Теплопоступления от освещения – Информация о расчете всех видов теплопоступлений

Содержание

5.2.4. Теплопоступления от искусственного освещения.

Количество теплоты, поступающей в помещение от искусст­венного освещения, при неизвестной мощности светильника опре­деляют по формуле:

Q= Е F g,

где Е – освещенность, лк, принимаемая согласно СНиП в зави­симости от назначения помещений [4, табл. 3.5];

Р- площадь помещения, м2 ;

g– удельный тепловой поток, Вт/м2 ,на 1 лк освещенности [4,табл. 2.4];

– доля тепловой энергии, попадающей в помещение.

Средние удельные выделения теплоты для помещений площадью 200-400 м2 составляют 0,09-0,08, площадью 50-200 м2 -0,1- 0,08, площадью 20 – 50 м2 – 0,17 – 0,12 Вт/м2 лк.

Если известна мощность светильников, то теплопоступление от искусственного освещения определяют по формуле:

Q= N

Таблица 5.2

Освещенность помещений

Помещение

Освещенность рабочих поверхностей, лк

1. Классные комнаты, аудитории, лаборатории, проектные кабинеты, читальные залы

2. Залы заседаний, зрительные залы

3. Гимнастические залы

4. Спальные комнаты

5. Торговые залы магазинов:

продовольственных

промышленных

хозяйственных

300

200

200

75

400

300

200

Таблица 5.3

Нормы освещенности помещений различного назначения

Помещения

Освещенность рабочих поверхностей, лк

Общественные здания

промышленных

хозяйственных

300

200

200

75

400

300

200

Проектные залы, конструкторские бюро

500

Торговые залы продовольственных магазинов

400

Читальные залы, проектные кабинеты, торговые залы магазинов промтоваров

300

Залы заседаний, спортивные, актовые и зрительные залы клубов, фойе театров

200

Крытые бассейны, фойе клубов и кинотеатров

150

Номера гостиниц

100

Палаты и спальные комнаты санаториев

100

Производственные помещения

Механические, деревообрабатывающие, сборочные цехи, помещения технического обслуживания и ремонта автомобилей

200

Кузнечные, термические, малярные, металлопокрытий, сборочные цехи

150

Помещения хранения автомобилей

20

5.2.5. Теплопоступления от нагретых тонких стенок

Примером могут служить металлические ёмкости с горячей жидкостью. Перепадом температур в стенке в этом случае можно пренебречь и считать, что температура наружной поверхности стенки равна температуре горячей жидкости.

Согласно [3] количество теплоты, поступающей с 1 м2 нагретой поверхности, имеющей температуру , в помещение с температурой воздуха определяется как сумма потоков лучистого и конвективного тепла:

(5.7)

Коэффициент приведенного излучения для небольшой металлической поверхности, обменивающейся излучением с помещением, стенки которого выполнены из неметаллических строительных материалов, можно принять равным коэффициенту излучения нагретой металлической поверхности из соответствующего металла. Для ржавых или окисленных стальных и окрашенных поверхностей

может быть принят равным 4,7. Температурный коэффициентb равен:

(5.8)

Коэффициент А в формуле (5.8.) для вертикальной поверхности следует принимать по данным табл. 5.4

Таблица 5.4

А

А

20

1,67

380

1,41

80

1,60

480

1,36

180

1,53

580

1,33

280

1,47

980

1,19

Для нагретых горизонтальных поверхностей, обращенных вверх коэффициент А увеличивает на 30 %, обращённый вниз – уменьшают на 30% против значений, приведённых в таблице.

studfiles.net

ж) тепловыделения от освещения



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса – ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший “Салат из свеклы с чесноком”


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека – Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков – Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) – В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Тепловыделения от освещения определяют по формуле

, кВт

где: — суммарная мощность источников освещения, кВт.

Если осветительная аппаратура и лампы находятся вне помещения (на чердаке, за остеклением и т, п.), ко­личество тепловыделений в помещение (видимая и не­видимая теплота) составляет, кВт,

,

где — коэффициент, учитывающий долю теплоты от освещения, поступающую в помещение. Для люминес­центных ламп =0,55, для ламп накаливания =0,85.

 

Часовой расход энергии на 1 кв. м.производственной площади составляет 35 Вт.

Норматив освещенности для бытовых и служебных помещений может быть принят в расходу энергии 10 Вт /м. кв. Для освещения производственных,вспомогательных и бытовых помещений цеха норматив 2100 ч., для лабораторий,конструкторских бюро и служебных помещений. пользующихся в значительной степени естественным светом через окна здания, 500ч. Осветительная нагрузка от дежурного освещения может быть учтена коэффициентом 1,02-1,03 .

 

 

З) тепловыделения от людей

Тепловыделения от людей определяются отдельно по количеству явной, скрытой и полной теплоты. При =35° С выделения явной теплоты не учитываются. Скры­тая теплота, выделяемая людьми (теплота, при­шедшая с влагой, выделяемой человеком), кВт;


;

;

;

 

где n —количество людей в помещении; , и удельные количества явной, скрытой и полной теплоты, выделяемой одним работающим, Вт (определяется из условий тепло – и влагообмена человека с окружаю­щей средой и приводится в справочниках [19]).

Период года Категория работ по уровню энергозатрат, Вт Скорость движения воздуха, м/с оптимальная Скорость движения воздуха, м/с Допустимая выше оптимальных величин
Холодный Iа (до 139) 0,1 0,1
  Iб (140-174) 0,1 0,2
  IIа (175-232) 0,2 0,3
  IIб (233-290) 0,2 0,4
  III (более 290) 0,3 0,4
Теплый Iа (до 139) 0,1 0,2
  Iб (140-174) 0,1 0,3
  IIа (175-232) 0,2 0,4
  IIб (233-290) 0,2 0,5
  III (более 290) 0,3 0,5

 

 

q на одного человека по справочнику в зависимости от труда по таблице

q=170 Вт

n=34 (по условию)

Общий баланс

Уравнение теплового баланса составит:

 

Просчитаем теплопотери через стенки с учетом утепления.

Утепляем минеральными блоками с с

Сумма потерь после утепления:

Определяем диаметр трубопровода отопления, исходя из того, что

, где

 

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1.Агапитов Е.Б., Семенова Т.П., Матвеева Г.Е,, Лемешко М.А. Энергетические системы обеспечения жизнедеятельности человека – ГОУ ВПО МГТУ, 2010- 105 с.

М.Б. Хрусталев, Ю.Я. Кувшинов, В.М. Копко Теплоснабжение и вентиляция М. Издательство Ассоциации строительных вузов, 2010.- 783 с.

2. Соколов Е.Я. Теплофикация и тепловые сети. – М.: Издательский Дом МЭИ, 2006.-472 с.

3. Проектирование систем теплоснабжения промышленных узлов / Роз-кин М.Я., Козуля И.Э., Русланов Г.В. и др. – Киев: Будивильник, 1978. -128 с.

4. СНиП П-33-75. Отопление, ветиляция и конденсирование воздуха. -М.: Стройиздат, 1976. – 111с.

5. СНиП-А 6-72. Строительная климатология и геофизика. – М.: Стройиз­дат, 1973.-320 с.

6. Промышленная теплоэнергетика и теплотехника: справочник/ под общ. ред. В.А. Григорьева и В.М. Зорина. – М.: Энергоиздат, 1983. – 552 с.

7. Панин В.И. Справочное пособие по теплоэнергетике жилищно-кому-нального хозяйства. – М.: Стройиздат


megapredmet.ru

2.1.2Теплопоступления от источников искусственного освещения

Теплопоступления от источников искусственного освещения, Вт, определяются по формуле:

(2)

где Е – общая освещенность помещения, лк, /1, табл.3.2/;

F – площадь пола помещения, м2;

q0CB – удельные тепловыделения от источников искусственного освещения, Вт/(кв.м2 лк), /1, таблЗ.З/;

– доля теплоты, поступающей в помещение: при установке ламп накаливания, снабжённых местными отсосами, равна 0,15.

