Пропускная способность kv клапана – Пропускная способность Kvs. Что это такое?

Содержание

Расчет и выбор регулирующих и запорных клапанов (вентилей) по пропускной способности на воде, для жидкости, водяного пара или газа. Выбор регулирующей трубопроводной арматуры по Кv. Формулы для расчета объемного расхода жидкости через Kv.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Оборудование / / Трубопроводная арматура. Краны, клапаны, задвижки…. Расчет клапана, подбор задвижки, выбор вентиля или крана.  / / Расчет и выбор регулирующих и запорных клапанов (вентилей) по пропускной способности на воде, для жидкости, водяного пара или газа. Выбор регулирующей трубопроводной арматуры по Кv. Формулы для расчета объемного расхода жидкости через Kv.

Расчет и выбор регулирующих и запорных клапанов (вентилей) по пропускной способности на воде, для жидкости, водяного пара или газа. Выбор регулирующей трубопроводной арматуры по Кv. Формулы для расчета объемного расхода жидкости через Kv в различных размерностях

  1. По формулам упрощенного расчета из Таблицы 1 находим расчетный максимальный Kv=Kvs (м
    3
    /час) – объемный расход воды, протекающей через клапан при Т=20°С, при перепаде давления = 1 бар. (подробнее про Kv тут и ниже на странице)
  2. Определяем значение условной пропускной способности ругулирующего клапана Kv=η*Kvmax , где η – коэффициент запаса в диапазоне 1,2-1,5 (подробнее про коэффициенты запаса тут).
  3. Выбираем из характеристик регуляторов ближайшее доступное Kv, с округлением вверх.
Таблица 1. Формулы упрощенного расчета пропускной способности клапана (вентиля) на воде, для жидкости, водяного пара паре или газа. Выбор регулирующей трубопроводной арматуры по Кv.
Режим работы клапана Перепад на клапане  Жидкость   Газ  Водяной пар
кгс/см2

dpva.ru

Пропускная способность Cv (flow coefficient) и пропускная способность Kv (flow factor).





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация
/ / Инженерное ремесло / / Падение давления, потери давления на трение.  / / Пропускная способность Cv (flow coefficient) и пропускная способность Kv (flow factor).

Пропускная способность Cv (flow coefficient) и пропускная способность Kv (flow factor).

Пропускная способность Cv (flow coefficient) и пропускная способность Kv (flow factor) используются обычно в качестве характеристки производительности регулирующих и запорных клапанов, кранов, задвижек, затворов, вентилей и т.п..

Cv – пропускная способность

  • Cv – пропускная способность, определенная в дюймовых (имперских) единицах, как:
    • расход воды через клапан при температуре 60 oF в галлонах США/мин при перепаде давления на клапане 1 фунт/дюйм2

Kv – пропускная способность

  • Это метрический эквивалент Cv , определенный как:
    • Kv
      это расход воды при температуре 5 – 30 oC через клапан в м 3/час при перепаде давления на клапане 1 бар.

Соотношение между Cv и Kv:

Cv = 1.16 Kv  или Kv = 0.853 Cv   
Поиск в инженерном справочнике DPVA. Введите свой запрос:

dpva.ru

Правила подбора регулирующих клапанов

16 Ноября 2018

Регулирующая арматура в настоящее время является неотъемлемой составляющей систем водоснабжения, отопления и вентиляции, а также различных технологических линий. И правильный подбор регулирующего клапана для данных систем является важной задачей, так как позволяет получить следующие преимущества:

  1. Повысить эффективность работы предприятий за счет более точного регулирования технологических процессов.
  2. Решить проблемы, связанные с высоким уровнем шума и кавитацией, и, как следствие, — с эрозионным износом клапанов и трубопроводов.
  3. Сократить расходы на техническое обслуживание предприятий.
  4. Повысить безопасность технологических процессов.

Независимо от поставленной задачи, расчет регулирующего клапана сводится к определению его пропускной способности, при которой на заданном расходе будет дросселирован заданный избыток напора.

Пропускная способность регулирующей арматуры численно характеризуется коэффициентом пропускной способности Kv. Коэффициент Kv равен расходу рабочей среды с плотностью 1000 кг/м3 через клапан при перепаде давления на нем 0,1 МПа.

В зависимости от типа среды применяются различные расчетные формулы для определения значения Kv, но исходные данные остаются неизменными:

  • P1 — давление на входе клапана, бар;
  • P2 — давление на выходе клапана, бар;
  • ∆P — перепад давления на клапане, бар;
  • t1 — температура среды на входе, oC;
  • Q — расход для жидкости, м3/ч;
  • QN — расход для газов при Н.У., нм3/ч;
  • G — расход для водяного пара, кг/ч;
  • ρ — плотность жидкости, кг/м3;
  • pN — плотность газов при Н.У., кг/нм3.

Поскольку при расчете пропускной способности не учитывается ряд факторов, влияющих на работу клапана, для выбора клапана используется коэффициент Kvs, учитывающий запас в 30%.

По рассчитанному значению Kvs подбирается регулирующий клапан с максимально близким бóльшим значением Kvs c учетом рекомендуемого диаметра.

Клапан необходимо выбирать так, чтобы расчетная величина Kvs находилась в интервале между Kvs min и Kvs max клапана. Для клапанов различных производителей значения Kvs min различны. Указанные параметры приведены в технических описаниях оборудования.

Кроме соответствия по пропускной способности, существует ряд параметров, на которые следует обратить внимание при подборе регулирующих клапанов, а именно:

  • условный диаметр;
  • условное давление;
  • вероятность возникновения кавитации;
  • уровень шума;
  • отношение входного давления к выходному или допустимый перепад давления на клапане.
  • 1. Условный диаметр

    Регулирующая арматура никогда не подбирается по диаметру трубопровода. Однако диаметр трубопровода до и после клапана необходимо рассчитывать для подбора обвязки регулирующих клапанов. Так как регулирующий клапан подбирается по величине Kvs, часто условный диаметр клапана оказывается меньше условного диаметра трубопровода, на котором он установлен, особенно при большом перепаде на клапане. В этом случае допускается выбирать клапан с условным диаметром меньше условного диаметра трубопровода на одну-две ступени. При большей разнице рекомендуется использовать клапаны с пониженной пропускной способностью Kvs. Данное решение позволяет снизить стоимость оборудования, а также при таком подборе оборудование оказывается более компактным по габаритам и массе.

    • w — рекомендуемая скорость потока среды, м/c;
    • Q — рабочий объемный расход среды м3/ч;
    • d — диаметр трубопровода, м.

    2. Условное давление

    Условное давление Ру является единственным параметром для изготовляемой арматуры, гарантирующим ее прочность и учитывающим как рабочее давление, так и рабочую температуру. Условное давление соответствует допустимому рабочему давлению для данного вида арматуры при нормальной температуре (20 оС). При повышении температуры механические свойства конструкционных материалов ухудшаются, поэтому для арматуры с высокой рабочей температурой допустимые рабочие давления ниже, чем условные. Это снижение зависит от материала деталей арматуры и температурной зависимости прочностных свойств этого материала. Чем выше рабочая температура, тем ниже максимальное рабочее давление при одном и том же значении условного давления.

    Ниже приведены таблицы зависимости максимального рабочего давления в зависимости от температуры для различных материалов исполнения:

    3. Вероятность возникновения кавитации

    Одной из серьезных проблем, возникающих при применении запорной и регулирующей арматуры, является возникновение кавитации. Особенно сильно этот эффект проявляется при использовании регуляторов, понижающих давление «после себя» — редукционных клапанов.

    Кавитация — процесс образования и последующего схлопывания пузырьков вакуума в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, что в свою очередь приводит к преждевременному износу элементов регулирующей арматуры.

    Для проверки возможности появлении кавитации при больших перепадах давления на клапане применяется следующая формула:

    • P1 – давление на входе клапана, бар;
    • ∆P – перепад давления на клапане, бар.

    4. Уровень шума

    При выборе регулятора давления необходимо учитывать явления, связанные с шумом работающего регулятора. Возникновение шумов вызвано газодинамическими колебательными процессами у регулирующих органов и стенок регуляторов. При совпадении частоты колебаний амплитуда колебаний клапана может резко возрасти, что приведет к износу и разрушению клапана, а также к сильной вибрации регулятора.

    Главной причиной повышенного шума является повышенная скорость среды в выбранном трубопроводе относительно рекомендуемой. Фактическая скорость среды может быть рассчитана по формуле:

    • w – скорость потока среды, м/c;
    • Q – рабочий объемный расход среды м3/ч;
    • d – диаметр трубопровода, м.

    Ниже приведены рекомендуемые скорости сред для снижения риска появления критического уровня шума:

    Одним из способов снижения уровня шума в системах, помимо использования клапанов специальной конструкции, является применение гибких вставок (виброкомпенсаторов) на участках до и после клапана.

    5. Отношение входного давления к выходному или допустимый перепад давления на клапане

    Для некоторых редукционных клапанов ограничено отношение входного давления к выходному. Входное давление, воздействуя на плунжер редукционного клапана, стремится его открыть. Выходное давление воздействует на мембрану (или другой управляющий элемент) клапана, стремясь закрыть клапан. При превышении ограничения по отношению входного и выходного давления клапан не сможет закрыться — и выходное давление будет больше давления настройки. Ограничения по указанному параметру также исключают кавитацию в седле регулирующего клапана.

    Выполнение данных указаний при подборе регуляторов позволит значительно улучшить показатели технологических процессов и увеличить срок службы регулирующей арматуры. Примеры расчетов приведены в статье. По вопросам подбора оборудования просьба обращаться к инженерам отдела регулирующей арматуры компании АДЛ.

adl.ru

Подбор регулирующего клапана для воды по пропускной способности. Оценка Kv в зависимости от перепада и массового или объемного расхода.Расчет клапана, подбор задвижки, выбор вентиля или крана.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Оборудование / / Трубопроводная арматура. Краны, клапаны, задвижки…. Расчет клапана, подбор задвижки, выбор вентиля или крана.  / / Подбор регулирующего клапана для воды по пропускной способности. Оценка Kv в зависимости от перепада и массового или объемного расхода.Расчет клапана, подбор задвижки, выбор вентиля или крана.

Подбор регулирующего клапана для воды по пропускной способности. Оценка Kv в зависимости от перепада и массового или объемного расхода. Расчет клапана, подбор задвижки, выбор вентиля или крана.

  1. В левой колонке выберите перепад давления (падение давления) на клапане.
  2. В верхнем ряду выберите необходимый (существующий) объемный или массовый расход воды. На пересечении находится оценчная Kv.
Таблица 1. Оценка пропускной способности для расходов до 3,6 м3/час.
Падение двления (перепад) Расход воды (кг/час = л/час)
36 72 108 144 180 360 720 1080 1440 1800 3600
(кПа) (бар или атм) Расход воды (кг/сек = л/сек)
0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4 0.5 1
1 0.01 0.36 0.72 1.08 1.44 1.8 3.6 7.2 10.8 14.4 18 36
2 0.02 0.25 0.51 0.76 1.02 1.27 2.55 5.09 7.64 10.18 12.73 25.46
3 0.03 0.21 0.42 0.62 0.83 1.04 2.08 4.16 6.24 8.31 10.39 20.78
4 0.04 0.18 0.36 0.54 0.72 0.9 1.8 3.6 5.4 7.2 9 18
5 0.05 0.16 0.32 0.48 0.64 0.8 1.61 3.22 4.83 6.44 8.05 16.1
10 0.1 0.11 0.23 0.34 0.46 0.57 1.14 2.28 3.42 4.55 5.69 11.38
20 0.2 0.08 0.16 0.24 0.32 0.4 0.8 1.61 2.41 3.22 4.02 8.05
30 0.3 0.07 0.13 0.2 0.26 0.33 0.66 1.31 1.97 2.63 3.29 6.57
40 0.4 0.06 0.11 0.17 0.23 0.28 0.57 1.14 1.71 2.28 2.85 5.69
50 0.5 0.05 0.1 0.15 0.2 0.25 0.51 1.02 1.53 2.04 2.55 5.09

dpva.ru

Сложение пропускных способностей Kv и Cv при параллельной и последовательной установке клапанов. Расчет клапана, подбор задвижки, выбор вентиля или крана.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Оборудование / / Трубопроводная арматура. Краны, клапаны, задвижки…. Расчет клапана, подбор задвижки, выбор вентиля или крана.  / / Сложение пропускных способностей Kv и Cv при параллельной и последовательной установке клапанов. Расчет клапана, подбор задвижки, выбор вентиля или крана.

Сложение пропускных способностей Kv и Cv при параллельной и последовательной установке клапанов.

Сложение пропускных способностей Kv или Cvпри параллельной установке клапанов.

  • Такая комбинация очень часто имеет прямой экономический смысл, например:
    • – при резком росте стоимости регулирующего клапана следующего типоразмера,
    • – при наличии ограничений на массовые или габаритные характеристики единицы оборудования,
    • – при наличии резких суточных или сезонных перепадов производительности системы

  • Для двух клапанов установленных параллельно результат теория описывает как:
    • Kvt = Kv1 + Kv2        где Kvt = результирующая Kv, Kv1 = Kv 1-го клапана, Kv2 = Kv 2-го клапана;
  • Для комбинации из N клапанов результат теория описывает как:
    • Kvt = Kv1 + Kv2+…+ Kvn      где Kvt = результирующая Kv, Kvi = Kv i-го клапана;
  • Важно! не забывайте, что на практике обвязка параллельного соединения заметно снижает суммарную пропускную способность. Для двух клапанов понижающий коэффициент составляет порядка 0,95.

Сложение пропускных способностей Kv или Cv при последовательной установке клапанов.

  • Такая комбинация комбинация встречается реже, но иногда имеет смысл, например:
    • – как способ борьбы с кавитацией,
    • – для обеспечения комфортных условий работы одного клапана из связки, имеющего исключительные характеристики (быстродействие, точность,…)

  • Для двух клапанов установленных параллельно результат теория описывает как:
    • 1 / (Kvt)=  1 / (Kv1) + 1 / (Kv2)  

dpva.ru

Сложение пропускных способностей Kv и Cv при параллельной и последовательной установке клапанов.

Сложение пропускных способностей Kv и Cv при параллельной и последовательной установке клапанов.

Сложение пропускных способностей Kv или Cvпри параллельной установке клапанов.

Такая комбинация очень часто имеет прямой экономический смысл, например:

– при резком росте стоимости регулирующего клапана следующего типоразмера,

– при наличии ограничений на массовые или габаритные характеристики единицы оборудования,

– при наличии резких суточных или сезонных перепадов производительности системы

Для двух клапанов установленных параллельно результат теория описывает как:

Kvt = Kv1 + Kv2        где Kvt = результирующая Kv, Kv1 = Kv 1-го клапана, Kv2 = Kv 2-го клапана;

Для комбинации из N клапанов результат теория описывает как:

Kvt = Kv1 + Kv2+…+ Kvn      где Kvt = результирующая Kv, Kvi = Kv i-го клапана;

Важно! не забывайте, что на практике обвязка параллельного соединения заметно снижает суммарную пропускную способность. Для двух клапанов понижающий коэффициент составляет порядка 0,95.

 

 

Сложение пропускных способностей Kv или Cv при последовательной установке клапанов.

Такая комбинация комбинация встречается реже, но иногда имеет смысл, например:

– как способ борьбы с кавитацией,

– для обеспечения комфортных условий работы одного клапана из связки, имеющего исключительные характеристики (быстродействие, точность,…)

Для двух клапанов установленных параллельно результат теория описывает как:

1 / (Kvt)=  1 / (Kv1) + 1 / (Kv2)  где Kvt = результирующая Kv, Kv1 = Kv 1-го клапана, Kv2 = Kv 2-го клапана;

Для комбинации из N клапанов результат теория описывает как:

1 / (Kvt)=  1 / (Kv1) + 1 / (Kv2) +…+ 1 / (Kvn)        где Kvt = результирующая Kv, Kvi = Kv i-го клапана;

 

Приведем еще полезное правило для запоминания:

При последовательной установке двух клапанов с обинаковыми пропускными способностями равными Kv результирующая (Kvt) будет равна 0,7Kv.

tehtab.ru

РАСЧЁТ ПРОПУСКНОЙ СПОСОБНОСТИ РЕГУЛИРУЮЩЕГО КЛАПАНА — КиберПедия

Зависимость потерь напора от расхода через регулирующий клапан называется пропускной способностью – Kvs.

Kvs – пропускная способность численно равная расходу в м³/ч, через полностью открытый регулирующий клапан, при котором потери напора на нём равны 1бар.

Kv – то же, при частичном открытии затвора клапана.

Зная, что при изменении расхода в «n» раз потери напора на клапане изменяются в «n²» раз не сложно определить требуемый Kv регулирующего клапана подставив в уравнение расчётный расход и избыток напора.

Некоторые производители рекомендуют выбирать регулирующий клапан с ближайшим большим значением Kvs от полученного значения Kv. Такой подход выбора позволяет с большей точностью регулировать расходы ниже заданного при расчёте, но не даёт возможности увеличить расход выше заданного значения, которое довольно часто приходится превышать. Мы не критикуем вышеописанный метод, но рекомендуем подбирать двухходовой регулирующий клапан таким образом, чтобы требуемое значение пропускной способности находилось в диапазоне от 50 до 80% хода штока. Регулирующий клапан, рассчитанный таким образом, сможет с достаточной точностью как уменьшить расход относительно заданного, так и несколько увеличить его.

Выше приведенный алгоритм расчёта выводит список регулирующих клапанов, для которых требуемое значение Kv попадает в диапазон хода штока от 50 до 80%.

В результатах подбора приведен процент открытия затвора регулирующего клапана, при котором дросселируется заданный избыток напора на заданном расходе. Приведенные значения процента открытия учитывают кривизну расходной характеристики регулирующего клапана и её искажение за счёт отклонения авторитета от 1.

ПОДБОР РАСХОДНОЙ ХАРАКТЕРИСТИКИ РЕГУЛИРУЮЩЕГО КЛАПАНА

Расходная характеристика регулирующего клапана отображает зависимость изменения относительного расхода через клапан от изменения относительного хода штока регулирующего клапана при постоянном перепаде давления на нём.

Регулирующие клапаны с линейной расходной характеристикой рекомендуется применять для регулирования процессов в которых изменение регулируемой величины линейно зависит от расхода, они могут применяться в качестве исполнительных клапанов регуляторов расхода и для регулирования температуры смеси в с тепловых пунктах систем отопления с зависимым присоединением к тепловой сети.

Регулирующие клапаны с логарифмической (равнопроцентной) расходной характеристикой рекомендуется применять в системах изменение регулируемой величины в которых нелинейно зависит от расхода и в системах с низким авторитетом регулирующего клапана. Регуляторы с равнопроцентной расходной характеристикой отлично подходят для регулирования теплоотдачи теплообменников независимых систем отопления и систем горячего водоснабжения со скоростными теплообменными аппаратами. При авторитете регулирующего клапана 0,1 – 0,3 логарифмическая характеристика искажается на столько, что регулирование происходит практически по линейному закону (линейная характеристика).



Основной задачей подбора регулирующего клапана, является создание линейной зависимости между регулирующим воздействием и изменением регулируемой величины, поэтому при выборе расходной характеристики следует учитывать её искажение за счёт отличия авторитета клапана от единицы.

ПОДБОР ПРИВОДА РЕГУЛИРУЮЩЕГО КЛАПАНА

Электропривод подбирается под ранее выбранный регулирующий клапан. Электрические приводы рекомендуется выбирать из списка совместимых устройств, указанных в характеристиках клапана.

· Узлы стыковки привода и клапана должны быть совместимы.

· Ход штока электропривода должен быть не менее хода штока клапана.

· В зависимости от инерционности регулируемой системы следует применять приводы с различной скоростью действия.

· От усилия закрытия привода зависит максимальный перепад давления на клапане при котором привод сможет его закрыть.

· Напряжение питания и управляющий сигнал привода должны соответствовать напряжению питания и управляющему сигналу контроллера.

 

cyberpedia.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *