Kv что такое клапана – Пропускная способность Kvs. Что это такое?

Расчет Kv для выбора диаметра запорно-регулирующего клапана (КЗР)

В конечном итоге выбор запорно-регулирующего клапана по его гидравлическим параметрам сводится к выбору вида пропускной характеристики (линейная или равнопроцентная) и его условного диаметра прохода Dy в мм, рассчитанного по его пропускной способности (Kv).

Kv клапана – это условный объемный расход воды через полностью открытый клапан, м3/час при перепаде давлений 1 Бар при нормальных условиях. Указанная величина является основной характеристикой запорно-регулирующего клапана.
Для предварительного упрощенного расчета можно использовать следующие формулы:

 

Перепад давления

Расход жидкостей

Расход воздуха

Расход водяного пара

кг/час

м³/час

кг/час

м³/час

кг/час

 

 

p1 - давление перед клапаном, бар (абсолютное)

p2 - давление за клапаном, бар (абсолютное)

Δp= p1 - p2 - перепад давления на клапане

Q - расход в м³/час

W - расход в кг/час

ρ1 - плотность перед клапаном для газов и пара

T1 - температура (°К) перед клапаном

QG м³/час - расход газообразных веществ при 0°С и 1013 мбар

ρ кг/м³ - плотность жидкостей

ρG кг/м³ - плотность газообразных веществ при 0°С и 1013 мбар

1 м³/кг - удельный объем (из таблицы свойств пара) при p1 и t1

2 м³/кг - удельный объем (из таблицы свойств пара) при p2 и t2

* м³/кг - удельный объем (из таблицы свойств пара) при p1/2 и t1

t1 - температура (°C) перед клапаном

t2 - температура (°C) за клапаном

Рассчитанное значение Kv, затем округляется в большую сторону.

Некоторые производители рекомендуют выбирать регулирующий клапан с ближайшим большим значением Kvs от полученного значения Kv. Такой подход выбора позволяет с большей точностью регулировать расходы ниже заданного при расчёте, но не даёт возможности увеличить расход выше заданного значения, которое довольно часто в процессе эксплуатации приходится превышать. Мы не критикуем вышеописанный метод, но рекомендуем подбирать двухходовой запорно-регулирующий клапан таким образом, чтобы требуемое значение пропускной способности находилось в диапазоне от 30 до 80% хода штока. КЗР, рассчитанный таким образом, сможет с достаточной точностью как уменьшить расход относительно заданного, так и несколько увеличить его. Тем более, что все приводы, которые применяются в КОНТУР КЗР имеют механические ограничители, которые позволяют регулировать пропускную способность клапанов в необходимом диапазоне.

ЛИТЕРАТУРА:

  1. ГОСТ 12893-83 (Взамен ГОСТ 12893-67 ГОСТ 16559-71), Москва, 1984 г.
  2. В. И. Манюк Справочник по наладке и эксплуатации тепловых сетей. Москва: Стройиздат, 1982.

rst-s.ru

Расчет Kv регулирующего клапана | Аквасервис

Kv (Kvs) клапана - характеристика пропускной способности клапана, есть условный объемный расход воды через полностью открытый клапан, м3/час при перепаде давлений 1 Бар при нормальных условиях. Указанная величина является основной характеристикой клапана.

Зависимость перепада давлений на клапане, объемного расхода жидкости через регулирующий клапан, и условный объемный расход (Kv) описывается следующим соотношением:

где:  
- плотность жидкости (для воды 1000 кг/м3)
- расход жидкости, м3/час
- перепад давления на полностью открытом клапане, бар

Формулы пересчета Kv для различных размерностей расхода и давления:

При подборе клапана рассчитывается значение Kv, затем округляется в большую сторону до ближайшего значения соответствующего паспортной характеристике (Kv) клапана. Регулирующие клапаны выпускают, как правило, с величинами Kvs, возрастающими в геометрической прогрессии (ряды Рейнарда): 

Kvs: 1.0, 1.6, 2.5, 4.0, 6.3, 10, 16 ............

По приведенным выше формулам можно уточнить перепад давления на выбранном клапане.

Пример расчета

Требуемый перепад давления на клапане - 0,5 Бар,
Расчетный расход - 0,5м3/час,
Из формулы получаем Kv=0,707, ближайшее большее значение Kv клапана (из каталога) - 1,0
Выбираем клапан с Kv=1,0
Перепад давления на выбранном клапане Р1=0,25 Бар (пересчет по формуле)

www.aquanet.bz

Пропускная способность Kv и Kvs

Пропускная способность задвижек, вентилей, регулирующих клапанов и другой арматуры характеризуется коэффициентом пропускной способности Kv Данный коэффициент обязательно указывается заводом производителем в технических характеристиках и определен по расходу среды м3/час, плотностью 1000 кг/м3, температуре 15 С и перепаде давления 1 Бар.
Реальный коэффициент учитывает много факторов в той, или иной степени влияющих на работу арматуру и сложность расчета. Поэтому, для более простого расчета и выбора арматуры по каталогу, введено понятие Kvs. Величина Kvs характеризует расход через арматуру в полностью открытом положении при перепаде давления в 1 Бар. Величина Kv характеризует расход при любом другом положении. При расчете арматуры определяется коэффициент расхода Kv, а затем с учетом коэффициента 1,3 производится подбор по каталогу.

Расчет коэффициента пропускной способности (м3/ч) производится по данной формуле :

Где : Q – расход жидкости  м3/ч , ρ – плотность жидкости  кг/м3   p1 – входное давление, Бар абс.,  p2 – выходное давление  Бар абс.,  Δp – перепад давления на клапане, Бар

Величина абсолютного давления отличается от величины относительного на 1 Бар (величина одной атмосферы) : 

При расчете следует учитывать условие возможного возникновения кавитации и проверить допустимый перепад давления :

Для расчета можно воспользоваться нашим калькулятором  Kv и Kvs

ice-waters.ru

Mankenberg - FAQ - Часто задаваемые вопросы

Часто задаваемые вопросы

 

1. Общие вопросы о регулирующих клапанах

2. Специальные вопросы об оборудовании Манкенберг

 

 

1. Общие вопросы о регулирующих клапанах

Что означает величина Kv? 

Величина Kv характеризует пропускную способность клапана:

Определение

 

Что означает величина Kvs?
При расчёте клапана на основании исходных данных определяется величина Kv. К полученной величине добавляют 30%, получая величину Kvs. Значение Kv клапана должно быть не менее рассчитанного значения.

Что такое входное давление pv (p1)?

Входное давление - давление среды перед клапаном по направлению потока.

Что такое выходное давление ph (p2)?
Выходное давление - давление среды после клапана по направлению потока.

Что такое перепад давления Δp?
Перепад давления - разница давлений в двух точная системы или входного и выходного давления клапана. В последнем случае, перепад давления зависит от конструкции клапана.

Что такое падение давления?
Падение давления характеризует снижение давления среды при её прохождении через клапан.

Почему скорость потока среды имеет большое значение?
В зависимости от среды, допускаются различные скорости потока в трубопроводе. Наряду с величиной Kv(s), скорость потока является определяющим фактором при выборе типоразмера клапана.

Что такое диапазон рабочего давления?
Диапазон рабочего давления характеризует диапазон давления, на который клапан может быть настроен или в котором клапан может использоваться.
Например:
Диапазон давлений 4-6 бар означает

  • для редукционного клапана - выходное давление может быть настроено в пределах от 4 до 6 бар
  • для перепускного клапана - входное давление может быть настроено в пределах от 4 до 6 бар
  • для воздухоотводчика - клапан может использоваться для рабочих давлений в системе от 4 до 6 бар


Что такое редукционное отношение?
Редукционное отношение определяет отношение входного давления к выходному давлению, полученному при понижении редукционным клапаном в одну ступень.
Например:

редукционное отношение 20:1 (в техническом описании клапана указано 20) Если требуется получить выходное давление 1,2 бар, входное давление не должно превышать pv = 20 x 1,2 бар = 24 бар

Что такое седло клапана?
Седло клапана - проходная часть клапана, в которой осуществляется регулирование потока среды.

Что такое плунжер клапана?
Плунжер клапана - подвижный элемент конструкции клапана, осуществляющий закрытие, открытие клапана, а также дросселирование потока в седле.

Что такое сбалансированный по давлению клапан?
В сбалансированном по давлению клапане сила давления среды, действующая на плунжер, сбалансирована противоположной силой, за счёт специальной конструкции. Такой клапан обеспечивает оптимальные регулировочные характеристики.

Что такое стеллитовая наплавка?

Для регулирования давления жидкостей при перепаде давления на клапане более 25 бар, рекомендуется использовать регуляторы давления со стеллитовой наплавкой плунжера. Стеллитовая наплавка увеличивает стойкость плунжера к кавитации.

Что такое импульсная трубка?
Импульсная трубка служит для передачи давления до или после клапана к управляющему элементу клапана. Некоторые клапаны не требуют использования импульсной трубки. Импульсная трубка позволяет также регулировать давление в удалённой от клапана точке системы.


Что такое управляющий элемент клапана?

Плунжер клапана приводится в движение управляющем элементом под действием регулируемого давления. Воздействуя на управляющую поверхность, закрывает (в редукционном клапане) или открывает (в перепускном клапане) клапан, противодействуя силе пружины.
Выделяют три типа управляющих (чувствительных) элементов:

  • мембрана
  • поршень с кольцевыми или другими уплотнительными элементами
  • сильфон


Почему в некоторых случаях условный диаметр трубопровода больше типоразмера клапана?
В большинстве случаев типоразмер клапана выбирается на основании расчёта величины Kv(s). Однако при использовании трубопровода того же диаметра возможны высокие скорости в трубопроводе. Высокие скорости потока в трубопроводе способствуют повышению уровня шума, а также увеличивают износ трубопровода и арматуры. Скорость потока может быть снижена путём увеличения условного диаметра трубопровода.


Для чего нужна дренажная трубка?


При использовании для токсичных или опасных сред, регуляторы давления должны иметь конструкцию с закрытой пружиной (с уплотнением по настроечному винту) и присоединением под дренажную трубку. При монтаже клапана на трубопровод, дренажная трубка должна быть установлена таким образом, чтобы обеспечить безопасное отведение среды в случае выхода из строя управляющего элемента клапана.

Какая разница между постоянного действия и пусковым воздухоотводчиками?
Пусковой воздухоотводчик предназначен для выпуска воздуха из системы при её запуске или заполнении. Поплавок этого воздухоотводчика установлен непосредственно на штоке плунжера. Пусковой воздухоотводчик имеет большой диаметр седла, чтобы обеспечить быстрое отведение газа при давлениях менее 0,1 бар. В процессе работы системы пусковой воздухоотводчик остается закрытым под действием рабочего давления. В случае образования вакуума в системе, клапан открывается. Таким образом, пусковой воздухоотводчик также защищает систему от вакуума. Воздухоотводчик постоянного действия предназначен для удавления воздуха из системы в процессе её работы. Поплавок воздействует на плунжер посредством рычажного механизма, поэтому воздухоотводчик может работать как при низких, так и при высоких давлениях. Если запуск воздуха в систему должен быть исключён, воздухоотводчик дополнительно оборудуется обратным клапаном. В этом случае реализуется только функция выпуска воздуха.


Что такое Нм³ (нормальные кубические метры), См³ (американские стандартные кубические метры) и м³ (рабочие кубические метры)?
Нм³: Объём среды (жидкости или газа) при нормальных условиях: 1 бар абс. 20°C
См³: -> американский аналог Нм³
м³: Объём среды (жидкости или газа) при рабочих условиях: при рабочем давлении и рабочей температуре.
Внимание: м³ и Нм³ часто сильно отличаются в зависимости от сжимаемости среды. В этом случае очень важно различать эти величины.

Чем предохранительный клапан отличается от перепускного?
Предохранительный клапан предназначен для безопасного сброса среды из системы при превышении заранее заданного давления. Перепускной клапан (регулятор давления «до себя») предназначен для регулирования заданного давления. При этом перепускной клапан сбрасывает только тот объём среды, который необходимо сбросить для поддержания требуемого давления.

Для чего нужна импульсная трубка?
Некоторые клапаны требуют импульсную трубку для передачи давления к чувствительному элементу. Конструкция с импульсной трубкой обеспечивает высокие регулировочные характеристики и используется для специальных применений (например, для регулирования перепада давления или вакуума).


Чем редукционный клапан отличается от перепускного?
Оба клапана предназначены для поддержания постоянного давления. Редукционный клапан поддерживает давление на выходе, а перепускной - на входе.

Какие параметры кроме Kvs влияют на выбор типоразмера клапана?
Среда, скорость потока, вязкость среды и диапазон настройки.

Что такое погрешность регулирования и какова она?
В диапазоне от 10 до 70% от максимальной пропускной способности клапана погрешность регулирования не превышает + 5%. Погрешность регулирования - это разница между давлением настройки и реальным давлением в трубопроводе.

 

 

2. Специальные вопросы об оборудовании Манкенберг

Производит ли компания Манкенберг оборудование согласно NACE (нормы для работы с сернистым газом)?
Да, например, оборудование, изготовленное из сплава Hastelloy C4.

Возможно ли производство оборудования Манкенберг, устойчивого к морской воде?

Да, например, из титановых сплавов, 2 54 SMO = сталь Avesta 1.4547, сплав Duplex 1.4462

Можно ли использовать регулирующие клапаны в качестве запорных?
Это возможно, но не рекомендуется из-за протечки по седлу.

Существует ли оборудование Манкенберг, устойчивое к озону?
Да.

Возможны ли исполнения оборудования Манкенберг без кремния?
Да.

Поставляет ли компания Манкенберг оборудование согласно стандартам ANSI / ASME?
Конструкция оборудования разрабатывается согласно стандарту AD 2000, а не ANSI/ASME. Тем не менее фланцы оборудования могут быть изготовлены по ANSI, а материалы оборудования сертифицированы по ASTM.

Как следует устанавливать регуляторы давления на трубопроводе?
В общем случае регуляторы давления необходимо устанавливать на горизонтальный трубопровод, однако для газов возможна установка клапана на вертикальный трубопровод. При установке клапана для жидкостей на вертикальный трубопровод возможно снижение точности регулирования и увеличение износа подвижных элементов клапана.
- газы: Возможна установка на горизонтальный участок трубопровода с пружиной в верхнем или нижнем положении, а также на вертикальный трубопровод
- жидкости: Рекомендуется установка на горизонтальный участок трубопровода с пружиной в нижнем положении. При этом исключается возможность образования газовой подушки под мембраной, приводящей к осцилляции клапана.
- пар: Требуется установка на горизонтальный участок трубопровода с пружиной в нижнем положении. Это позволяет защитить мембрану слоем конденсата от прямого воздействия пара.

Что означает маркировка "DM 505 1/2*250ST, 15E-0,5EV"?
Тип клапан, присоединительный размер, условное давление на входе, исполнение, величина Kvs, код материала мембраны, диапазон настройки, код материала седлового уплотнения, код материала корпуса.

Почему возможно применение поплавковых конденсатоотводчиков Манкенберг на биогаз?
Конденсатоотводчики Манкенберг имеют мягкое седловое уплотнение, и наличие конденсата способствует лучшему уплотнению. Конденсатоотводчик является герметичным, изготовлен из нержавеющей стали и не требует использования электроэнергии.

Для какой максимальной температуры среды возможно использование оборудования Манкенберг?
В зависимости от типа регуляторы давления могут использоваться для сред температурой до 550°C.

Возможна ли настройка регуляторов давления на максимально допустимое значение входного/выходного давления?

Нет.


Werden die Druckregler voreingestellt geliefert?
Nein.


Wenn das Ventil auf einen bestimmten Ausgangsdruck eingestellt ist, kann ein schwankender Eingangsdruck das Regelergebnis beeinflussen?
Ja, im Rahmen der Regelabweichung.


Warum soll die Steuerleitung 10xNennweite hinter dem Ventil angeschlossen werden?
Damit der Einfluss der Turbolenzen beim Ausströmen aus dem Ventil minimiert werden kann.

 

Warum kann ich bei einem Druckminderer nicht 0,5 bis 10 bar einstellen wie beim Wettbewerb?
Weil wir die damit verbundene nachteilige Regelcharakteristik nicht akzeptieren.


Reicht der Rohrleitungsdurchmesser um den Entlüfter zu bestimmen?
Ja, wenn man sich am Arbeitsblatt 334 des DVGW orientiert.


Warum sollte ich ausgerechnet ein „eigenmediumgesteuertes“ Ventil nehmen?
Das Ventil arbeitet autark. Man braucht keine zusätzliche Installation von Energiezufuhr (keine Stromleitungen, keine Druckluftleitungen u. a.). Das spart Geld und minimiert Fehlerquellen.

www.mankenberg.de

Подбор регулирующих клапанов | Сайт энергетика

Значение величины kv. Регулирующий клапан создает в сети дополнительную потерю давления для ограничения расхода воды в требуемых пределах. Расход воды зависит от дифференциального давления на клапане:kv – показатель расхода на клапане, ? – плотность (для воды ? = 1,000 кг/м3 при температуре в 4°С, а при 80°С ? = 970 кг/м3), q – расход жидкости, м3/час, ?р – дифференциальное давление, бар.

Максимальная величина kv (kvs) достигается при полностью открытом клапане. Эта величина соответствует расходу воды, выраженному в м3/час, для дифференциального давления равного 1 бару. Регулирующий клапан выбирают таким образом, чтобы величина kvs обеспечивала расчетный расход для данного располагаемого дифференциального давления при работе клапана в заданных условиях.

Не так просто определить необходимую для регулирующего клапана величину kvs, поскольку располагаемое дифференциальное давление на клапане зависит от многих факторов:

1) Фактического напора насоса.

2) Потери давления в трубах и на арматуре.

3) Потери давления на терминалах.

Потери давления в свою очередь зависят от точности балансировки.

При проектировании котельных установок рассчитывают теоретически правильные величины потерь давления и расхода для различных элементов системы. Однако на практике редко различные элементы обладают точно заданными характеристиками. При установке, как правило, выбирают насосы, регулирующие клапаны и терминалы по стандартным характеристикам.

Регулирующие клапаны, например, выпускают с величинами kvs, возрастающими в геометрической пропорции, называемыми рядами Рейнарда:

kvs: 1.0 1.6 2.5 4.0 6.3 10 16……

Каждая величина приблизительно на 60% больше предыдущей.

Нетипично, чтобы регулирующий клапан обеспечивал точно расчетную потерю давления для заданного расхода. Если, например, регулирующий клапан должен создавать потерю давления равную 10 кПа при заданном расходе, то на практике может оказаться, что клапан незначительно большей величиной kvs создаст потерю давления, равную лишь 4 кПа, а клапан с незначительно меньшей величиной kvs обеспечит потерю давления в 26 кПа для расчетной величины расхода.Некоторые формулы содержат расход, kv и ?р (? = 1,000 кг/м3)

Кроме того, насосы и терминалы, зачастую, превышают размер по той же причине. Это означает, что регулирующие клапаны работают почти закрытыми, в результате регулировка не может быть устойчивой. Возможно так же, что периодически эти клапаны максимально открываются, при запуске обязательно, что приводит к чрезмерному расходу в данной системе и недостаточному расходу в других.

enginerishka.ru

Особенности расчета систем отопления с термостатическими клапанами

Термостатические клапаны для радиаторов по сравнению с ручными радиаторными клапанами имеют особенности при гидравлическом расчёте. Эти особенности связаны со спецификой работы клапана в системе отопления.

Эти клапаны управляются термочувствительным элементом (термоголовкой), внутри которого находится сильфонная ёмкость, заполненная рабочим телом (газ, жидкость, твёрдое вещество) с высоким коэффициентом объемного расширения. При изменении температуры воздуха, окружающего сильфон, рабочее тело расширяется или сжимается, деформируя сильфон, который, в свою очередь, воздействует на шток клапана, открывая или закрывая его (рис. 1).

Рис. 1. Схема работы термостатического клапана

Основной гидравлической характеристикой термостатического клапана является пропускная способность Kv. Это расход воды, который способен пропустить через себя клапан при перепаде давления на нем в 1 бар. Индекс «V» обозначает, что коэффициент отнесен к часовому объемному расходу и измеряется в м3/ч. Зная пропускную способность клапана и расход воды через него, можно определить потерю давления на клапане по формуле:

ΔPк = (V / Kv)2 · 100, кПа.

Регулирующие клапаны, в зависимости от степени открытия, имеют разную пропускную способность. Пропускная способность полностью открытого клапана обозначается Kvs. Потери давления на термостатическом радиаторном клапане при гидравлических расчетах, как правило, определяются не при полном открытии, а для определенной зоны пропорциональности – Xp.

Xp – это зона работы термостатического клапана в интервале от температуры воздуха при полном закрытии (точка S на графике регулирования) до установленного пользователем значения допустимого отклонения температуры. Например, если коэффициент Kv дан при Xp = S – 2, и термоэлемент установлен в такое положение, что при температуре воздуха 22 ˚С клапан будет полностью закрыт, то этот коэффициент будет соответствовать положению клапана при температуре окружающего воздуха 20 ˚С.

Отсюда можно сделать вывод, что температура воздуха в помещении будет колебаться в пределах от 20 до 22 ˚С. Показатель Xp влияет на точность поддержания температуры. При Xp = (S – 1) диапазон поддержания температуры внутреннего воздуха будет в пределах 1 ˚С. При Xp = (S – 2) – диапазон 2 ˚С. Зона Xp = (S – max) характеризует работу клапана без термочувствительного элемента.

В соответствии с ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», в холодный период года в жилой комнате оптимальные температуры лежат в пределах от 20 до 22 ˚С, то есть, диапазон поддержания температуры в жилых помещениях зданий должен быть 2 ˚С. Таким образом, для расчёта жилых зданий требуется выбор значений пропускной способности при Xp = (S – 2).

Рис. 2. Термостатический клапан VT.031

На рис. 3 показаны результаты стендового испытания термостатического клапана VТ.031 (рис. 2) с термостатическим элементом VТ.5000 с установленным значением «3». Точка S на графике это теоретическая точка закрытия клапана. Это температура, при которой клапан имеет настолько маленький расход, что его можно считать, практически, закрытым.

Рис. 3. График закрытия клапана VT.031 с термоэлементом VT.5000 (поз. 3) при перепаде давлений 10 кПа

Как видно на графике, клапан закрывается при температуре 22 ˚С. При понижении температуры воздуха, пропускная способность клапана увеличивается. На графике показаны значения расхода воды через клапан при температуре 21 (S – 1) и 22 (S – 2) ˚С.

В табл. 1 представлены паспортные значения пропускной способности термостатического клапана VТ.031 при различных Xp.

Таблица 1. Паспортные значения пропускной способности клапана VT.031

DN клапана

1/2''

Значение коэффициента

пропускной способности

Kv при Xp; м3

S – 1

0,35

S – 1,5

0,45

S – 2

0,63

S – 3

0,9

Kvs; м3

1,2

Клапаны испытываются на специальном стенде, показанном на рис. 4. В ходе испытаний поддерживается постоянный перепад давления на клапане равный 10 кПа. Температура воздуха имитируется при помощи термостатической ванны с водой, в которую погружается термоголовка. Температура воды в ванне постепенно повышается, при этом фиксируются расходы воды через клапан до полного закрытия.

Рис. 4. Стендовые испытания клапана VT.032 на пропускную способность по ГОСТу 30815-2002

Кроме значений пропускной способности термостатические клапаны характеризуются таким показателем, как максимальный перепад давления. Это такой перепад давления на клапане, при котором он сохраняет паспортные регулировочные характеристики, не создает шум, а также при котором все элементы клапана не будут подвержены преждевременному износу.

В зависимости от конструкции, термостатические клапаны имеют различные значения максимального перепада давления. У большинства представленных на рынке радиаторных термостатических клапанов эта характеристика составляет 20 кПа. При этом, согласно п. 5.2.4 ГОСТ 30815-2002, температура, при которой клапан закроется, при максимальном перепаде давления, не должна отличаться от температуры закрытия при перепаде давления 10 кПа более чем на 1 ˚С.

Из графика на рис. 5 видно, что клапан VТ.031 при перепаде давления 10 кПа и уставке термоэлемента «3» закрывается при 22 ˚С.

Рис. 5. Графики закрытия клапана VT.031 с термоэлементом VT.5000 при перепаде давления 10 кПа (синяя линяя) и 100 кПа (красная линия)

При перепаде давления 100 кПа клапан закрывается при температуре 22,8˚С. Влияние дифференциального давления составляет 0,8 ˚С. Таким образом, в реальных условиях эксплуатации такого клапана при перепадах давления от 0 до 100 кПа, при настройке термоэлемента на цифру «3», диапазон температур закрытия клапана составит от 22 до 23 ˚С.

Если в реальных условиях эксплуатации перепад давления на клапане вырастет больше максимального, то клапан может создавать недопустимый шум, а также его характеристики будут существенно отличаться от паспортных.

Из-за чего же происходит увеличение перепада давления на термостатическом клапане во время эксплуатации? Дело в том, что в современных двухтрубных системах отопления расход теплоносителя в системе постоянно меняется, в зависимости от текущего теплопотребления. Какие-то терморегуляторы открываются, какие-то – закрываются. Изменение расходов по участкам приводит к изменению распределения давлений.

Для примера рассмотрим простейшую схему (рис. 6) с двумя радиаторами. Перед каждым радиатором установлен термостатический клапан. На общей линии находится регулирующий вентиль.

Рис. 6. Расчетная схема с двумя радиаторами

Допустим, что потери давления на каждом термостатическом клапане составляет 10 кПа, потери давления на вентиле – 90 кПа, общий расход теплоносителя – 0,2 м3/ч и расход теплоносителя через каждый радиатор – 0,1 м3/ч. Потерями давления в трубопроводах пренебрегаем. Полные потери давления в этой системе составляют 100 кПа, и они поддерживаются на постоянном уровне. Гидравлику такой системы можно представить следующей системой уравнений:

где Vо – общий расход, м3/ч, Vр – расход через радиаторы, м3/ч, kvв – пропускная способность вентиля, м3/ч, kvт.к. – пропускная способность термостатических клапанов, м3/ч, ΔPв – перепад давления на вентиле, Па, ΔPт.к – перепад давления на термостатическом клапане, Па.

Рис. 7. Расчетная схема с отключенным радиатором

Предположим, что в помещении, где установлен верхний радиатор, температура увеличилась, и термостатический клапан полностью перекрыл поток теплоносителя через него (рис. 7). В этом случае весь расход будет идти только через нижний радиатор. Перепад давления в системе выразится следующей формулой:

где Vо′ – общий расход в системе после отключения одного термостатического клапана, м3/ч, Vp′ – расход теплоносителя через радиатор, в данном случае он будет равен общему расходу; м3/ч.

Если принять во внимание, что перепад давления поддерживается постоянным (равным 100 кПа), то можно определить расход, который установится в системе после отключения одного из радиаторов.

Потери давления на вентиле снизятся, так как общий расход через вентиль уменьшился с 0,2 до 0,17 м3/ч. Потери давления на термостатическом клапане наоборот вырастут, потому что расход через него вырос с 0,1 до 0,17 м3/ч. Потери давления на вентиле и термостатическом клапане составят:

Из приведенных расчетов можно сделать вывод, что перепад давления на термостатическом клапане нижнего радиатора при открытии и закрытии термостатического клапана верхнего радиатора будет варьироваться от 10 до 30,8 кПа.

Но что будет, если оба клапана перекроют движение теплоносителя? В этом случае потери давления на вентиле будут нулевыми, так как движения теплоносителя через него не будет. Следовательно, разница давлений до золотника/после золотника в каждом радиаторном клапане будет равна располагаемому напору и составит 100 кПа.

Если используются клапаны с допустимым перепадом давлений меньше этой величины, то клапан может открыться, несмотря на отсутствии реальной потребности в этом. Поэтому перепад давлений на регулируемом участке сети должен быть ниже максимально допустимого перепада давления на каждом терморегуляторе.

Предположим, что вместо двух радиаторов в системе установлено некое множество радиаторов. Если в какой-то момент все терморегуляторы, кроме одного, закроются, то потери давления на вентиле будут стремиться к 0, а перепад давления на открытом термостатическом клапане будет стремиться к располагаемому напору, т.е., для нашего примера, к 100 кПа.

В этом случае расход теплоносителя через открытый радиатор будет стремиться к значению:

То есть в самом неблагоприятном случае (если из множества радиаторов открытым останется только один) расход на открытом радиаторе вырастет более чем в три раза.

Насколько же измениться мощность отопительного прибора при таком увеличении расхода? Теплоотдача Q секционного радиатора считается по формуле:

где Qн – номинальная мощность отопительного прибора, Вт, Δtср – средняя температура отопительного прибора, ˚С, tв – температура внутреннего воздуха, ˚С, Vпр – расход теплоносителя через отопительный прибор, n – коэффициент зависимости теплоотдачи от средней температуры прибора, p – коэффициент зависимости теплоотдачи от расхода теплоносителя.

Предположим, что отопительный прибор имеет номинальную теплоотдачу Qн = 2900 Вт, расчётные параметры теплоносителя 90/70 ˚С. Коэффициенты для радиатора принимаются: n = 0,3, p = 0,015. В расчётный период при расходе 0,1 м3/ч такой отопи- тельный прибор будет иметь мощность:

Чтобы узнать мощность прибора при Vр’’=0,316 м³⁄ч необходимо решить систему уравнений:

Методом последовательных приближений получаем решение этой системы уравнений:

Отсюда можно сделать вывод, что в системе отопления при самых неблагоприятных условиях, когда все отопительные приборы, кроме одного, на участке перекрыты, перепад давления на термостатическом клапане может вырасти до располагаемого напора. В приведенном примере при располагаемом напоре 100 кПа расход увеличится в три раза, при этом мощность прибора возрастёт всего на 17 %.

Повышение мощности отопительного прибора приведёт к увеличению температуры воздуха в отапливаемом помещении, что, в свою очередь, вызовет закрытие термостатического клапана. Таким образом, колебание перепада давления на термостатическом клапане во время эксплуатации в пределах паспортного максимального значения перепада является допустимым, и не приведет к нарушению в работе системы.

В соответствии с ГОСТ 30815-2002 максимальный перепад давления на термостатическом клапане определяется производителем из соблюдения требований бесшумности и сохранения регулировочных характеристик. Однако, изготовление клапана с широким диапазоном допустимых перепадов давления сопряжено с определенными конструктивными трудностями. Особые требования так же предъявляются к точности изготовления деталей клапана.

Большинство производителей выпускают клапаны с максимальным перепадом давления 20 кПа.

Исключение составляют клапаны VALTEC VT.031 и VT.032 (клапан термостатический прямой) с максимальным перепадом давления 100 кПа (рис. 8) и клапаны фирмы Giacomini серии R401–403 с максимальным перепадом давления 140 кПа (рис. 9).

Рис. 8. Технические характеристики радиаторных клапанов VT.031, VT.032

Рис. 9. Фрагмент технического описания термостатического клапана Giacomin R403

Рис. 10. Фрагмент технического описания термостатического клапана

При изучении технической документации необходимо быть внимательным, так как некоторые производители переняли практику банкиров - вставлять мелкий текст в примечаниях.

На рис. 10 представлен фрагмент из технического описания одного из типов термостатических клапанов. В основной графе указано значение максимального перепада давления 0,6 бара (60 кПа). Однако в сноске есть примечание, что действительный диапазон работы клапана ограничен всего лишь 0,2 барами (20 кПа).

Рис. 11. Золотник термостатического клапана с осевым креплением уплотнителя

Ограничение вызвано шумом, возникающим в клапане при высоких перепадах давления. Как правило, это касается клапанов с устаревшей конструкцией золотника, в котором уплотнительная резинка просто крепится по центру заклепкой или болтом (рис. 11).

При больших перепадах давления уплотнитель такого клапана начинает вибрировать из-за неполного прилегания к золотниковой тарелке, вызывая акустические волны (шум).

Повышенный допустимый перепад давления в клапанах VALTEC и Giacomini достигнут за счёт принципиально иной конструкции золотниковых узлов. В частности, у клапанов VT.031 использован латунный золотниковый плунжер, «футерованный» эластомером EPDM (рис. 12).

Рис. 12. Вид золотникового узла клапана VT.031

Сейчас разработка термостатических клапанов с широким диапазоном рабочих перепадов давления является одной из приоритетных задач специалистов многих компаний.

    Исходя из изложенного, можно дать следующие рекомендации по проектированию систем отопления с термостатическими клапанами:
  1. Коэффициент пропускной способности термостатического клапана рекомендуется определять, исходя из допустимого диапазона температур обслуживаемого помещения. Например, для жилых комнат по ГОСТ 30494-2011 оптимальные пара- метры внутреннего воздуха находятся диапазоне 20–22 ˚С. Значение Kv в этом случае принимается при Xp = S – 2.
    В помещениях категории 3а (помещения с массовым пребыванием людей, в которых люди находятся преимущественно в положении сидя без уличной одежды) оптимальный диапазон температур 20–21 ˚С. Для этих помещений значение Kv рекомендуется принимать при Xp = S – 1.
  2. На циркуляционных кольцах системы отопления должны быть установлены устройства (перепускные клапаны либо регуляторы перепада давления), ограничивающие максимальный перепад давления таким образом, чтобы перепад давления на клапане не превысил предельного паспортного значения.

Приведем несколько примеров подбора и установки устройств, для ограничения перепада давления на участке с термостатическими клапанами.

Пример 1. Расчётные потери давления в квартирной системе отопления (рис. 13), включая термостатические клапаны, составляют 15 кПа. Максимальный перепад давления на термостатических клапанах равен 20 кПа (0,2 бара). Потери давления на коллекторе, включая потери на теплосчётчиках, балансировочных клапанах и прочей арматуре примем 8 кПа. В итоге перепад давления до коллектора составляет 23 кПа.

Если установить регулятор перепада давления или перепускной клапан до коллектора, то в случае перекрытия всех термостатических клапанов в данной ветке, перепад на них составит 23 кПа, что превышает паспортное значение (20 кПа). Таким образом, в данной системе регулятор перепада давления или перепускной клапан должен устанавливаться на каждом выходе после коллектора, и должен быть настроен на перепад 15 кПа.

Рис. 13. Схема к примеру 1

Пример. 2. Если принять не тупиковую, а лучевую систему поквартирного отопления (рис. 14), то потери давления в ней будут значительно ниже. В приведенном примере коллекторно-лучевой системы потери в каждой радиаторной петле составляют 4 кПа. Потери давления на квартирном коллекторе примем 3 кПа, а потери давления на этажном коллекторе – 8 кПа.

В этом случае регулятор перепада давления можно расположить перед этажным коллектором и настроить его на перепад 15 кПа. Такая схема позволяет сократить количество регуляторов перепада давления и существенно удешевить систему.

Рис. 14. Схема к примеру 2

Пример 3. В данном варианте используются радиаторные термостатические клапаны с максимальным перепадом давления 100 кПа (рис. 15). Так же как и в первом примере, примем, что потери давления в квартирной системе отопления составляют 15 кПа. Потери давления на квартирном узле ввода (квартирной станции) 7 кПа. Перед квартирной станцией перепад давления составит 23 кПа. В десятиэтажном здании общую длину пары стояков системы отопления можно принять порядка 80 м (сумма подающего и обратного трубопроводов).

Рис. 15. Схема к примеру

При средних линейных потерях давления по стояку 300 Па/м, общие потери давления в стояках составят 24 кПа. Отсюда следует, что перепад давления у основания стояков составит 47 кПа, что меньше максимально допустимого перепада давления на клапане.

Если установить регулятор на перепад давления на стояк и настроить его на давление 47 кПа, то даже когда все радиаторные клапаны, подключенные к этому стояку, закроются, перепад давления на них будет ниже 100 кПа.

Таким образом, можно существенно снизить стоимость системы отопления, установив вместо десяти регуляторов перепада давления на каждом этаже, один регулятор у основания стояков.

Автор: Жигалов Д.В.

© Правообладатель ООО «Веста Регионы», 2010
Все авторские права защищены. При копировании статьи ссылка на правообладателя и/или на сайт www.valtec.ru обязательна.

valtec.ru

Упрощенный процесс расчета трехходового смесительного клапана

Поиск Лекций

Вычисление коэффициента Kv

Основной расходной характеристикой регулирующей арматуры является условный коэффициент расхода Kvs. Его величина обозначает характерный расход через данную арматуру в четко установленных условиях при 100%-ом открытии. Для выбора регулирующей арматуры с тем или иным значением Kvs необходимо произвести расчет коэффициента расхода Кv, который определяет объемный расход воды в м3/час , который протечет через регулирующий клапан в определенных условиях (потеря давления на нем в 1 бар, температура воды 15 оС, турбулентное течение, достаточное статическое давление, исключающее возникновение кавитации в указанных условиях).

Ниже в таблице приведены формулы расчета Кvдля различных сред

  Потеря давления p2 > p1/2 Δp < p1/2 Потеря давления p2 ≥ p1/2 Δp ≤ p1/2
Кv = Жидкость Q/100 x √ ρ1/Δp
Газ Q/5141 x √ ρ1*T1/Δp*p2 2*Qn/5141*p1 x √ ρn*T1

Преимуществом данного коэффициента является его простая физическая интерпретация и то, что в тех случаях, когда рабочей средой является вода, можно упрощенно рассчитать расход прямой пропорцией к корню квадратному перепада давления. Достигнув плотности 1000 кг/м3 и задав перепад давления в барах, получим простую и самую известную формулу для расчета Кv:

Кv = Q / √ Δp

На практике вычисление коэффициента расхода производится с учетом состояния регулирующей цепи и рабочих условий материала по приведенным выше формулам. Регулирующий клапан должен быть подобран так, чтобы он был способен регулировать максимальный расход в данных эксплуатационных условиях. При этом следует контролировать чтобы наименьший регулируемый расход также поддавался регулированию.

При условии, что регулирующее oтношение клапана: r > Kvs / Kvmin

По причине возможного минусового допуска 10% значения Kv100 относительно Kvs и требования касательно возможности регулирования в области максимального расхода (снижение и повышение расхода) рекомендуется выбирать значение Kvs регулирующего клапана, которое больше максимального рабочего значения Kv:

Kvs = 1,1 ÷ 1,3 Kv

При этом необходимо принимать во внимание содержание “предохранительного припуска” в расчете предполагаемого значения Qmax, который может стать причиной завышения производительности арматуры.

Упрощенный процесс расчета трехходового смесительного клапана

Исходные данные: среда - вода 90 оС, статическое давление в точке присоединения 600 кПа (6 бар),

Δpнасос 02= 35 кПа (0,35 бар), Δpтрубопр= 10 кПа (0,1 бар), Δpтеплообм= 20 кПа (0,2 бар),

номинальный расход Qном= 5 м3/ч.

Типовая схема компоновки регулирующего контура с использованием трехходового смесительного клапана показана на рисунке приведенном ниже.

poisk-ru.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *