2 Конструктивные решения наружных стен энергоэффективных зданий
Конструктивные решения наружных стен энергоэффективных зданий, применяемые при строительстве жилых и общественных сооружений, можно разделить на 3 группы (рис.1):
однослойные;
двухслойные;
трехслойные.
Однослойные наружные стены выполняются из ячеистобетонных блоков, которые, как правило, проектируют самонесущими с поэтажным опиранием на элементы перекрытия, с обязательной защитой от внешних атмосферных воздействий путем нанесения штукатурки, облицовки и т.д. Передача механических усилий в таких конструкциях осуществляется через железобетонные колонны.
Двухслойные наружные стены содержат несущий и теплоизоляционный слои. При этом утеплитель может быть расположен как снаружи, так и изнутри.
В начале реализации программы энергосбережения в Самарской области в основном применялось внутреннее утепление. В качестве теплоизоляционного материала использовались пенополистирол и плиты из штапельного стекловолокна «URSA». Со стороны помещения утеплители защищались гипсокартоном или штукатуркой. Для защиты утеплителей от увлажнения и накопления влаги устанавливалась пароизоляция в виде полиэтиленовой пленки.
Рис. 1. Виды наружных стен энергоэффективных зданий:
а – однослойная, б – двухслойные, в – трехслойные;
1 – штукатурка; 2 – ячеистый бетон;
3 – защитный слой; 4 – наружная стена;
5 – утеплитель; 6 – фасадная система;
7 – ветрозащитная мембрана;
8 – вентилируемый воздушный зазор;
9 – декоративная панель; 10 – кронштейн;
11 – облицовочный кирпич; 12 – гибкие связи;13 – керамзитобетонная панель; 14 – фактурный слой.
При дальнейшей эксплуатации зданий выявилось много дефектов, связанных с нарушением воздухообмена в помещениях, появлением темных пятен, плесени и грибков на внутренних поверхностях наружных стен. Поэтому в настоящее время внутреннее утепление используется лишь при установке приточно-вытяжной механической вентиляции. В качестве утеплителей применяются материалы с низким водопоглощением, например, пеноплекс и напыляемый пенополиуретан.
Системы с наружным утеплением имеют ряд существенных преимуществ. К ним относятся: высокая теплотехническая однородность, ремонтопригодность, возможность реализации архитектурных решений различной формы.
В практике строительства находят применение два варианта фасадных систем: с наружным штукатурным слоем; с вентилируемым воздушным зазором.
В вентилируемых фасадах используется лишь негорючий утеплитель в виде плит из базальтового волокна. Утеплитель защищен от воздействия атмосферной влаги фасадными плитами, которые крепятся к стене с помощью кронштейнов. Между плитами и утеплителем предусматривается воздушный зазор.
При проектировании вентилируемых фасадных систем создается наиболее благоприятный тепловлажностный режим наружных стен, так как водяные пары, проходящие через наружную стену, смешиваются с наружным воздухом, поступающим через воздушную прослойку, и выбрасываются на улицу через вытяжные каналы.
Трехслойные стены, возводимые ранее, применялись, в основном, в виде колодцевой кладки. Они выполнялись из мелкоштучных изделий, расположенных между наружным и внутренним слоями утеплителя. Коэффициент теплотехнической однородности конструкций относительно невелик ( r < 0,5) из-за наличия кирпичных перемычек. При реализации в России второго этапа энергосбережения достичь требуемых значений приведенного сопротивления теплопередаче с помощью колодцевой кладки не представляется возможным.
В практике строительства широкое применение нашли трехслойные стены с использованием гибких связей, для изготовления которых применяется стальная арматура, с соответствующими антикоррозионными свойствами стали или защитных покрытий. В качестве внутреннего слоя используется ячеистый бетон, а теплоизоляционных материалов – пенополистирол, минеральные плиты и пеноизол. Облицовочный слой выполняется из керамического кирпича.
Трехслойные бетонные стены при крупнопанельном домостроении применяются давно, но с более низким значением приведенного сопротивления теплопередаче. Для повышения теплотехнической однородности панельных конструкций необходимо использовать гибкие стальные связи в виде отдельных стержней или их комбинаций. В качестве промежуточного слоя в таких конструкциях чаще применяется пенополистирол.
В настоящее время широкое применение находят трехслойные сэндвич-панели для строительства торговых центров и промышленных объектов.
В качестве среднего слоя в таких конструкциях применяются эффективные теплоизоляционные материалы – минвата, пенополистирол, пенополиуретан и пеноизол. Трехслойные ограждающие конструкции отличаются неоднородностью материалов в сечении, сложной геометрией и стыками. По конструктивным причинам для образования связей между оболочками необходимо, чтобы более прочные материалы проходили через теплоизоляцию или заходили в нее, нарушая тем самым однородность теплоизоляции. В этом случае образуются так называемые мостики холода. Типичными примерами таких мостиков холода могут служить обрамляющие ребра в трехслойных панелях с эффективным утеплением жилых зданий, угловое крепление деревянным брусом трехслойных панелей с облицовками из древесностружечной плиты и утеплителями и т.д.
studfiles.net
Конструктивные решения энергосберегающих зданий
Конструктивные решения энергосберегающих зданий
Б. Н. Волынский,
главный конструктор, ГПИ “Мосгражданпроект”
Энергосбережение при проектировании и эксплуатации жилых зданий становится одной из важных приоритетных задач. При этом обязательным условием является обеспечение повышенных санитарно-гигиенических и комфортных условий, диктуемых требованиями СНиП II-3-79* и ГОСТ 30494-96 “Здания жилые и общественные. Параметры микроклимата в помещениях”.
Задачи экономии энергии определили переход к проектированию и строительству зданий с повышенным уровнем теплозащиты, где значительная роль отводится увеличению сопротивления теплопередаче наружных стен зданий.
Министерством строительства Московской области этой теме уделяется особое внимание. В последние годы по заданию Минмособлстроя был проведен комплекс исследований, направленных на определение путей рациональных конструкций наружных стен жилых многоэтажных зданий. В рамках этих работ был выполнен анализ проектных решений, проведены научно-экспериментальные теплофизические и прочностные испытания стеновых ограждающих конструкций. К работе были привлечены ведущие институты страны – НИИ Строительной физики, РААСН и НИИЖБ Госстроя РФ.
Важнейшим этапом на этом пути явилась разработка ТСН Московской области “Нормы теплотехнического проектирования гражданских зданий с учетом энергосбережения”. В разработке этих норм приняли участие НИИ Строительной физики, “Мосгражданпроект”, АО КПД, “Сантехпроект”.
ТСН содержат требования по теплозащите проектируемых зданий по величине требуемого удельного энергопотребления. Нормы предназначены для обеспечения основного требования – эффективного использования энергии при проектировании зданий путем выявления суммарного эффекта энергосбережения от использования архитектурных, строительных и инженерных решений, направленных на экономию энергетических ресурсов. При этом здание и системы его обеспечения рассматриваются как единое целое. Выбор окончательного проектного решения выполняется на основе сравнения вариантов по наименьшему значению расчетного удельного расхода тепловой энергии системой теплоснабжения на отопление здания в сопоставлении с требуемой величиной удельного расхода энергии, устанавливаемой ТСН.
Такой подход в нормировании теплозащиты позволяет оценивать эффективность использования энергии путем установления суммарного эффекта энергосбережения в результате варьирования проектных решений и степени автоматизации процесса подачи топлива на нужды отопления. Это является существенным шагом вперед в теплотехническом проектировании зданий.
ТСН содержат требования к энергетическому паспорту здания, в котором отражаются все теплотехнические и энергетические характеристики, устанавливаемые в процессе проектирования. Энергетический паспорт – важнейший документ, который содержит необходимый и достаточный объем показателей, который позволяет проверить соответствие проектных показателей проектируемого здания нормативным требованиям. В ТСН приведен алгоритм расчета параметров энергетического паспорта при их расчете вручную. Операция по расчету параметров ЭП с применением ЭВМ производится с помощью программы Эп-pass, значительно упрощающей и сокращающей процесс расчета параметров паспорта.
Требования по повышению эффективности энергосбережения вплотную связаны с рациональными конструктивными решениями, приемлемыми при проектировании зданий различных строительных систем.
Одним из массовых видов строительства являются крупнопанельные здания. Мощная база строительной индустрии, высокие темпы строительства таких зданий при далеко не удовлетворенном спросе на жилье сделало необходимым найти такое конструктивное решение наружных стен крупнопанельных зданий, которое бы удовлетворяло требования 2-го этапа СНиП П-3, не требовало бы значительной реконструкции или замены стальных форм и оснастки для их изготовления.
Таким решением оказались трехслойные железобетонные панели с эффективным утеплителем взамен ранее применяющихся керамзитобетонных панелей. В качестве связей между наружным и внутренним слоями трехслойных панелей применены железобетонные шпонки. Эти связи – шпонки – имеют малые размеры поперечного сечения, армируются стержнями диаметром 4-5 мм из стали класса В-1 или Вр1 и располагаются прерывисто, равномерно распределяясь по всей площади панели. Изготовленные из тяжелого бетона, панели имеют качественную фактуру и могут изготавливаться фасадной поверхностью как вниз, так и вверх. Фасадные поверхности могут иметь полную заводскую готовность или окрашиваются в процессе строительства.
Панели разработаны “Мосгражданпроектом” совместно с АО КПД. В настоящее время ведется строительство зданий с такими панелями Подольским, Щелковским, Тучковским, Электростальским и Орехово-Зуевским ДСК, завершена разработка рабочих чертежей для Коломенского ДСК.
Весьма важным направлением в области строительства является поиск таких решений, которые позволили бы, используя преимущества индустриального домостроения, вместе с тем проектировать и строить многоэтажные здания с различными планировочными и фасадными архитектурными решениями.
В Академии архитектуры были разработаны принципиальные решения ширококорпусных жилых зданий, конструктивную основу которых составила система внутренних продольных и поперечных железобетонных стен, объединенных в единую пространственную схему дисками перекрытий. Наружные стены здания имеют поэтажную разрезку, опираясь на плиты перекрытий. Конструкция стен – трехслойная, кирпичная, с эффективным утеплителем; наружный и внутренние слои стены – кирпичные, толщиной 250 и 120 мм. Связь между слоями из нержавеющей стали. Таким образом, многоэтажный дом, возводимый из крупнопанельных конструкций имеет облик кирпичного здания. Архитектурные качества здания удовлетворяют современным требованиям архитектуры, а эта работа удостоена премии Совета министров РФ.
По этому принципу “Мосгражданпроектом” разработан проект 9-этажного жилого дома в г. Раменское, сборные железобетонные изделия для которого изготавливаются на Воскресенском ДСК. Следует отметить, что имеется реальная возможность упростить конструкцию наружных стен, применяя стеновые блоки из таких материалов, как полистиролбетон, газобетон и т. п., с их облицовкой кирпичом. В настоящее время по проекту “Мосгражданпроекта” совместно с АО ОКПД ведется строительство зданий такого типа в г. Щелково.
Следует особо отметить, что строительство кирпичных многоэтажных зданий с несущими стенами, отвечающих требованиям энергосбережения, не имеет сколько-нибудь отчетливой перспективы. Сложность и материалоемкость такого решения очевидны. Альтернативой кирпичных зданий может считаться каркасная система со стенами поэтажной разрезки комплексной (полистиролбетонные или газобетонные блоки с облицовкой кирпичом) конструкции. В качестве несущей системы используется безригельный каркас с натяжением арматуры, располагаемой в створе колонн. Перекрытие из пустотных плит высотой 220 мм. Колонны сечением 300х300 или 400х400 мм. Каркас работает по рамно-связевой системе, воспринимая рамами вертикальную нагрузку, а нагрузки, вызывающие горизонтальные перемещения здания, – диафрагмами жесткости.
Монтаж каркаса, оборудование для его монтажа, анкерные и натяжные устройства обеспечиваются НИИЖБом. Такое решение по предварительным подсчетам обеспечивает сокращение стоимости строительства на 20-25 %.
В заключение необходимо остановиться на безусловной необходимости сертификации проектной продукции. Только этот путь обеспечит надежность соответствия принимаемых проектных решений действующим нормам и правилам. Это тем более важно, что до сегодняшнего дня нет единообразных (типовых) решений по такому важному разделу, как проектирование “теплых” стен, соответствующих требованиям 2 этапа по энергосбережению.
Существуют технические решения, разработанные Минстроем (теперь Госстроем) России. Однако, эти решения носят рекомендательный характер, они не выполнены на стадии рабочих чертежей, допускают различные конструктивные решения и не позволяют унифицировать способы возведения “теплых” стен с применением имеющихся в регионе материалов.
Следует отказаться от практики получения дополнительных согласований при проектировании, так как это не гарантирует надежность и рациональность принимаемых в проектах решений. Однако не все заказчики относятся к вопросам сертификации проектной продукции одинаково ответственно. Например, сертифицированы проекты зданий и изделий Щелковского, Подольского и Тучковского ДСК, но не представлена для сертификации документация Воскресенского ДСК.
Журнал “Энергосбережение”, № 3, 2001 г.
Источник: www.abok.ru/for_spec/en030158.htm
Интересно почитать
ecoteco.ru
Kонструктивные решения энергосберегающих зданий
Б. Н. Волынский, главный конструктор, ГПИ “Мосгражданпроект”
Задачи экономии энергии определили переход к проектированию и строительству зданий с повышенным уровнем теплозащиты, где значительная роль отводится увеличению сопротивления теплопередаче наружных стен зданий.
Министерством строительства Московской области этой теме уделяется особое внимание. В последние годы по заданию Минмособлстроя был проведен комплекс исследований, направленных на определение путей рациональных конструкций наружных стен жилых многоэтажных зданий. В рамках этих работ был выполнен анализ проектных решений, проведены научно-экспериментальные теплофизические и прочностные испытания стеновых ограждающих конструкций. К работе были привлечены ведущие институты страны – НИИ Строительной физики, РААСН и НИИЖБ Госстроя РФ.
Важнейшим этапом на этом пути явилась разработка ТСН Московской области “Нормы теплотехнического проектирования гражданских зданий с учетом энергосбережения”. В разработке этих норм приняли участие НИИ Строительной физики, “Мосгражданпроект”, АО КПД, “Сантехпроект”.
ТСН содержат требования по теплозащите проектируемых зданий по величине требуемого удельного энергопотребления. Нормы предназначены для обеспечения основного требования – эффективного использования энергии при проектировании зданий путем выявления суммарного эффекта энергосбережения от использования архитектурных, строительных и инженерных решений, направленных на экономию энергетических ресурсов. При этом здание и системы его обеспечения рассматриваются как единое целое. Выбор окончательного проектного решения выполняется на основе сравнения вариантов по наименьшему значению расчетного удельного расхода тепловой энергии системой теплоснабжения на отопление здания в сопоставлении с требуемой величиной удельного расхода энергии, устанавливаемой ТСН.
Такой подход в нормировании теплозащиты позволяет оценивать эффективность использования энергии путем установления суммарного эффекта энергосбережения в результате варьирования проектных решений и степени автоматизации процесса подачи топлива на нужды отопления. Это является существенным шагом вперед в теплотехническом проектировании зданий.
ТСН содержат требования к энергетическому паспорту здания, в котором отражаются все теплотехнические и энергетические характеристики, устанавливаемые в процессе проектирования. Энергетический паспорт – важнейший документ, который содержит необходимый и достаточный объем показателей, который позволяет проверить соответствие проектных показателей проектируемого здания нормативным требованиям. В ТСН приведен алгоритм расчета параметров энергетического паспорта при их расчете вручную. Операция по расчету параметров ЭП с применением ЭВМ производится с помощью программы Эп-pass, значительно упрощающей и сокращающей процесс расчета параметров паспорта.
Требования по повышению эффективности энергосбережения вплотную связаны с рациональными конструктивными решениями, приемлемыми при проектировании зданий различных строительных систем.
Одним из массовых видов строительства являются крупнопанельные здания. Мощная база строительной индустрии, высокие темпы строительства таких зданий при далеко не удовлетворенном спросе на жилье сделало необходимым найти такое конструктивное решение наружных стен крупнопанельных зданий, которое бы удовлетворяло требования 2-го этапа СНиП П-3, не требовало бы значительной реконструкции или замены стальных форм и оснастки для их изготовления.
Таким решением оказались трехслойные железобетонные панели с эффективным утеплителем взамен ранее применяющихся керамзитобетонных панелей. В качестве связей между наружным и внутренним слоями трехслойных панелей применены железобетонные шпонки. Эти связи – шпонки – имеют малые размеры поперечного сечения, армируются стержнями диаметром 4-5 мм из стали класса В-1 или Вр1 и располагаются прерывисто, равномерно распределяясь по всей площади панели. Изготовленные из тяжелого бетона, панели имеют качественную фактуру и могут изготавливаться фасадной поверхностью как вниз, так и вверх. Фасадные поверхности могут иметь полную заводскую готовность или окрашиваются в процессе строительства.
Панели разработаны “Мосгражданпроектом” совместно с АО КПД. В настоящее время ведется строительство зданий с такими панелями Подольским, Щелковским, Тучковским, Электростальским и Орехово-Зуевским ДСК, завершена разработка рабочих чертежей для Коломенского ДСК.
Весьма важным направлением в области строительства является поиск таких решений, которые позволили бы, используя преимущества индустриального домостроения, вместе с тем проектировать и строить многоэтажные здания с различными планировочными и фасадными архитектурными решениями.
В Академии архитектуры были разработаны принципиальные решения ширококорпусных жилых зданий, конструктивную основу которых составила система внутренних продольных и поперечных железобетонных стен, объединенных в единую пространственную схему дисками перекрытий. Наружные стены здания имеют поэтажную разрезку, опираясь на плиты перекрытий. Конструкция стен – трехслойная, кирпичная, с эффективным утеплителем; наружный и внутренние слои стены – кирпичные, толщиной 250 и 120 мм. Связь между слоями из нержавеющей стали. Таким образом, многоэтажный дом, возводимый из крупнопанельных конструкций имеет облик кирпичного здания. Архитектурные качества здания удовлетворяют современным требованиям архитектуры, а эта работа удостоена премии Совета министров РФ.
По этому принципу “Мосгражданпроектом” разработан проект 9-этажного жилого дома в г. Раменское, сборные железобетонные изделия для которого изготавливаются на Воскресенском ДСК. Следует отметить, что имеется реальная возможность упростить конструкцию наружных стен, применяя стеновые блоки из таких материалов, как полистиролбетон, газобетон и т. п., с их облицовкой кирпичом. В настоящее время по проекту “Мосгражданпроекта” совместно с АО ОКПД ведется строительство зданий такого типа в г. Щелково.
Следует особо отметить, что строительство кирпичных многоэтажных зданий с несущими стенами, отвечающих требованиям энергосбережения, не имеет сколько-нибудь отчетливой перспективы. Сложность и материалоемкость такого решения очевидны. Альтернативой кирпичных зданий может считаться каркасная система со стенами поэтажной разрезки комплексной (полистиролбетонные или газобетонные блоки с облицовкой кирпичом) конструкции. В качестве несущей системы используется безригельный каркас с натяжением арматуры, располагаемой в створе колонн. Перекрытие из пустотных плит высотой 220 мм. Колонны сечением 300х300 или 400х400 мм. Каркас работает по рамно-связевой системе, воспринимая рамами вертикальную нагрузку, а нагрузки, вызывающие горизонтальные перемещения здания, – диафрагмами жесткости.
Монтаж каркаса, оборудование для его монтажа, анкерные и натяжные устройства обеспечиваются НИИЖБом. Такое решение по предварительным подсчетам обеспечивает сокращение стоимости строительства на 20-25 %.
В заключение необходимо остановиться на безусловной необходимости сертификации проектной продукции. Только этот путь обеспечит надежность соответствия принимаемых проектных решений действующим нормам и правилам. Это тем более важно, что до сегодняшнего дня нет единообразных (типовых) решений по такому важному разделу, как проектирование “теплых” стен, соответствующих требованиям 2 этапа по энергосбережению.
Существуют технические решения, разработанные Минстроем (теперь Госстроем) России. Однако, эти решения носят рекомендательный характер, они не выполнены на стадии рабочих чертежей, допускают различные конструктивные решения и не позволяют унифицировать способы возведения “теплых” стен с применением имеющихся в регионе материалов.
Следует отказаться от практики получения дополнительных согласований при проектировании, так как это не гарантирует надежность и рациональность принимаемых в проектах решений. Однако не все заказчики относятся к вопросам сертификации проектной продукции одинаково ответственно. Например, сертифицированы проекты зданий и изделий Щелковского, Подольского и Тучковского ДСК, но не представлена для сертификации документация Воскресенского ДСК.
Сертификация проектной продукции должна быть признана обязательным условием при утверждении проектов.
Важно отметить, что проектирование зданий, отвечающих требованиям энергосбережения, вовсе не означает автоматического их удорожания. Реализация рациональных конструктивных решений обеспечит не только энергоэффективность зданий, но и позволит проектировать здания, отвечающие современным архитектурным требованиям, без существенного увеличения материальных затрат.
gisee.ru
Конструктивные решения стен современных энергосберегающих зданий
Проблемы энергосбережения при эксплуатации жилых зданий, впервые нормативно продекларированные введением в действие СНиП II-3-79* «Строительная теплотехника», поставили ряд сложнейших задач не только перед предприятиями строительной индустрии, но и перед строительством в целом.
Стоит напомнить, что до середины 90-х годов в Госстрое РФ бытовало мнение о целесообразности полного закрытия домостроительных комбинатов и о переходе на строительство многоэтажных зданий с применением железобетонных каркасных или металлических конструкций. Между тем, например, в Московской области, действовало 11 заводов КПД, оснащенных сложным технологическим оборудованием, на которых работали десятки тысяч людей. Можно по-разному оценивать результаты деятельности ДСК, качество возведенных ими зданий, но нельзя не констатировать факт, что в значительной мере именно крупнопанельное строительство смогло сдержать нараставший жилищный кризис.
Для того чтобы вдохнуть жизнь в останавливающееся производство, необходимо было разработать такую конструкцию стеновых панелей, которая, удовлетворяя новым требованиям СНиП II-3-79*, не требовала бы переделки парка существующей на ДСК оснастки.
Мосгражданпроектом, НИИ Строительной физики и НИИЖБ была разработана трехслойная железобетонная панель с железобетонными малого размера шпоночными соединениями слоев и эффективным утеплителем. Всесторонние теплофизические и прочностные исследования позволили сделать эти панели массовой продукцией, на основе которой теперь работают практически все ДСК Московской, а теперь и Саратовской области.
Замена конструкции стыка панелей с противодождевым гребнем на плоские, применение современных герметиков и мастик в значительной мере сказались и на качестве фасадов зданий, и на теплофизических качествах стыков. Зимой нынешнего года на построенном жилом крупнопанельном здании в г. Подольске фирмой «Веемо», аккредитованной при Мособлэнергонадзоре, были экспериментально исследованы его теплоизоляционные качества. Тепловизионное обследование позволило установить, что приведенная величина сопротивления передаче ограждающих конструкций Rэксп.= = 3,35 м2•°С/Вт + 1,5% (расчетное значение Rпр = 3,01 м2•°С/Вт).
Реализация построенных жилых домов позволила домостроительным комбинатам получить средства, необходимые для поиска новых конструкций зданий, отвечающих требованиям современных объемно-планировочных и фасадных решений. Это тем более важно для организации необходимых проектных и научно-исследовательских работ в условиях полного отсутствия бюджетного финансирования.
К настоящему времени основные объемы строительства составляют единичные здания при уплотнении существующей застройки, а не строительство новых микрорайонов. Отсюда требование к увеличению этажности. Естественным является поиск возможностей изменения облика этих зданий, отход от «крупнопанельных» традиций. Как правило, наружные стены облицовываются кирпичом.
На первых этапах конструкция стен выполнялась трехслойной: наружный и внутренние слои – из кирпича и внутренний слой – из ПСБ или минеральной ваты. Зачастую, в зависимости от материала утеплителя, применялась пароизоляция стен. Крепление слоев между собой обеспечивалось связями из нержавеющей стали. Затем стены стали выполняться двухслойными: внутренний слой – из полистиролбетона и наружный – из кирпича толщиной 120 мм, связи из нержавеющей стали. Из условий огнестойкости внутренняя поверхность стены штукатурится по сетке. Полистиролбетонные блоки, их конструкция и технология изготовления разработаны ВНИИ Железобетоном. ТСН и Нормали монтажных узлов выполнены ВНИИ Железобетоном и Мосгражданпроектом.
Относительная дороговизна блоков из полистиролбетона и увеличивающийся объем строительства стимулировали поиск конструктивных решений стен из иных, более дешевых строительных материалов.
Одним из наиболее подходящих материалов, отличающимся низким коэффициентом теплопередачи, высокой прочностью и легко поддающимся механической обработке в построечных условиях, является ячеистый бетон (газобетон). Внутренний слой стенового ограждения толщиной 500 мм и его наружный слой связываются с помощью перевязки, выполняемой тычковыми рядами кирпичной кладки через два ряда блоков. Применению газобетонных блоков в массовом строительстве предшествовали экспериментальные исследования теплофизических свойств материала в НИИСФ. Были подвергнуты испытанию образцы газобетона с объемной массой 400 и 500 кг/м3. Расчетные значения теплопроводности получены равными 0,14 и 0,16 Вт/(м Ч°С). На основе этих исследований были запроектированы наружные стены жилых зданий, строительство которых начато в г. Щелкове.
Для многоэтажных зданий ограниченным является решение с поэтажной разрезкой наружных стен, при этом стена каждого этажа опирается на перекрытие. Наружная поверхность стены совпадает с наружной гранью плиты перекрытий таким образом, что на фасадах зданий образуются горизонтальные ленточки высотой в толщину перекрытия.
Применение стен поэтажной разрезки нашло повсеместное применение при строительстве многоэтажных зданий, конструктивной основой которых является система продольных и поперечных внутренних стен, связанных между собой дисками перекрытий.
Попытки закрыть выступающие на фасады здания поверхности железобетонных плит основываются на применении софатного кирпича, опирающегося на металлические конструкции из уголков, устанавливаемых по периметру каждого этажного перекрытия. Это решение слишком дорого и трудоемко, чтобы быть применимым в массовом строительстве. К сожалению, на сегодняшний день иных решений нет.
С целью решения этой проблемы была разработана конструкция стенового ограждения, позволившая вынести отделочный кирпичный слой за грань плит перекрытий на 120 мм, т.е. получить кирпичное здание, возводимое из сборных железобетонных или монолитных конструкций. В этом решении используется выполненный специальным образом кирпичный пояс, устанавливаемый на перекрытие с консольным вылетом на полкирпича за грань опоры и специальным образом скрепленный с ней.
Реализация этого решения потребовала проведения исследований как с целью определения теплофизических свойств стенового ограждения, так и его несущей способности. Такие исследования были проведены в лаборатории теплофизических характеристик строительных материалов НИИСФ и в ЦНИИСКе лабораторией кирпичных и крупнопанельных конструкций.
Результаты, полученные в ходе научно-экспериментальных исследований, позволили разработать весь комплекс проектных решений, открывающих возможность возведения многоэтажных зданий, в которых сочетаются все преимущества индустриального домостроения и современные архитектурные требования к их качеству.
Некоторые результаты исследований прочности предложенного конструктивного решения стенового ограждения войдут в новую редакцию СНиП «Каменные и армокаменные конструкции» в части определения размеров консольных вылетов участков кирпичной кладки.
Следует отметить плодотворность сотрудничества строительных, проектных и научно-исследовательских организаций в решении конкретных задач, определяемых фактическими потребностями строительства и стоящих, как правило, на стыке проблем, составляющих предметы исследований различных отраслей науки.
library.stroit.ru
Энергоэффективность архитектурных решении и микроклимат зданий
Современная практика реставрационно-ремонтных и термомодернизационных работ в зданиях жилого и общественного фонда исторических городов свидетельствует об недостаточности знаний энергоаудиторов о принципах защиты внутреннего микроклимата зданий. Создание комфортной и здоровой для человека среды, особенно в зданиях, отнесенных к достопримечательностям архитектуры и истории, обязательно требует применения опыта прошлого и современности в вопросах защиты помещений и конструкций от влажности. Это позволит сохранить сущность санации и создавать среду, которая будет соответствовать современным требованиям.
По исследованиям накоплено достаточно эпидемиологических данных о том, что для людей, которые длительное время находятся в жилых, общественных или промышленных зданиях с повышенным уровнем влажности, сырости, наличия грибков и плесени, характерна склонность к увеличению респираторных нарушений и потери работоспособности.
Сейчас человек ищет оптимальные энергосовершенствование в массовой термомодернизации зданий. Однако это приводит к значительному ухудшению микроклимата помещений, и, как следствие, ухудшению здоровья жителей и работников.
Современные программно-информационные разработки позволяют исключительно энергоменеджерам или энергоаудиторам-энергетикам количественно оценивать энергетические преимущества термомодернизационных проектов и их экономический эффект. Такие специалисты применяют и рассчитывают типичный набор архитектурно-конструктивных решений. Желание инвестора удешевить процесс исключает участие архитекторов в проведении энергоаудитов, а в реальных проектах термомодернизации – сводит к минимуму. Однако, вопрос энергосбережения имеющейся застройки должны решать в первую очередь архитекторы. Ведь для зданий, являющихся достопримечательностью архитектуры и истории, безоговорочное применение типичных архитектурно-конструктивных решений, скажем, утепление стен снаружи, замена деревянных окон на пластиковые и т.д., по меньшей мере недопустимо, а в специальных мероприятиях термореновации должны максимально использоваться подлинные и индивидуальные материалы, конструкции и технологии.
В наших климатических условиях и архитектурно-строительных традициях диффузия водяного пара или паропроницаемость (в результате фильтрации) в ограждающих конструкциях является механизмом максимального привнесения влаги в материалы оболочки здания. Установление потока водяного пара от теплого (с большим парциальным давлением) к холодному (с малым парциальным давлением) среды через стену или чердачное перекрытие образует конденсаторную влагу. Из-за изменений внешней температуры «точка росы» передвигается толщей конструкций, а водяной пар превращается в воду и накапливается в ней. В условиях недостаточного уровня паропроницаемости конструкций вода не удаляется. При конденсации водяного пара, энергия, предварительно потрачена на испарение жидкости, отдается окружению и способствует образованию среды для роста микроорганизмов и грибов.
Для климата последних десятилетий характерными есть большие колебания температуры воздуха. В случае резкого повышения температуры наружного воздуха после сильных морозов, температура стен с большой тепловой инерцией (присуща всем историческим зданиям) остается низкой. В результате, влага конденсируется на внешней поверхности стены. Вода не только увлажняет конструкции дома, но и замерзает. Попеременное замерзание и оттаивание приводит к разрушению защитного и отделочного покрытия фасада здания, элементов декора и скульптуры. Во время резкого снижения внешних температур, или если температура внутренней поверхности конструкции значительно ниже температуры воздуха помещения, конденсация происходит на внутренней поверхности конструкции, создает условия для размножения грибков, актиномицетов и других, крайне вредных для здоровья людей, бактерий. В условиях недостаточного воздухообмена (особенно за мебелью или коврами) на внутренней поверхности стены возможно даже замерзания воды.
Накопления влаги в конструкциях определяют по характерным видимым признакам:
- пятна или влажные места поверхности оболочки здания, особенно в углах и других местах с недостаточным уровнем теплоизоляции;
- слой льда на внутренней поверхности стены;
- слои плесени (преимущественно двух видов: серо-зеленого или розового цвета) на поверхности стен, потолка, пола;
- характерна пятнистость внутренней плоскости однослойной панели стены крупнопанельного дома, преимущественно для керамзитобетонных панелей, где “проявляются” увлажненные точечные фракции керамзита в бетоне за счет их высокой теплопроводности;
- сырость в виде полосок проявляет несущие ребра трехслойных больших панелей;
- запах плесени в помещении, удушье, влажность воздуха;
- присутствие грибков на поверхности;
- видимость разрушения материала конструкции под воздействием влаги.
Но не всегда присутствие избыточной влажности в конструкциях можно определить визуально. О увлажнении теплоизоляционных и других слоев стены или потолка можно узнать с помощью тепловизионной съемки или по следующим опосредованным признакам. Например, расслоение покрытий из керамической плитки и керамзитобетона в стеновых панелях является следствием накопления влаги в теле бетона. Разрушение фасадов панельных домов является типичным для застроек из однослойных панелей с покрытием керамической плиткой для защиты от действия метеорологической влаги.
Атмосферная влага (дождь, снег, град) вместе с ветровым напором также вызывает насыщение конструкции водой. Косые дожди могут производить до 12 литров воды за 1 минуту на один квадратный метр поверхности стен. И если внешняя поверхность стены покрыта паронепроницаемая слоем краски, плитки, пластика, металла, стекла, а кровля – любым гидроизоляционным материалом, то влага в конструкции, наоборот, растет из-за отсутствия воздухообмена между средами. Это приводит к существенным потерям теплозащитных свойств. Даже в трехслойных конструкциях (бетон, утеплитель, покрытие фасада) в теплоизоляции образуется избыточная влага, которая визуально не наблюдается. В совмещенных крышах избыточную влагу иногда можно диагностировать с помощью пузырей, образующихся на поверхности гидроизоляционного покрытия.
Но в большинстве случаев влага, скрытая в толще перекрытия или стены и визуально не определяется. Диагностирования скрытой влажности стен или потолков авторы проводят с помощью методики инфракрасной термографии. Влажные участки находят благодаря разности температур на поверхностях конструкции, которые для сухих и влажных ее частей различные. Части конструкций с одинаковыми значениями расчетного сопротивления теплопередачи из-за наличия влаги в слоях нередко могут иметь отличия фактического сопротивления до 35%.
Многократные увлажнения и промерзания термоизоляционного слоя в конструкциях оболочки зданий провоцирует разрушение структуры материала, ущерб для теплозащитных свойств, конденсацию водяного пара на поверхностях конструкций и внутри помещений. Длительная повышенная влажность создает благоприятные условия для развития плесени, домовых грибков, других микроорганизмов, растворению и накоплению во влажном воздухе помещений радона.
Следующим источником увлажнения элементов дома является инфильтрация – движение потоков теплого или холодного воздуха извне внутрь помещений благодаря воздухопроникновению сквозь толщу материалов и щели в конструкциях при некачественном их исполнении: неплотности стыков панельных домов, незаполненные раствором швы кирпичной кладки. Движение воздуха возникает при разнице давлений между внутренней и внешней средой если превышается сопротивление воздухопроникновения материала или конструкции. Такой фактор трудно рассчитать, поэтому для диагностики лучше применять экспериментальные сведения. Необходимый уровень сопротивления воздухопроникновения должен определяться и отвечать оптимальным величинам комфорта и энергосбережения. Низкий уровень воздухопроницаемости негативно влияет на влажностный режим и воздухообмен помещений, снижает комфорт внутренней среды. Высокий уровень – увеличивает теплопотери и является фактором энергоэкономичным.
Современную практику энергосбережения построено на высококачественной изоляции. Уплотнения имеющихся окон, дверей или замена преимущественно на пластиковые конструкции – распространенный и доступный метод термореновации домов. Но односторонний подход приводит к противоположным последствиям: увеличению расхода тепла на обогрев помещений. Плотная изоляция помещений повышает влажность и уровень загрязнения воздуха, провоцирует возникновение обратной тяги в вытяжных вентиляционных каналах. Такие факторы требуют принудительного проветривания. Традиционно проветривания осуществляют открыванием окон, дверей, форточек, но такая система вентиляции увеличивает теплопотери на 30-50 %. Новые пластиковые окна и двери чрезвычайно плотные, и, по сравнению с традиционными окнами с раздельными створками, в несколько раз тоньше конструкции и требуют дополнительного утепления и уплотнения мест примыкания к стенам. Как правило, стены, в местах установки новых окон, а не уплотняют и не утепляют, что способствует их увлажнению, дополнительным потерям тепла, роста микроорганизмов.
Недостаточный уровень движения воздуха в многослойных конструкциях оболочки здания, в том числе чердачного покрытия, или большая теплопроводность совмещенных крыш, вызывает интенсивное образование сосулек и повышение влажности воздуха помещений верхних этажей, дополнительном увлажнению стен и крыш. Опыт показывает преимущества применения вентилируемых фасадов и крыш. Технические подвалы многоэтажных домов – также реальный источник влаги для комнат первых этажей и нуждаются в реконструкции, обслуживания и осушения.
Увлажнение материалов конструкций строительной влагой присуще не только нововыстроенным, но и имеющимся зданиям и прежде всего зависит от величины водопоглощения и водопроницания материалов.
Решение вышеуказанных проблем возможно:
- путем комплексного подхода к архитектурным решениям при одновременном проектировании принудительной вентиляции;
- путем создания системы рекуперации тепла с целью обеспечить требования энергосбережения и комфорта помещений.
Таким образом, выполнение проектов энергоэффективности зданий требует диагностики и правильного проектирования ограждающих конструкций для предотвращения воздействия влажности и роста микроорганизмов и, как следствие, профилактики заболеваний людей.
Государственные строительные нормы и правила не уделяют достаточного внимания требованиям обеспечения и комфортного уровня влажности, сырости, сопротивления воздухопроникновения, контроля за избытком влажностного состояния конструкций помещений зданий. Поэтому нужно разработать нормы в области влияния влажности на эпидемиологическое состояние помещений и профилактику заболевания людей в соответствии с требованиями ВОЗ.
В практике проведения термомодернизационных работ отслеживаются отступления от требований объемно-пространственной композиции объекта, попытки самовольной и непрофессиональной ее трактовки энергоменеджерами. Термореновации домов, являющихся достопримечательностью архитектуры и истории, должна осуществляться с учетом архитектурных решений и с индивидуальным подходом к каждому зданию для обеспечения комфортной среды и требований энергосбережения.
https://lenprofisnab.ru/
lenprofisnab.ru
Kонструктивные решения энергосберегающих зданий
Б. Н. Волынский, главный конструктор, ГПИ “Мосгражданпроект”
Задачи экономии энергии определили переход к проектированию и строительству зданий с повышенным уровнем теплозащиты, где значительная роль отводится увеличению сопротивления теплопередаче наружных стен зданий.
Министерством строительства Московской области этой теме уделяется особое внимание. В последние годы по заданию Минмособлстроя был проведен комплекс исследований, направленных на определение путей рациональных конструкций наружных стен жилых многоэтажных зданий. В рамках этих работ был выполнен анализ проектных решений, проведены научно-экспериментальные теплофизические и прочностные испытания стеновых ограждающих конструкций. К работе были привлечены ведущие институты страны – НИИ Строительной физики, РААСН и НИИЖБ Госстроя РФ.
Важнейшим этапом на этом пути явилась разработка ТСН Московской области “Нормы теплотехнического проектирования гражданских зданий с учетом энергосбережения”. В разработке этих норм приняли участие НИИ Строительной физики, “Мосгражданпроект”, АО КПД, “Сантехпроект”.
ТСН содержат требования по теплозащите проектируемых зданий по величине требуемого удельного энергопотребления. Нормы предназначены для обеспечения основного требования – эффективного использования энергии при проектировании зданий путем выявления суммарного эффекта энергосбережения от использования архитектурных, строительных и инженерных решений, направленных на экономию энергетических ресурсов. При этом здание и системы его обеспечения рассматриваются как единое целое. Выбор окончательного проектного решения выполняется на основе сравнения вариантов по наименьшему значению расчетного удельного расхода тепловой энергии системой теплоснабжения на отопление здания в сопоставлении с требуемой величиной удельного расхода энергии, устанавливаемой ТСН.
Такой подход в нормировании теплозащиты позволяет оценивать эффективность использования энергии путем установления суммарного эффекта энергосбережения в результате варьирования проектных решений и степени автоматизации процесса подачи топлива на нужды отопления. Это является существенным шагом вперед в теплотехническом проектировании зданий.
ТСН содержат требования к энергетическому паспорту здания, в котором отражаются все теплотехнические и энергетические характеристики, устанавливаемые в процессе проектирования. Энергетический паспорт – важнейший документ, который содержит необходимый и достаточный объем показателей, который позволяет проверить соответствие проектных показателей проектируемого здания нормативным требованиям. В ТСН приведен алгоритм расчета параметров энергетического паспорта при их расчете вручную. Операция по расчету параметров ЭП с применением ЭВМ производится с помощью программы Эп-pass, значительно упрощающей и сокращающей процесс расчета параметров паспорта.
Требования по повышению эффективности энергосбережения вплотную связаны с рациональными конструктивными решениями, приемлемыми при проектировании зданий различных строительных систем.
Одним из массовых видов строительства являются крупнопанельные здания. Мощная база строительной индустрии, высокие темпы строительства таких зданий при далеко не удовлетворенном спросе на жилье сделало необходимым найти такое конструктивное решение наружных стен крупнопанельных зданий, которое бы удовлетворяло требования 2-го этапа СНиП П-3, не требовало бы значительной реконструкции или замены стальных форм и оснастки для их изготовления.
Таким решением оказались трехслойные железобетонные панели с эффективным утеплителем взамен ранее применяющихся керамзитобетонных панелей. В качестве связей между наружным и внутренним слоями трехслойных панелей применены железобетонные шпонки. Эти связи – шпонки – имеют малые размеры поперечного сечения, армируются стержнями диаметром 4-5 мм из стали класса В-1 или Вр1 и располагаются прерывисто, равномерно распределяясь по всей площади панели. Изготовленные из тяжелого бетона, панели имеют качественную фактуру и могут изготавливаться фасадной поверхностью как вниз, так и вверх. Фасадные поверхности могут иметь полную заводскую готовность или окрашиваются в процессе строительства.
Панели разработаны “Мосгражданпроектом” совместно с АО КПД. В настоящее время ведется строительство зданий с такими панелями Подольским, Щелковским, Тучковским, Электростальским и Орехово-Зуевским ДСК, завершена разработка рабочих чертежей для Коломенского ДСК.
Весьма важным направлением в области строительства является поиск таких решений, которые позволили бы, используя преимущества индустриального домостроения, вместе с тем проектировать и строить многоэтажные здания с различными планировочными и фасадными архитектурными решениями.
В Академии архитектуры были разработаны принципиальные решения ширококорпусных жилых зданий, конструктивную основу которых составила система внутренних продольных и поперечных железобетонных стен, объединенных в единую пространственную схему дисками перекрытий. Наружные стены здания имеют поэтажную разрезку, опираясь на плиты перекрытий. Конструкция стен – трехслойная, кирпичная, с эффективным утеплителем; наружный и внутренние слои стены – кирпичные, толщиной 250 и 120 мм. Связь между слоями из нержавеющей стали. Таким образом, многоэтажный дом, возводимый из крупнопанельных конструкций имеет облик кирпичного здания. Архитектурные качества здания удовлетворяют современным требованиям архитектуры, а эта работа удостоена премии Совета министров РФ.
По этому принципу “Мосгражданпроектом” разработан проект 9-этажного жилого дома в г. Раменское, сборные железобетонные изделия для которого изготавливаются на Воскресенском ДСК. Следует отметить, что имеется реальная возможность упростить конструкцию наружных стен, применяя стеновые блоки из таких материалов, как полистиролбетон, газобетон и т. п., с их облицовкой кирпичом. В настоящее время по проекту “Мосгражданпроекта” совместно с АО ОКПД ведется строительство зданий такого типа в г. Щелково.
Следует особо отметить, что строительство кирпичных многоэтажных зданий с несущими стенами, отвечающих требованиям энергосбережения, не имеет сколько-нибудь отчетливой перспективы. Сложность и материалоемкость такого решения очевидны. Альтернативой кирпичных зданий может считаться каркасная система со стенами поэтажной разрезки комплексной (полистиролбетонные или газобетонные блоки с облицовкой кирпичом) конструкции. В качестве несущей системы используется безригельный каркас с натяжением арматуры, располагаемой в створе колонн. Перекрытие из пустотных плит высотой 220 мм. Колонны сечением 300х300 или 400х400 мм. Каркас работает по рамно-связевой системе, воспринимая рамами вертикальную нагрузку, а нагрузки, вызывающие горизонтальные перемещения здания, – диафрагмами жесткости.
Монтаж каркаса, оборудование для его монтажа, анкерные и натяжные устройства обеспечиваются НИИЖБом. Такое решение по предварительным подсчетам обеспечивает сокращение стоимости строительства на 20-25 %.
В заключение необходимо остановиться на безусловной необходимости сертификации проектной продукции. Только этот путь обеспечит надежность соответствия принимаемых проектных решений действующим нормам и правилам. Это тем более важно, что до сегодняшнего дня нет единообразных (типовых) решений по такому важному разделу, как проектирование “теплых” стен, соответствующих требованиям 2 этапа по энергосбережению.
Существуют технические решения, разработанные Минстроем (теперь Госстроем) России. Однако, эти решения носят рекомендательный характер, они не выполнены на стадии рабочих чертежей, допускают различные конструктивные решения и не позволяют унифицировать способы возведения “теплых” стен с применением имеющихся в регионе материалов.
Следует отказаться от практики получения дополнительных согласований при проектировании, так как это не гарантирует надежность и рациональность принимаемых в проектах решений. Однако не все заказчики относятся к вопросам сертификации проектной продукции одинаково ответственно. Например, сертифицированы проекты зданий и изделий Щелковского, Подольского и Тучковского ДСК, но не представлена для сертификации документация Воскресенского ДСК.
Сертификация проектной продукции должна быть признана обязательным условием при утверждении проектов.
Важно отметить, что проектирование зданий, отвечающих требованиям энергосбережения, вовсе не означает автоматического их удорожания. Реализация рациональных конструктивных решений обеспечит не только энергоэффективность зданий, но и позволит проектировать здания, отвечающие современным архитектурным требованиям, без существенного увеличения материальных затрат.
gisee.ru
Kонструктивные решения энергосберегающих зданий
Б. Н. Волынский, главный конструктор, ГПИ “Мосгражданпроект”
Задачи экономии энергии определили переход к проектированию и строительству зданий с повышенным уровнем теплозащиты, где значительная роль отводится увеличению сопротивления теплопередаче наружных стен зданий.
Министерством строительства Московской области этой теме уделяется особое внимание. В последние годы по заданию Минмособлстроя был проведен комплекс исследований, направленных на определение путей рациональных конструкций наружных стен жилых многоэтажных зданий. В рамках этих работ был выполнен анализ проектных решений, проведены научно-экспериментальные теплофизические и прочностные испытания стеновых ограждающих конструкций. К работе были привлечены ведущие институты страны – НИИ Строительной физики, РААСН и НИИЖБ Госстроя РФ.
Важнейшим этапом на этом пути явилась разработка ТСН Московской области “Нормы теплотехнического проектирования гражданских зданий с учетом энергосбережения”. В разработке этих норм приняли участие НИИ Строительной физики, “Мосгражданпроект”, АО КПД, “Сантехпроект”.
ТСН содержат требования по теплозащите проектируемых зданий по величине требуемого удельного энергопотребления. Нормы предназначены для обеспечения основного требования – эффективного использования энергии при проектировании зданий путем выявления суммарного эффекта энергосбережения от использования архитектурных, строительных и инженерных решений, направленных на экономию энергетических ресурсов. При этом здание и системы его обеспечения рассматриваются как единое целое. Выбор окончательного проектного решения выполняется на основе сравнения вариантов по наименьшему значению расчетного удельного расхода тепловой энергии системой теплоснабжения на отопление здания в сопоставлении с требуемой величиной удельного расхода энергии, устанавливаемой ТСН.
Такой подход в нормировании теплозащиты позволяет оценивать эффективность использования энергии путем установления суммарного эффекта энергосбережения в результате варьирования проектных решений и степени автоматизации процесса подачи топлива на нужды отопления. Это является существенным шагом вперед в теплотехническом проектировании зданий.
ТСН содержат требования к энергетическому паспорту здания, в котором отражаются все теплотехнические и энергетические характеристики, устанавливаемые в процессе проектирования. Энергетический паспорт – важнейший документ, который содержит необходимый и достаточный объем показателей, который позволяет проверить соответствие проектных показателей проектируемого здания нормативным требованиям. В ТСН приведен алгоритм расчета параметров энергетического паспорта при их расчете вручную. Операция по расчету параметров ЭП с применением ЭВМ производится с помощью программы Эп-pass, значительно упрощающей и сокращающей процесс расчета параметров паспорта.
Требования по повышению эффективности энергосбережения вплотную связаны с рациональными конструктивными решениями, приемлемыми при проектировании зданий различных строительных систем.
Одним из массовых видов строительства являются крупнопанельные здания. Мощная база строительной индустрии, высокие темпы строительства таких зданий при далеко не удовлетворенном спросе на жилье сделало необходимым найти такое конструктивное решение наружных стен крупнопанельных зданий, которое бы удовлетворяло требования 2-го этапа СНиП П-3, не требовало бы значительной реконструкции или замены стальных форм и оснастки для их изготовления.
Таким решением оказались трехслойные железобетонные панели с эффективным утеплителем взамен ранее применяющихся керамзитобетонных панелей. В качестве связей между наружным и внутренним слоями трехслойных панелей применены железобетонные шпонки. Эти связи – шпонки – имеют малые размеры поперечного сечения, армируются стержнями диаметром 4-5 мм из стали класса В-1 или Вр1 и располагаются прерывисто, равномерно распределяясь по всей площади панели. Изготовленные из тяжелого бетона, панели имеют качественную фактуру и могут изготавливаться фасадной поверхностью как вниз, так и вверх. Фасадные поверхности могут иметь полную заводскую готовность или окрашиваются в процессе строительства.
Панели разработаны “Мосгражданпроектом” совместно с АО КПД. В настоящее время ведется строительство зданий с такими панелями Подольским, Щелковским, Тучковским, Электростальским и Орехово-Зуевским ДСК, завершена разработка рабочих чертежей для Коломенского ДСК.
Весьма важным направлением в области строительства является поиск таких решений, которые позволили бы, используя преимущества индустриального домостроения, вместе с тем проектировать и строить многоэтажные здания с различными планировочными и фасадными архитектурными решениями.
В Академии архитектуры были разработаны принципиальные решения ширококорпусных жилых зданий, конструктивную основу которых составила система внутренних продольных и поперечных железобетонных стен, объединенных в единую пространственную схему дисками перекрытий. Наружные стены здания имеют поэтажную разрезку, опираясь на плиты перекрытий. Конструкция стен – трехслойная, кирпичная, с эффективным утеплителем; наружный и внутренние слои стены – кирпичные, толщиной 250 и 120 мм. Связь между слоями из нержавеющей стали. Таким образом, многоэтажный дом, возводимый из крупнопанельных конструкций имеет облик кирпичного здания. Архитектурные качества здания удовлетворяют современным требованиям архитектуры, а эта работа удостоена премии Совета министров РФ.
По этому принципу “Мосгражданпроектом” разработан проект 9-этажного жилого дома в г. Раменское, сборные железобетонные изделия для которого изготавливаются на Воскресенском ДСК. Следует отметить, что имеется реальная возможность упростить конструкцию наружных стен, применяя стеновые блоки из таких материалов, как полистиролбетон, газобетон и т. п., с их облицовкой кирпичом. В настоящее время по проекту “Мосгражданпроекта” совместно с АО ОКПД ведется строительство зданий такого типа в г. Щелково.
Следует особо отметить, что строительство кирпичных многоэтажных зданий с несущими стенами, отвечающих требованиям энергосбережения, не имеет сколько-нибудь отчетливой перспективы. Сложность и материалоемкость такого решения очевидны. Альтернативой кирпичных зданий может считаться каркасная система со стенами поэтажной разрезки комплексной (полистиролбетонные или газобетонные блоки с облицовкой кирпичом) конструкции. В качестве несущей системы используется безригельный каркас с натяжением арматуры, располагаемой в створе колонн. Перекрытие из пустотных плит высотой 220 мм. Колонны сечением 300х300 или 400х400 мм. Каркас работает по рамно-связевой системе, воспринимая рамами вертикальную нагрузку, а нагрузки, вызывающие горизонтальные перемещения здания, – диафрагмами жесткости.
Монтаж каркаса, оборудование для его монтажа, анкерные и натяжные устройства обеспечиваются НИИЖБом. Такое решение по предварительным подсчетам обеспечивает сокращение стоимости строительства на 20-25 %.
В заключение необходимо остановиться на безусловной необходимости сертификации проектной продукции. Только этот путь обеспечит надежность соответствия принимаемых проектных решений действующим нормам и правилам. Это тем более важно, что до сегодняшнего дня нет единообразных (типовых) решений по такому важному разделу, как проектирование “теплых” стен, соответствующих требованиям 2 этапа по энергосбережению.
Существуют технические решения, разработанные Минстроем (теперь Госстроем) России. Однако, эти решения носят рекомендательный характер, они не выполнены на стадии рабочих чертежей, допускают различные конструктивные решения и не позволяют унифицировать способы возведения “теплых” стен с применением имеющихся в регионе материалов.
Следует отказаться от практики получения дополнительных согласований при проектировании, так как это не гарантирует надежность и рациональность принимаемых в проектах решений. Однако не все заказчики относятся к вопросам сертификации проектной продукции одинаково ответственно. Например, сертифицированы проекты зданий и изделий Щелковского, Подольского и Тучковского ДСК, но не представлена для сертификации документация Воскресенского ДСК.
Сертификация проектной продукции должна быть признана обязательным условием при утверждении проектов.
Важно отметить, что проектирование зданий, отвечающих требованиям энергосбережения, вовсе не означает автоматического их удорожания. Реализация рациональных конструктивных решений обеспечит не только энергоэффективность зданий, но и позволит проектировать здания, отвечающие современным архитектурным требованиям, без существенного увеличения материальных затрат.
gisee.ru