсия и давлении до 30Мпа. Это универсальные по всем своим параметрам расходомеры, подходящие практически для любого промышленного предприятия, где нужен точный учёт расхода жидких и газообразных веществ от воды до углеводородов.

Плюсы

К положительным моментам стоит отнести: высокую стабильность показаний, точность измерений, простоту в эксплуатации, нечувствительность к загрязнениям, отсутствие подвижных частей, охватывает практически весь спектр веществ – сред измерения.

Минусы

Ну и недостатками данный прибор не обделён: обладает большой чувствительностью к вибрациям, так же при измерениях требуется значительная скорость потока, ограничение по диаметру труб не более 300мм и менее 150мм и отмечаются просадки по давлению.

www.pergam.ru

Принцип работы расходомеров

Принцип работы

Ротаметры (Variable Area Meter)

Ротаметры относятся к классу расходомеров обтекания. В вертикальной трубке, расширяющейся кверху, течёт жидкость снизу вверх и плавает поплавок. Из-за переменного сечения трубки давление на поплавок снизу в более узком сечении больше, чем давление на поплавок сверху в более широком сечении. Когда эта разница давлений уравновешивается силой тяжести – поплавок останавливается в определенном положении, зависящем от величины расхода.

Бывают также поршневые и поплавково-пружинные ротаметры; горизонтальные ротаметры и вертикальные с потоком, который течёт сверху вниз.

В прозрачных ротаметрах расход определяется оператором визуально по шкале. В металлических ротаметрах положение поплавка через магнитную систему передаётся на шкалу прибора или преобразуется в электрический сигнал.

Преимущества
  • надёжность
  • простота.
Недостатки
  • не работает при больших давлениях
  • не применяется для измерений больших расходов.

Тахометрические расходомеры

Принцип действия основан на зависимости скорости вращения крыльчатки (турбины) от скорости обтекающего её потока.

Расходомеры переменного перепада давления

Для измерения используется эффект Вентури и дифференциальный манометр. В трубопровод врезается сужающее устройство – например, труба Вентури. Измеряется давление в широком сечении на входе трубы и в её более узкой горловине – расход пропорционален корню квадратному из перепада давления (в узком сечении скорость потока выше, а давление – меньше).

В качестве сужающего устройства могут использоваться измерительные диафрагмы.

Преимущества
Недостатки
  • потеря напора в трубе Вентури – 5-20%
  • невысокая точность и диапазон измерений.

Ультразвуковые расходомеры (Ultrasonic Flow Meter)

Измеряя разность времени прохождения звуковой волны в направлении течения жидкости и против течения, можно вычислить скорость потока жидкости.

  • Накладные расходомеры (Clamp-On)
  • Врезные расходомеры (Inline).
Преимущества
  • установка на трубах большого диаметра.
Недостатки
  • чувствительность к содержанию твердых и газообразных включений
  • влияние физико-химических свойств вещества и температуры, от которых зависит скорость ультразвука.

Магнитные расходомеры (Magnetic Flow Meter)

Измеряют расход токопроводящей жидкости, текущей по трубе между полюсами магнита. По закону Фарадея – в проводнике (в данном случае – это токопроводящая жидкость), пересекающем магнитное поле индуцируется ЭДС, пропорциональная скорости движения. Ток направлен перпендикулярно силовым линиям магнитного поля и перпендикулярно движению жидкости.

Преимущества
  • Малоинерционны – подходят для измерения быстро меняющихся расходов без запаздывания
  • Нет движущихся деталей
  • Маленькое гидравлическое сопротивление (малые потери напора), т.к. первичные преобразователи магнитных расходомеров не имеют частей, выступающих внутрь трубы, сужений или изменений профиля
  • Конструкция первичных преобразователей позволяет применять различные материалы внутреннего покрытия и материалы электродов, что даёт возможность измерять расход агрессивных и абразивных сред
  • Расходомер и технологический трубопровод можно чистить и стерилизовать без демонтажа – поэтому эти расходомеры используют в пищевой и фармацевтической промышленности
  • На показания магнитных расходомеров не влияют взвешенные в жидкости частицы и пузырьки газа, а также физико-химические свойства жидкости (вязкость, плотность, температура и т. п.), если они не изменяют её электропроводность.
Недостатки
  • Жидкость должна быть токопроводящей (это может быть ионизированная вода)
  • Поверхность трубы должна быть электрически изолированной (например, гуммированная стальная труба)
  • Чувствительность к помехам от переменных электромагнитных полей.

Массовые кориолисовые расходомеры (Coriolis Flow Meter)

Используется эффект Кориолиса – сдвиг фаз механических колебаний U-образных трубок, по которым течёт жидкость, пропорционален массовому расходу.

Преимущества
  • независимость результата измерений от температуры, плотности, электропроводности, вязкости, твёрдых включений.
Недостатки

Вихревые расходомеры (Vortex Flow Meter)

При обтекании тела (завихрителя) жидкостью или газом за ним образуются вихри, которые регистрируется пьезоэлектрическим кристаллом – при возникновении вихря он генерирует электрический импульс. Частота импульсов пропорциональна скорости потока.
Измеряемые среды: пар, насыщенный пар, газ, жидкость.

Преимущества
  • независимость показаний от давления и температуры
  • нет подвижных частей
  • большой диапазон измерений.
Недостатки
  • потеря давления
  • не годятся для измерения малых расходов
  • не подходят для измерения расхода загрязненных и агрессивных сред.

www.maxplant.ru

Принцип действия вихревого расходомера

Принцип действия вихревого расходомера
основан на хорошо известном явлении Кармана. Тело обтекания, помещенное в поток, проходящий через вихревой расходомер, создает после себя чередующиеся вихри,  представляющие собой две вихревые дорожки. Их называют дорожками Кармана; в одной дорожке вихри вращаются по часовой стрелке, в другой – против. Вихри образуются в вихревом расходомере один за другим поочередно, сначала с одной стороны тела обтекания, затем – с другой. Вихри создают неоднородность давления в окружающем потоке газа или жидкости. Расстояние между вихрями (длина волны возмущения) постоянна и ее можно измерить. Следовательно, объем, занимаемый каждым вихрем постоянен, как показано ниже.

За телом обтекания вихревого расходомера расположен датчик скорости, который фиксирует прохождение вихрей. Считая количество вихрей, проходящих мимо датчика скорости в единицу времени(частоту), вычислитель вихревого расходомера определяет полный объем рабочей среды.

 

Измерение частоты вихрей
Сенсор скорости вихревого расходомера включает в себя пьезоэлектрический элемент,измеряющий частоту вихрей. При образовании вихря на пьезодатчик действует деформирующая сила, которая  преобразуется в электрический сигнал. Частота этого переменного сигнала пропорцилнальна частоте образовавшихся вихрей. Для  чисел Рейнолдса более 5000  коэффициент пропорциональности между частотой образовавшихся вихрей и скоростью потока рабочей среды практически не зависит от числа Рейнолдса. По этой причине вихревые расходомеры с хорошей точностью измеряют скорость потока независимо от типа среды. Линейность сигнала вихревого расходомера является преимуществом.

 

Рабочая среда
Это может быть газ, жидкость или пар. Важно, чтобы среда была однофазной.

 

Преимущества вихревого расходомера
Линейность, вытекающая из принципа действия вихревого расходомера, большой динамический диапазон, надежность, простота.

 

Особенности вихревого расходомера Сьерра
Вихревые расходомеры Innova-Mass 240/241 могут быть снабжены датчиками давления и температуры.

 

Измерение температуры
В вихревых расходомерах Innova-Mass 240/241 используется платиновый терморезистор на 1000 Ом для измерения температуры.

 

Измерение давления
В вихревые расходомеры Innova-Mass 240/241 встроены датчики давления, изолированные диафрагмой из нержавеющей стали. Преобразователь давления представляет собой микрообработанный силикон, изготовленный по специальной технологии. Каждый сенсор калибруется на давление/температуру по 9 точкам. Цифровая компенсация по давлению и температуре позволяют преобразователю давления вихревого расходомера работать с точностью 0,3% от полной шкалы во всем диапазоне температур от -40С до +60С. Опция высокотемпературного исполнения HT, обеспечивающая теплоизоляцию преобразователя давления, дает ту же точность в диапазоне – 200С… + 400С.

 

Многопараметрический вихревой расходомер
В вихревых расходомерах Innova-Mass 240 или 241 возможны следующие опции:

V – объемный вихревой расходомер

VT– датчики скорости и температуры

VTP – датчики скорости, температуры и давления

VT-EM – опции выходной энергии

VTP-EM – выходная энергия и давление

VT-EP – вход преобразователя внешнего давления

Новости:

17.02.2018

Новое решение: расходомеры для факельных, дымовых и топливных газов

Факельный, дымовой, топливный газ – нефтегазовая отрасль может успешно использовать термомассовый расходомер для измерения расхода газа…

подробнее…

12.06.2017

Выпущен программный продукт для измерения расхода газовых смесей

Новая функция создания газовых смесей Кумикс (qMix) в расходомерах Сьерра QuadraTherm 640i/780i позволяют оператору заносить необходимый состав газовой смеси в расходомер прямо на месте.

подробнее…

14.05.2017

Выпрямители-формирователи потока

Вопрос: как можно снизить требования к прямым участкам, не теряя в точности измерений? Ответ: использовать формирователи (выпрямители) потока.

подробнее…

07.05.2017

Калибровка и самодиагностика

Самодиагностика вихревого расходомера 240i /241i на месте БЕЗ извлечения расходомера может показать нужна ли калибровка.

подробнее…

08.02.2017

Сенсор из Хастеллоя

Для дымовых и факельных газов с агрессивными примесями CO, CO2, SO2, NOx, CO3 – расходомер из Хастеллоя.

подробнее…

14.12.2016

Расходомер для агрессивных газов

Расходомер теперь и для влажного хлора. Гарантия 1 год.

подробнее…

20.11.2016

Умный интерфейс SIP для расходомера 640i для дистанционного изменения состава газа.

Если вы купили у нас расходомер 640i и хотите измерить расход новой смеси, вам не нужно отправлять расходомер изготовителю на перекалибровку…

подробнее…

16.11.2016

Регулирующий клапан Smart

Представляем регулирующий клапан Smart, работающий в широком диапазоне расходов, давлений и температур.

подробнее…

meterflow.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *