Формула расчета объема воздуха по скорости потока
Радиус вписанной окружности в ромб. Ромб – это параллелограмм, у которого все стороны равны. Следовательно, он наследует все свойства параллелограмма. А именно: Ромб с вписанной окружностью. Диагонали ромба взаимно перпендикулярны. Диагонали ромба являются биссектрисами его.
Расчет скорости воздуха в воздуховодах
Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в воздуховоде должна обеспечивать выполнение существующих норм.
Что учитывается при определении скорости движения воздуха
Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?
Уровень шума в помещении
Таблица 1. Максимальные значения уровня шума.
Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещении Во время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.
Таблица 2. Максимальные показатели допустимой вибрации.
При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.
Значения по скорости движения потока, влажности и температуре содержатся в таблице.
Таблица 3. Параметры микроклимата.
Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.
Таблица 4. Кратность воздухообмена в различных помещениях.
Алгоритм расчетов Скорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.
Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.
Самостоятельный расчет
К примеру, в помещении объемом 20 м 3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м 3 ×3= 60 м 3 . Формула расчета скорости потока V= L / 3600× S, где:
V – скорость потока воздуха в м/с;
L – расход воздуха в м 3 /ч;
S – площадь сечения воздуховодов в м 2 .
Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:
В нашем примере S = (3.14×0,4 2 м)/4=0,1256 м 2 . Соответственно, для обеспечения нужной кратности обмена воздуха (60 м 3 /ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м 3 ) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.
С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.
L = 3600×S (м 3 )×V(м/с). Объем (расход) получается в квадратных метрах.
Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.
Таблица 6. Рекомендованные параметры скоростей воздуха
По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.
Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.
Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:
После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.
Для воздушного обогрева жилых и п
poiskvstavropole.ru
Расчёт системы вентиляции
Этот материал любезно предоставлен моим другом — Spirit’ом.
Согласно санитарным нормам, система вентиляции должна обеспечивать замену воздуха в помещении за один час, это значит что за час в помещение должен поступить и удалиться из него объём воздуха, равный объёму помещения. Поэтому первым шагом мы считаем этот объём, перемножив площадь помещения на высоту потолков. Если у вас допустим помещение площадью 40 м2 с высотой потолков 2.5м, то его объём будет 40*2.5=100 м3. Значит производительность приточной и вытяжной систем должны быть по 100 м3/ч. Это минимальный расход, я рекомендую вдвое больше. Ищете вентилятор с такой производительностью, а лучше ещё больше, потому что производительность указывается при условии отсутствия противодавления, а когда вы поставите в приточную систему фильтр, противодавление появится и уменьшит производительность. Если у вас производительность 200 м3/ч, то в трубе 125мм примерная скорость потока будет 4.5 м/с, в трубе 100 мм — 6.5 м/с, а в трубе 160мм – чуть меньше 3 м/с. Считается, что комфортная скорость воздуха для человека – до 2 м/с. Если у вас есть анемометр, то зная эти цифры вы можете проверить производительность системы вентиляции.
Далее, допустим вы хотите поставить в приточный канал нагреватель. С помощью четвёртой таблицы вы можете определить его мощность. Допустим на улице -10°С, а вам хочется чтобы в помещении было +20°С, значит разница температур 30°С. Находим строчку 200 м3/ч, смотрим пересечение столбца 30°С, получаем мощность 2010 Вт. Понятно, что это при отсутствии других источников тепла, так что в реале потребуется существенно меньше.
Следующий момент – расчёт влажности. В тёплом воздухе помещается больше воды, чем в холодном. Поэтому при нагревании его влажность уменьшается, а при охлаждении увеличивается. Допустим у нас за бортом -10°С при 80% влажности, а в помещении воздух нагревается до +20°С. Содержание воды в одном кубометре 2.1*0.8=1.68 г/м3, а влажность нагретого воздуха получится 1.68/17.3=0.097 то есть примерно 10%. Сколько же надо испарить воды, чтобы получить влажность, допустим, 50% при расходе 200 м3/ч?
Ответ: 200*(17.3*0.5-1.68)=1394 г/ч=1.4 кг/ч
Сечения и расходы
Диаметр круга, см | Площадь, м2 | Относительно круга 10см | Габариты, см | Площадь, м2 | Относительно круга 10см |
10 | 0.00785 | 12х6 | 0.0072 | 0.92 | |
12.5 | 0.0123 | 1.57 | 20х6 | 0.012 | 1.53 |
15 | 0.0177 | 2.26 | 30×20 | 0.06 | 7.64 |
16 | 0.020096 | 2.56 | 40×20 | 0.08 | 10.19 |
20 | 0.0314 | 4 | 50×25 | 0.125 | 15.92 |
25 | 0.0491 | 6.26 | 50×30 | 0.15 | 19.1 |
30 | 0.0707 | 9 | 60×30 | 0.18 | 22.93 |
40 | 0.126 | 16 | |||
50 | 0.196 | 24.97 |
Расход воздуха, м3 в час (без учёта турбулентностей)
Диаметр круглого сечения,см | Скорость потока | ||||||||||
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5 | 6 | 8 | 10 | |
10 | 14.1 | 28.3 | 42.4 | 56.6 | 70.7 | 84.8 | 113 | 141 | 170 | 226 | 283 |
12.5 | 22.1 | 44.2 | 66.3 | 88.4 | 110 | 132 | 177 | 221 | 265 | 353 | 442 |
15 | 31.8 | 63.6 | 95.4 | 127 | 159 | 191 | 254 | 318 | 382 | 509 | 636 |
16 | 36.2 | 72.3 | 108.5 | 144.7 | 180.9 | 217 | 289 | 362 | 434 | 579 | 724 |
20 | 56.6 | 113 | 170 | 226 | 283 | 339 | 452 | 565 | 678 | 904 | 1130 |
25 | 88.4 | 177 | 265 | 353 | 442 | 530 | 707 | 883 | 1060 | 1413 | 1770 |
30 | 127 | 255 | 382 | 509 | 635 | 763 | 1017 | 1272 | 1526 | 2035 | 2550 |
40 | 226 | 452 | 679 | 905 | 1130 | 1357 | 1809 | 2261 | 2713 | 3617 | 4520 |
50 | 353 | 707 | 1060 | 1414 | 1766 | 2120 | 2826 | 3533 | 4239 | 5652 | 7070 |
В 1 часе 60*60=3600 секунд.
Площадь круга S=pr2=pd2/4
S=0.0000785*r2 m W:=3600*S*V;
V=S*v*3600=0.000314*r2*3600=0.263*r2*v
Габариты воздуховода,см | Скорость потока | ||||||||||
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 4 | 5 | 6 | 8 | 10 | |
12х6 | 13 | 26 | 39 | 52 | 65 | 78 | 104 | 130 | 156 | 207 | 260 |
20х6 | 21.6 | 43.2 | 64.8 | 86.4 | 108 | 130 | 173 | 216 | 259 | 346 | 432 |
30×20 | 108 | 216 | 324 | 432 | 540 | 648 | 864 | 1080 | 1296 | 1728 | 2160 |
40×20 | 144 | 288 | 432 | 576 | 720 | 864 | 1152 | 1440 | 1728 | 2304 | 2880 |
50×25 | |||||||||||
50×30 | |||||||||||
60×30 |
Тепловая мощность, затрачиваемая на подогрев приточного воздуха, Вт
Объем, м3/ч | Разница температур | ||||||
1 | 5 | 10 | 15 | 20 | 30 | 40 | |
10 | 3.35 | 16.8 | 33.5 | 50.3 | 67 | 101 | |
20 | 6.7 | 33.5 | 67 | 101 | 134 | 201 | |
30 | 10.1 | 50.3 | 101 | 151 | 201 | 302 | |
40 | 13.4 | 67 | 134 | 201 | 268 | 402 | |
50 | 16.8 | 83.8 | 168 | 252 | 335 | 503 | |
100 | 33.5 | 168 | 335 | 503 | 670 | 1005 | |
150 | 50.3 | 251 | 503 | 754 | 1005 | 1508 | |
200 | 67 | 335 | 670 | 1005 | 1340 | 2010 | |
300 | 101 | 503 | 1005 | 1508 | 2010 | 3015 |
Зависимость количества воды в воздухе от температуры
(атмосферное давление, 100% влажность)
t(°С) | -30 | -20 | -10 | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
f max (г/м³) | 0.29 | 0.81 | 2.1 | 4.8 | 9.4 | 17.3 | 30.4 | 51.1 | 83.0 | 130 | 198 | 293 | 423 | 598 |
Поделиться новостью в соцсетях Метки: 220, Вентиляция
rones.su
Динамическое давление в воздуховоде (расчёты напора)
Основой проектирования любых инженерных сетей является расчет. Для того чтобы правильно сконструировать сеть приточных или вытяжных воздуховодов, необходимо знать параметры воздушного потока. В частности, требуется рассчитать скорость потока и потери давления в канале для правильного подбора мощности вентилятора.
Схема устройства и принципа работы воздуховода.
В этом расчете немаловажную роль играет такой параметр, как динамическое давление на стенки воздуховода.
Поведение среды внутри воздухопровода
Вентилятор, создающий воздушный поток в приточном или вытяжном воздуховоде, сообщает этому потоку потенциальную энергию. В процессе движения в ограниченном пространстве трубы потенциальная энергия воздуха частично переходит в кинетическую. Этот процесс происходит в результате воздействия потока на стенки канала и называется динамическим давлением.
Формулы для аэродинамического расчета систем естественной вентиляции.
Кроме него существует и статическое давление, это воздействие молекул воздуха друг на друга в потоке, оно отражает его потенциальную энергию. Кинетическую энергию потока отражает показатель динамического воздействия, именно поэтому данный параметр участвует в расчетах аэродинамики вентиляции.
При постоянном расходе воздуха сумма этих двух параметров постоянна и называется полным давлением. Оно может выражаться в абсолютных и относительных единицах. Точкой отсчета для абсолютного давления является полный вакуум, в то время как относительное считается начиная от атмосферного, то есть разница между ними — 1 Атм. Как правило, при расчете всех трубопроводов используется величина относительного (избыточного) воздействия.
Вернуться к оглавлению
Физический смысл параметра
Таблица расчета вентиляции.
Если рассмотреть прямые отрезки воздуховодов, сечения которых уменьшаются при постоянном расходе воздуха, то будет наблюдаться увеличение скорости потока. При этом динамическое давление в воздуховодах будет расти, а статическое — снижаться, величина полного воздействия останется неизменной. Соответственно, для прохождения потока через такое сужение (конфузор) ему следует изначально сообщить необходимое количество энергии, в противном случае может уменьшиться расход, что недопустимо. Рассчитав величину динамического воздействия, можно узнать количество потерь в этом конфузоре и правильно подобрать мощность вентиляционной установки.
Обратный процесс произойдет в случае увеличения сечения канала при постоянном расходе (диффузор). Скорость и динамическое воздействие начнут уменьшаться, кинетическая энергия потока перейдет в потенциальную. Если напор, развиваемый вентилятором, слишком велик, расход на участке и во всей системе может вырасти.
В зависимости от сложности схемы, вентиляционные системы имеют множество поворотов, тройников, сужений, клапанов и прочих элементов, называемых местными сопротивлениями. Динамическое воздействие в этих элементах возрастает в зависимости от угла атаки потока на внутреннюю стенку трубы. Некоторые детали систем вызывают значительное увеличение этого параметра, например, противопожарные клапаны, в которых на пути потока установлены одна или несколько заслонок. Это создает повышенное сопротивление потоку на участке, которое необходимо учитывать в расчете. Поэтому во всех вышеперечисленных случаях нужно знать величину динамического давления в канале.
Вернуться к оглавлению
Расчеты параметра по формулам
На прямом участке скорость движения воздуха в воздуховоде неизменна, постоянной остается и величина динамического воздействия. Последняя рассчитывается по формуле:
Рд = v2γ / 2g
В этой формуле:
Схема организации воздухообмена при общеобменной вентиляции.
- Рд — динамическое давление в кгс/м2;
- V — скорость движения воздуха в м/с;
- γ — удельная масса воздуха на этом участке, кг/м3;
- g — ускорение силы тяжести, равное 9.81 м/с2.
Получить значение динамического давления можно и в других единицах, в Паскалях. Для этого существует другая разновидность этой формулы:
Рд = ρ(v2 / 2)
Здесь ρ — плотность воздуха, кг/м3. Поскольку в вентиляционных системах нет условий для сжатия воздушной среды до такой степени, чтобы изменилась ее плотность, она принимается постоянной — 1.2 кг/м3.
Далее, следует рассмотреть, как участвует величина динамического воздействия в расчете каналов. Смысл этого расчета — определить потери во всей системе приточной либо вытяжной вентиляции для подбора напора вентилятора, его конструкции и мощности двигателя. Расчет потерь происходит в два этапа: сначала определяются потери на трение о стенки канала, потом высчитывается падение мощности воздушного потока в местных сопротивлениях. Параметр динамического давления участвует в расчете на обоих этапах.
Сопротивление трению на 1 м круглого канала рассчитывается по формуле:
R = (λ / d) Рд, где:
- Рд — динамическое давление в кгс/м2 или Па;
- λ — коэффициент сопротивления трению;
- d — диаметр воздуховода в метрах.
Нюансы монтажа воздуховода.
Потери на трение определяются отдельно для каждого участка с различными диаметрами и расходами. Полученное значение R умножают на общую длину каналов расчетного диаметра, прибавляют потери на местных сопротивлениях и получают общее значение для всей системы:
HB = ∑(Rl + Z)
Здесь параметры:
- HB (кгс/м2) — общие потери в вентиляционной системе.
- R — потери на трение на 1 м канала круглого сечения.
- l (м) — длина участка.
- Z (кгс/м2) — потери в местных сопротивлениях (отводах, крестовинах, клапанах и так далее).
Вернуться к оглавлению
Определение параметров местных сопротивлений вентиляционной системы
В определении параметра Z также принимает участие величина динамического воздействия. Разница с прямым участком заключается в том, что в разных элементах системы поток меняет свое направление, разветвляется, сходится. При этом среда взаимодействует с внутренними стенками канала не по касательной, а под разными углами. Чтобы это учесть, в расчетную формулу можно ввести тригонометрическую функцию, но тут есть масса сложностей. Например, при прохождении простого отвода 90⁰ воздух поворачивает и нажимает на внутреннюю стенку как минимум под тремя разными углами (зависит от конструкции отвода). В системе воздуховодов присутствует масса более сложных элементов, как рассчитать потери в них? Для этого существует формула:
- Z = ∑ξ Рд.
Для того чтобы упростить процесс расчета, в формулу введен безразмерный коэффициент местного сопротивления. Для каждого элемента вентиляционной системы он разный и является справочной величиной. Значения коэффициентов были получены расчетами либо опытным путем. Многие заводы-производители, выпускающие вентиляционное оборудование, проводят собственные аэродинамические исследования и расчеты изделий. Их результаты, в том числе и коэффициент местного сопротивления элемента (например, противопожарного клапана), вносят в паспорт изделия или размещают в технической документации на своем сайте.
Для упрощения процесса вычисления потерь вентиляционных воздуховодов все значения динамического воздействия для разных скоростей также просчитаны и сведены в таблицы, из которых их можно просто выбирать и вставлять в формулы. В Таблице 1 приведены некоторые значения при самых применяемых на практике скоростях движения воздуха в воздуховодах.
Таблица 1.
Скорость воздуха, м/с | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
Динамическое давление кгс/м2 | 0.0152 | 0.0611 | 0.1374 | 0.2444 | 0.3817 | 0.5499 | 0.7483 | 0.9776 | 1.237 |
Скорость воздуха, м/с | 5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 |
Динамическое давление кгс/м2 | 1.527 | 1.8486 | 2.199 | 2.581 | 2.9939 | 3.4373 | 3.9104 | 4.4149 | 4.9491 |
Из расчетных формул и данной таблицы хорошо видно, что значения не растут пропорционально возрастанию скорости воздуха.
Динамическое воздействие, оказываемое потоком воздуха на стенки воздуховодов, фасонных и прочих элементов, определяет потери давления на участке и является важным параметром, который необходимо учитывать в расчетах.
1poclimaty.ru
Как расчитать потери напора воздуха в системе вентиляции
Табл. № 1. Рекомендованная скорость движения воздуха для различных помещений
Назначение | Основное требование | ||||
Бесшумность | Мин. потери напора | ||||
Магистральные каналы | Главные каналы | Ответвления | |||
Приток | Вытяжка | Приток | Вытяжка | ||
Жилые помещения | 3 | 5 | 4 | 3 | 3 |
Гостиницы | 5 | 7.5 | 6.5 | 6 | 5 |
Учреждения | 6 | 8 | 6.5 | 6 | 5 |
Рестораны | 7 | 9 | 7 | 7 | 6 |
Магазины | 8 | 9 | 7 | 7 | 6 |
Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.
Алгоритм расчета потерь напора воздуха
Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.
Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.
Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных
Размеры | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
250 | 210 | 245 | 275 | |||||
300 | 230 | 265 | 300 | 330 | ||||
350 | 245 | 285 | 325 | 355 | 380 | |||
400 | 260 | 305 | 345 | 370 | 410 | 440 | ||
450 | 275 | 320 | 365 | 400 | 435 | 465 | 490 | |
500 | 290 | 340 | 380 | 425 | 455 | 490 | 520 | 545 |
550 | 300 | 350 | 400 | 440 | 475 | 515 | 545 | 575 |
600 | 310 | 365 | 415 | 460 | 495 | 535 | 565 | 600 |
650 | 320 | 380 | 430 | 475 | 515 | 555 | 590 | 625 |
700 | 390 | 445 | 490 | 535 | 575 | 610 | 645 | |
750 | 400 | 455 | 505 | 550 | 590 | 630 | 665 | |
800 | 415 | 470 | 520 | 565 | 610 | 650 | 685 | |
850 | 480 | 535 | 580 | 625 | 670 | 710 | ||
900 | 495 | 550 | 600 | 645 | 685 | 725 | ||
950 | 505 | 560 | 615 | 660 | 705 | 745 | ||
1000 | 520 | 575 | 625 | 675 | 720 | 760 | ||
1200 | 620 | 680 | 730 | 780 | 830 | |||
1400 | 725 | 780 | 835 | 880 | ||||
1600 | 830 | 885 | 940 | |||||
1800 | 870 | 935 | 990 |
По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.
Потери давления воздуха в изгибах берутся из таблицы № 3.
Табл. № 3. Потери давления на изгибах
Для определения потерь давления в диффузорах используются данные из таблицы № 4.
Табл. № 4. Потери давления в диффузорах
В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.
Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах
Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции
Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.
Калькулятор
plast-product.ru
Расчет системы вентиляции
Вентиляцию Вы можете заказать с монтажом “под ключ”, позвонив по телефону в Москве: +7 (495) 241-17-30. Осуществляем проектирование и поставку вентиляции по России.
Отправьте быструю заявкуПри проектировании систем вентиляции каждый инженер проводит расчеты согласно вышеупомянутых норм.
Для расчета воздухообмена в жилых помещениях следует руководствоваться этими нормами. Рассмотрим самые простые методы нахождения воздухообмена:
- по площади помещения,
- по санитарно-гигиеническим нормам,
- по кратностям
Расчет по площади помещения
Это самый простой расчет. Расчет вентиляции по площади делается на основании того, что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения, независимо от количества людей.
Расчет по санитарно-гигиеническим нормам
По санитарным нормам для общественных и административно-бытовых зданий на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.
Рассмотрим на примере:
Предположим, в доме живут 2 человека, проведем расчет по санитарным нормам согласно этим данным. Формула расчета вентиляции, включающая нужное количество воздуха выглядит так:
L=n*V (м3/час) , где
- n – нормируемая кратность воздухообмена, час-1;
- V – объём помещения, м3
Получим, что для спальни L2=2*60=120 м3/час, для кабинета примем одного постоянного жителя и одного временного L3=1*60+1*20=80 м3/час. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество
постоянных и временных людей, определяется техническим заданием заказчика) L4=2*60+2*20=160 м3/час, запишем полученные данные в таблицу.
Помещение | Lпр, м3/час | Lвыт, м3/час |
Кухня | – | ≥ 90 |
Спальня | 120 | 120 |
Кабинет | 80 | 80 |
Гостинная | 160 | 160 |
Коридор | – | – |
Санузел | – | ≥ 50 |
Ванная | – | ≥ 25 |
∑ | 360 | 525 |
Составив уравнение воздушных балансов ∑ Lпр = ∑ Lвыт:360<525 м3/час, видим, что количество вытяжного воздуха превышает приточный на ∆L=165 м3/час. Поэтому количество приточного воздуха необходимо увеличить на 165 м3/час. Поскольку помещения спальни, кабинета и гостиной сбалансированы то воздух необходимый для санузла, ванны и кухни можно подать в помещение смежное с ними, к примеру, в коридор, т.е. в таблицу добавится Lприт.коридор=165 м3/час. Из коридора воздухбудет перетекать в ванную, санузлы и кухню, а оттуда посредством вытяжных вентиляторов (если они установлены) или естественной тяги удалятся из квартиры. Такое перетекание необходимо для предотвращения распространения неприятных запахов и влаги. Таким образом, уравнение воздушных балансов ∑ Lпр = ∑ Lвыт: 525=525м3/час – выполняется.
Расчет по кратностям
Кратность воздухообмена – это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 -кранный воздухообмен – половину объема помещения.
В нормативном документе ДБН В.2.2-15-2005 «Жилые здания» есть таблица с приведенными кратностями по помещениям. Рассмотрим на примере, как производится рассчет по данной методике.
Кратность воздухообмена в помещениях жилых зданий
Помещения | Расчетная температура (зимой),ºС | Требования к воздухообмену | ||
Приток | Вытяжка | |||
Общая комната, спальня, кабинет |
20 | 1-кратный | — | |
Кухня | 18 | – | ||
Кухня-столовая | 20 | 1-кратный | По воздушному балансу квартиры, но не менее, м3/час |
90 |
Ванная | 25 | – | 25 | |
Уборная | 20 | – | 50 | |
Совмещенный санузел | 25 | – | 50 | |
Бассейн | 25 | По расчету | ||
Помещение для стиральной машины в квартире | 18 | – | 0,5-кратный | |
Гардеробная для чистки и глажения одежды |
18 | – | 1,5-кратный | |
Вестибюль, общий коридор, лестничная клетка, прихожая квартиры |
16 | – | – | |
Помещение дежурного персонала (консъержа/консъержки) |
18 | 1-кратный | – | |
Незадымляемая лестничная клетка |
14 | – | – | |
Машинное помещение лифтов | 14 | – | 0,5-кратный | |
Мусоросборная камера | 5 | – | 1-кратный | |
Гараж-стоянка | 5 | – | По расчету | |
Электрощитовая | 5 | – | 0,5-кратный |
Последовательность расчета вентиляции по кратностям следующая:
- Считаем объем каждого помещения в доме (объем=высота*длина*ширина).
- Подсчитываем для каждого помещения объем воздуха по формуле: L=n*V (n – нормируемая кратность воздухообмена, час-1; V – объём помещения, м3)
Для этого предварительно выбираем из таблицы “Санитарно-гигиенические нормы. Кратности воздухообмена в помещениях жилых зданий” норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например, кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.
Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры. Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3. Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.
Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт
Составляем уравнение баланса ∑ Lпр = ∑ Lвыт. Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.
Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для помещений.
Рассчет основных параметров при выборе оборудования
При выборе оборудования для системы вентиляции необходимо рассчитать следующие основные параметры:
- Производительность по воздуху;
- Мощность калорифера;
- Рабочее давление, создаваемое вентилятором;
- Скорость потока воздуха и площадь сечения воздуховодов;
- Допустимый уровень шума.
Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.
Производительность по воздуху
Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении.
Например, для помещения площадью 50 м2 с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров/час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).
Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.
Расчет воздухообмена по кратности:
L = n * S * H, где
- L — требуемая производительность приточной вентиляции, м3/ч;
- n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
- S — площадь помещения, м2;
- H — высота помещения, м;
Расчет воздухообмена по количеству людей:
L = N * Lнорм, где
- L — требуемая производительность приточной вентиляции, м3/ч;
- N — количество людей;
- Lнорм — норма расхода воздуха на одного человека:
в состоянии покоя — 20 м3/ч;
“офисная работа” — 40 м3/ч;
при физической нагрузке — 60 м3/ч.
Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.
Типичные значения производительности систем вентиляции:
- Для квартир — от 100 до 500 м3/ч;
- Для коттеджей — от 1000 до 5000 м3/ч;
Мощность калорифера
Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП.
Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны, например, для Москвы она равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах допускается устанавливать калориферы, имеющие мощность меньше расчетной. Но при этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.
При расчете мощности калорифера необходимо учитывать следующие ограничения:
- Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
- Максимально допустимый ток потребления. Величину тока (А), потребляемого калорифером, можно вычислить по формуле:
I = P / U, где
- I — максимальный потребляемый ток, А;
- Р — мощность калорифера, Вт;
- U — напряжение питания: (220 В — для однофазного питания; для трехфазной сети расчёт несколько иной).
В случае, если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:
T = 2,98 * P / L, где
- T — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
- Р — мощность калорифера, Вт;
- L — производительность вентиляции, м3/ч.
Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов и загородных домов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной или паровой калорифер). В любом случае, если есть возможность, лучше использовать водяные или паровые калориферы. Экономия на обогреве в этом случае получается колоссальная.
Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума
После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.
Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха.
Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве и стоят они дороже. Поэтому, при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.
Для бытовых систем приточно-вытяжной вентиляции обычно используются воздуховоды диаметром 160…250 мм или сечением 400х200мм…600х350мм и распределительные решетки размером 100200 мм — 1000500 мм.
Отправьте заявку и получите КП
Подберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок.
www.airclimat.ru