200*272*0,067*0,15=546,72 Вт

2.1.3Теплопоступления от солнечной радиации через покрытие

Теплопоступления от солнечной радиации через покрытие , Вт, определяются по формуле:

(3)

где Fn – площадь поверхности покрытия, м2;

qn – тепловой поток поступающий через 1 кв.м покрытия, Вт/кв.м, /1, табл.3.5/.

272*17=4624Вт

2.1.4Теплопоступления от системы отопления

Теплопоступления от системы отопления, Вт, определяются по формуле:

(4)

где qуд – удельная тепловая характеристика здания, Вт/(куб.м2 град), /1, табл.3.1/

VH – объем по наружным обмерам, м3.

Kt – поправочный коэффицент на наружную температуру воздуха, принятый по /1, стр.51/.

0,43*1360*(16+27)*1=25146,4 Вт

2.1.5Теплопотери через наружные ограждения

Теплопотери через наружные ограждения, Вт, определяются по формуле:

(5)

– то же, что и в формуле (5).

Qогр=0,43*1360*(16+27)*1=25146,4 Вт

Qогр= Qот

­­­­­­­

2.2Расчёт влагопоступлений

Количество поступающей влаги в помещение, г/ч, определяется по формуле:

* n (6)

где qвл – количество влаги выделяемой человеком, г/ч, /2, табл.2.2/

ТПГ: Gмвл=122*200=24400г/ч

Gжвл=122*200*0,85=20700 г/ч

Gдвл=122*100*0,75=9150 г/ч

Gлвл=24400+20700+9150=54250 г/ч=54,3 кг/ч

ХПГ: Gмвл=59*200=11800 г/ч

Gжвл=59*200*0,85=10030г/ч

Gдвл=59*100*0,75=4425г/ч

Gлвл=11800+10030г +4425=26255г/ч =26,3кг/ч

2.3Расчёт поступления углекислого газа

Количество углекислого газа поступающего в зрительный зал, л/ч, определяется по формуле:

(7)

где qco2 – количество двуокиси углерода, выделяемой человеком, л/ч,/2, табл.2.2/

Gмсо2=25*200=5000 л/ч

Gжсо2=25*200*0,85=4250л/ч

Gдсо2=25*100*0,75=1875л/ч

Gлсо2=5000+4250+1875=11125л/ч=11,1 кг/ч

2.4 Тепловой баланс помещения

Тепловой баланс является разностью между общими теплопоступлениями и теплопотерями.

Для ТПГ:

∆Qn=64525+546,72+4624=69695,72

∆Qя=20236+546,72+4624=25406,72

Для ХПГ: ∆Qn=69331+546,72=69877,72

∆Qя=52243+546,72=52789,72

Тепловой баланс зрительного зала ДК приведён в табл.3

Период

года

Тепло

Тепловыделения, Вт

Вт

кг/ч

г/ч

Вт/м

Теплый

Полное

64525

546,72

4642

69695,72

54,3

11125

51,2

Теплый

Явное

20236

546,72

4642

25406,72

54,3

11125

18,7

Холодный

Полное

69331

546,72

25146,4

25146,4

69877,72

26,3

11125

51,4

Холодный

Явное

52243

546,72

25146,4

25146,4

52789,72

26,3

11125

38,8

studfiles.net

МИР КЛИМАТА №9 (2001) : Архив журнала : Главная

Уважаемые читатели! Редакция журнала продолжает публикацию отдельных глав книги “Системы вентиляции и кондиционирования. Теория и практика”, подготовленной специалистами компании “Евроклимат”.

Теплопоступления от ламп и осветительных приборов.

В настоящее время в основном используются два типа осветительных приборов: лампы накаливания и люминисцентные лампы.

Теплопоступления от ламп накаливания (Qосв) определяются по формуле:

Qосв=h·Nосв,

где h=0,92–0,97 — коэффициент перехода электрической энергии в тепловую;

Nосв — установочная мощность ламп.

Световая нагрузка должна быть задана. Если она неизвестна, то для предварительных расчетов для хорошо освещенных помещений можно принимать

Nосв = 50–100 Вт/м2.

При использовании люминисцентных ламп принимают h=0,5–0,6.

В некоторых помещениях, особенно в таких, как магазины, выставочные залы, торговые залы и пр., нагрузка от осветительных приборов составляет существенную часть в общей тепловой нагрузке. В торговом деле освещение является определяющим условием для успешных продаж, и освещение организовано, главным образом, внутри помещения. Кроме того, в современных учреждениях освещение поддерживается в рабочем состоянии на протяжении целого рабочего дня. Однако необходимо учитывать, что тепловыделения от осветительных приборов могут и не совпадать по времени с тепловыделениями от солнечной радиации и др. Поэтому, в зависимости от месторасположения светильников и принятой схемы кондиционирования воздуха, необходимо определить количество тепла, подлежащего ассимиляции от электросветильников.

Чтобы определить количество выделяемого в окружающее пространство тепла, необходимо также учитывать тип осветительных приборов, устанавливаемых на подвесном потолке.

Приведем три типичных случая:

Помещения с подвесным невентилируемым потолком. Элементы освещения встроены в подвесном потолке (рис. 1). При такой установке 50% выделяемого тепла уходит непосредственно в помещение, а остальные 50% вначале задерживаются на некоторое время в самом подвесном потолке и только затем поступают в помещение. Таким образом, все 100% выделенного тепла поступают в помещение.

 

Рис. 1. Невентилируемый потолок со встроенным осветительным плафоном. 100% выделенного тепла поступают в окружающее пространство: 50% непосредственно и остальные 50% косвенно

 

Помещения с вентилируемым подвесным потолком. Подвесной потолок используется как вытяжной короб, а окружающий воздух помещения поступает в короб через специальные отверстия или решетки (рис. 2). Около 40% выделяемого тепла поступает непосредственно в помещение. Из оставшихся 60% часть тепла уносится обменным воздухом (около 30–40%), а остальное тепло (20–30%) впоследствии тоже поступает в помещения, что в сумме составляет 60–70% от всего выделенного тепла.

Рис. 2. Вентилируемый подвесной потолок, используемый в качестве вытяжного короба, со встроенным осветительным плафоном. Выделяемое тепло в количестве около 60–70% поступает в окружающее пространство помещения

 

В помещении с вентилируемым потолком и с вытяжкой через плафон (рис. 3).

 

Рис. 3. Вентилируемый потолок с вытяжкой воздуха через осветительный плафон

 

Прямое поступление тепла в помещение составляет до 30%, из остальной части выделенного тепла (70%) около 40–50% отбирается вытяжным воздухом, в то время как 20–30% возвращается в помещение, поэтому количество тепла, поступающего в помещение, составляет 50% от общего.

В отношении некоторых учреждений могут применяться коэффициенты одновременности использования освещения с учетом отсутствия служащих.

Упрощенная экспресс-методика расчета теплопритоков.

Данная экспресс-методика в основном используется для разработки СКВ на базе несложного (в проектном отношении) климатического оборудования, такого, как: кондиционеры сплит-систем, а также кондиционеры оконного типа и моноблочного исполнения.

Для подбора необходимого по холодопроизводительности кондиционера надо рассчитать тепло, поступающее в помещение от солнечной радиации, освещения, людей, оргтехники и т. д.

Основные теплопритоки в помещение складываются из следующих составляющих:

1) Теплопритоки, возникающие за счет разности температур внутри помещения и наружного воздуха, а также солнечной радиации Q1, рассчитываются по формуле:

Q1=V·qуд ,

где V=S·h — объем помещения;

S — площадь помещения;

h — высота помещения;

qуд — удельная тепловая нагрузка, принимается:

30–35 Вт/м3 — если нет солнца в помещении,

35 Вт/м3 — среднее значение;

35–40 Вт/м3 — если большое остекление с солнечной стороны;

2) Теплопритоки, возникающие за счет находящейся в нем оргтехники Q2.

В среднем берется 300 Вт на 1 компьютер в полной комплектации (или 30% от мощности оборудования).

3) Теплопритоки, возникающие от людей, находящихся в помещении Q3.

Обычно для расчетов принимается:

1 человек — 100 Вт (для офисных помещений),

100–300 Вт (для ресторанов, помещений, где люди занимаются физическим трудом),

Q = Q1+ Q2 + Q3.

К подсчитанным теплопритокам прибавляется 20% на неучтенные теплопритоки:

Qобщ = (Q1 + Q2 + Q3)·1,2 Вт.

В случае использования в помещении дополнительного тепловыделяющего оборудования (электроплит, производственного оборудования и т. п.) соответствующая тепловая нагрузка должна быть также учтена в данном расчете.

Принципы выбора систем кондиционирования воздуха и вентиляции.

Задача выбора системы кондиционирования или вентиляции должна решаться на основе технико-экономического сравнительного анализа нескольких возможных вариантов (2-х, 3-х и более).

Для этого необходимо всесторонне рассмотреть и оценить объект по предъявляемым к нему требованиям, основными среди которых являются:

Санитарные требования:

  • Необходимо поддерживать определенную температуру или температуру и влажность. Следует отметить, что поддержание влажности существенно удорожает проект.
  • Подавать в помещения свежий воздух (естественным или механическим путем) или использовать рециркуляционные системы.
  • Удалять воздух через местные отсосы или общеобменной вытяжкой (в производственном корпусе), либо с использованием естественной вытяжки (в жилых помещениях).

Архитектурно-строительные требования:

  • Возможность установки наружного блока кондиционера на фасаде здания, а внутреннего блока кондиционера — в помещении (шкафные кондиционеры) или в подшивном потолке (сплит-система с притоком свежего воздуха).
  • Возможность установки центрального кондиционера на техническом этаже или крышного кондиционера Roof-Top на крыше здания.
  • Возможность проложить по зданию или помещению коммуникации воздуховодов, трубопроводов (особенно в реконструируемых зданиях).

Противопожарные требования по категориям помещений:

  • Нормальные условия — помещения категории “Д” или пожароопасные “В”, или взрывопожароопасные “А” и “Б” и соответствующие этим категориям проектные решения (установка обратных и огнезадерживающих клапанов, раздельная установка блоков оборудования, различные схемы прокладки коммуникаций).

Эксплуатационные требования:

  • Допустимо ли обслуживание и управление системой с центрального пульта управления или необходимо управлять (регулировать параметры) автономно (например, в случае, когда одна часть помещений ориентирована на юг, другая — на север) и необходимо обеспечить раздельные режимы работы оборудования на группы помещений.

Надежность системы:

  • Особенно важны требования к надежности в прецизионном кондиционировании при точном поддержании микроклиматических параметров различных технологических процессов.

Экономические требования:

  • Необходимо оптимизировать цену, сравнивая в проекте оборудование различных производителей и различного класса. Для объекта необходимо разработать несколько принципиальных вариантов систем на базе различных типов оборудования и провести их сравнительную оценку.

Проектирование систем кондиционирования воздуха.

Разработка системы кондиционирования офисного помещения на базе кондиционеров сплит-систем

Исходные данные:

Подбор кондиционеров сплит-систем рассмотрим на примере офисного помещения площадью S=20 м2, высотой =3 м, в котором находятся 2 компьютера и постоянно работают 3 человека.

В помещении есть возможность естественного проветривания, поэтому нет необходимости проектировать приточно-вытяжную вентиляцию, а целесообразно установить кондиционер сплит-системы, работающий на рециркуляционном воздухе.

Компрессорно-конденсаторный блок такого кондиционера устанавливается за пределами помещения на улице, а в помещении устанавливается внутренний блок сплит-системы. Между собой внутренний и наружный блоки связаны фреоновыми трубопроводами в изоляции.

Для выбора кондиционера по холодопроизводительности необходимо рассчитать теплоизбытки в помещении, в которые входит тепло от людей, от оргтехники, от освещения и т. д.

Теплопоступления для рассматриваемого помещения рассчитываем по экспресс-методике:

Q1 = S·h·q = 20·3·35 = 2100 Вт

Q2 = 300·2 = 600 Вт

Q3 = 100·3 = 300 Вт

Qобщ= 2100 + 600 + 300 = 3000 Вт

Модель кондиционера сплит-системы выбираем из типового ряда по ближайшему (с учетом запаса) значению холодопроизводительности.

Для обеспечения круглогодичной работы кондиционера остановим свой выбор на оборудовании фирмы DELONGHI, т. к. кондиционеры этой фирмы эффективно работают в режиме “теплового насоса” в холодное время года. Ряд технических решений, реализованных в конструкции кондиционеров DeLonghi, обеспечивает работу при низких температурах наружного воздуха (до tн=–20°С).

Технические решения, реализованные в данных моделях, включают:

  1. Микропроцессор и все системы контроля и управления расположены во внутреннем блоке. За счет этого существенно повышается надежность работы автоматики, т. к. все элементы находятся в зоне положительных температур.
  2. Автоматическое снижение скорости вращения вентилятора внешнего блока позволяет сохранить арактеристики работы конденсатора при низких температурах.
  3. Система управления не допускает образования льда на внешнем блоке. Микропроцессор включает режим разморозки в момент возможного образования инея (у других кондиционеров режим разморозки включается после появления ледяного нароста, и большая часть электроэнергии тратится на растопку льда).
  4. Подогрев картера компрессора во внешнем блоке обеспечивает пуск и безопасную работу зимой.
  5. Внешний блок кондиционера изготовлен из морозоустойчивых материалов.

В рассматриваемом нами офисном помещении нет фальш-потолка, поэтому нет возможности установить сплит-систему скрытой установки. Мы остановимся на модели СР-30 настенного типа, т. к. по холодопроизводительности Nх=3,5 кВт—это ближайшее (с учетом запаса) значение к рассчитанным теплоизбыткам помещения. Модели “СР” отличаются изящным дизайном и идеально подходят к интерьеру современного офиса.

Комфортные условия в помещении в большой степени зависят от правильного распределения воздушного потока. Если выходящий из кондиционера поток холодного воздуха направлен вниз и попадает на человека, это неблагоприятно сказывается на его здоровье. Кондиционер СР-30 имеет специальную конструкцию воздухораздающего устройства. На выходе воздуха из внутреннего блока кондиционера установлены подающие шторки, конструкция которых позволяет направить поток воздуха горизонтально, что способствует равномерному распространению охлажденного воздуха по всему помещению.

Внутренний блок кондиционера устанавливаем на стене на высоте h=2,5 м, т. е. выше рабочей зоны помещения.

Наружный блок устанавливается на улице, на стене здания под окном (для удобства монтажа и обслуживания кондиционера).

Между внутренним и наружным блоками прокладываются фреоновые трубопроводы и электрический соединительный кабель. От внутреннего блока трубки вместе с кабелем опускаются вниз по стене до отметки установки наружного блока. Для прохождения трассы через наружную стену в ней сверлится отверстие Ø60 мм, и через него трубопровод выводится на улицу для подключения к наружному блоку. Затем отверстие герметизируется. Если монтаж кондиционера ведется в уже отремонтированном помещении, то трубопроводы и кабель закрываются декоративными коробами. Если же монтаж кондиционера ведется до ремонта помещения, то есть возможность все коммуникации спрятать в стене. Для этого делается штроба 100 ґ 60 мм, в которой прокладываются все трубки и кабель, и после окончания монтажа кондиционера штроба заштукатуривается.

При работе кондиционера в режиме охлаждения во внутреннем блоке образуется конденсат, поэтому необходимо предусмотреть отвод конденсата (дренажа) от внутреннего блока. Дренаж можно подключить к системе существующей канализации, если она находится где-нибудь поблизости. При этом дренажную трассу необходимо проложить с постоянным уклоном (10 мм на 1 м длины), а если это выполнить невозможно, необходимо установить на дренажной линии специальный дренажный насос, который обеспечит необходимый напор в системе отвода конденсата.

 

Рис. 4.

 

В нашем примере (Рис. 4) рассматриваемое помещение находится слишком далеко от системы канализации, и нет возможности проложить дренажную трассу с постоянным уклоном, поэтому дренажная трубка выводится на улицу. Дренаж прокладывается вместе с фреоновым трубопроводом и закрывается одним декоративным коробом. Через отверстие в стене вместе с фреоновым трубопроводом дренажная трубка выводится на улицу. Мы остановили свой выбор на модели СР-30, которая может работать при отрицательных температурах, поэтому не исключена возможность включения его в режим охлаждения, когда на улице температура воздуха будет ниже 0°С. Для предотвращения замерзания конденсата и образования ледяной пробки на выходе дренажной трубки из стены устанавливается специальный обогреватель дренажа. Конструкция этого устройства основана на работе саморегулирующегося нагревательного кабеля.

Для подключения кондиционера сплит-системы к однофазной электросети (220 В, 50 Гц) необходимо установить для него в распределительном щите персональный автоматический выключатель и проложить трехжильный кабель до места установки кондиционера.

Для модели СР-30, потребляемая мощность которой 1,2 кВт, устанавливается однофазный автоматический выключатель на 10 А. Величина тока отсечки выключателя должна составлять не менее 7-ми значений номинальных токов.

Продолжение следует…


О чём мы писали 15 лет назад

  • Холодное лето 2003-го
    Перед началом прошедшего сезона все участники рынка дружно прогнозировали его рост. Разброс мнений наблюдался только в том, насколько увеличится рынок. И действительно, все объективные показатели говорили о том, что продажи пойдут в гору. В первом квартале 2003 года рост ВВП составил рекордные 7–8%, цены на кондиционеры в очередной раз упали, притом, что доходы населения в долларовом исчислении уже который сезон растут на 15% в год.
    Как противостоять опасности возгорания воздуховодов
    За последнее время резко увеличилось количество пожаров и даже взрывов внутри воздуховодов систем вентиляции и кондиционирования. Несмотря на то, что подобные пожары происходили всегда, изменения, произошедшие в последние время, стали причиной возникновения куда более крупных возгораний с участием большего числа людей.
    Анализ перспективных систем теплоснабжения
    В этом докладе рассмотрены вопросы, связанные с переходом систем централизованного теплоснабжения на децентрализованное. Рассмотрены положительные и отрицательные стороны обеих систем. Представлены результаты проведенного сопоставления этих систем.

mir-klimata.info

3. Определение количества вредностей (избыточной теплоты, влаги, углекислого газа), поступающих в расчетное помещение для трёх периодов года

Для зала собраний 46 человек площадью 58,8 м2 необходимо определить воздухообмен. Для этого найдём количество вредностей, поступающих в данное помещение:

-избыточного тепла

-влаги

-углекислого газа.

Расчёт ведём для трёх периодов года.

3.1. Расчет теплопоступлений от людей

Избыточная теплота (избытки явной теплоты) – остаточное количество теплоты (за вычетом теплопотерь), поступающей в помещение при расчетных параметрах наружного воздуха после осуществления всех технологических мероприятий по их уменьшению. Избыточная теплота определяется как сумма теплопоступлений от людей, искусственного освещения, электродвигателей, нагретого оборудования, остывающих материалов, через заполнения световых проемов, через массивные ограждающие конструкции и др.

Согласно [1 п 2.3] теплопоступления от людей, Вт:

где qчел – тепловыделения одним взрослым человеком (мужчиной), согласно [1, табл2.3] для теплого периода года () q = 65 Вт, для холодного и переходного периодов года () q=108 Вт.

n – расчетное количество человек; n=46.

Расчет теплопоступлений от людей приведен в таблице 3.1.

Таблица 3.1.

Расчет теплопоступлений от людей

Наименование величины

Обозначение

Ед. изм.

Формула или источник информации

Значения величин

Теплый период

Холодный период

Переходные условия

1

Теплопоступления от людей

Вт

2990

4968

4968

1.1

Количество людей

чел

Согласно заданию

46

46

46

1.2

Тепловыделения одним человеком (взрослым мужчиной)

Вт

[1 табл 2.3.] [3]

65

108

108

1.3

Температура окружающего воздуха, 0С

0С

[1 пример 2.2]

25,2

18

18

1.4

Коэффициент

1

1

1

3.2. Расчет теплопоступлений от искусственного освещения

Тепловыделения от источников искусственного освещения, если суммарная мощность источников освещения неизвестна, Вт:

где Е – нормируемая освещенность помещения, согласно таблице 2.5. [1] Е=200Лк;

F – площадь пола расчетного помещения; F=58,8 м2;

qосв – удельное тепловыделение от ламп; ;

осв – доля теплоты, поступающая в помещение. Для люминесцентных ламп, встроенных в чердачное перекрытие или подвесной потолок осв=0,4.

Результаты расчетов сведены в табл. 3.2.

Таблица. 3.2.

Расчет теплопоступлений от искусственного освещения

Наименование величины

Обозначение

Ед. изм.

Формула или источник информации

Значения величин

Теплый период

Холодный период

Переходные условия

1

Теплопоступления от искусственного освещения

Вт

282

282

1.1

Нормируемая освещенность помещения

Лк

Табл.2.5 [1]

200

200

200

1.2

Площадь пола расчетного помещения

М2

Согласно за-

данию

58,8

58,8

58,8

1.3

Удельные тепловыделения от ламп

Вт/(м2лк)

Табл.2.6 [1]

0,06

0,06

0,06

1.4

Доля теплоты, поступающей в помещение

0,4

0,4

0,4

studfiles.net

Подробный расчет теплопоступлений и теплопотерь

Теплопоступления за счет разности температур (теплопередачи)

В летний период теплопоступление через внешние конструкции (стены, потолок) как правило, положительно. Расчет усложняется тем, что температура воздуха сильно меняется в течение суток, а солнечное излучение дополнительно нагревает внешнюю поверхность здания. Зимой тепло теряется через внешние конструкции. Колебания температуры в зимний период меньше, а нагрев поверхностей солнечным излучением незначителен.

Теплопоступление (или потеря тепла) за счет разности температур зависит не только от внешних условий, но и от температуры внутри помещения.

Расчет тепловых поступлений за счет теплопередачи выполняется согласно строительным нормативам СниП 11-3-79.

Расчет количества тепла

Количество тепла Qогр, переданное путем теплопередачи через ограждение (стену) площадью S, имеющее коэффициент теплопередачи k, вычисляется по формуле:

Qогр = S*k*(T – t)*Y

Здесь T – расчетная наружная температура, t – расчетная внутренняя температура, а Y – поправочный коэффициент, значение которого выбирается согласно СНиП 2.04.05-91.

Расчетные наружные температуры зависят от региона и приведены в ТАБЛИЦЕ, а внутренние температуры выбираются с учетом комфортности или технологических требований, в зависимости от назначения помещения.

Эта формула упрощена и не учитывает ряда факторов. Чтобы учесть направление относительно сторон света, солнечную радиацию, нагревающую стены и т.д., нужно вводить в данную формулу поправки. Они являются составными частями коэффициента Y.

От чего зависит поглощение солнечного излучения?

Поглощение солнечного излучения ограждением зависит от следующих факторов:

  • Цвета стен: коэффициент поглощения тепла достигает 0.9 для темного цвета наружных стен и лишь 0.5 – для светлых стен.
  • Тепловых характеристик стен: чем массивнее стена, тем больше задержка поступления тепла в помещение. Тепловая нагрузка при нагреве массивной стены распределяется на более длительное время. Если же стены тонкие и легкие, то тепловые нагрузки повышаются и быстро изменяются при изменении внешних условий. При этом требуются более дорогие и мощные установки кондиционирования.

Теплопоступления от солнечного излучения через остекленные проемы

Теплота солнечного излучения может значительно увеличивать теплопоступление в здание (например, в магазине с витринами). В помещение передается до 90% солнечного тепла, и лишь небольшая часть отражается стеклами. Наиболее интенсивно тепло излучения поступает летом, в ясную погоду.

Теплопоступление излучения учитывается в тепловом балансе здания только для летнего и переходного времени, когда наружная температура превышает +10 градусов.

Что влияет на поступление тепла излучения?

Поступление тепла солнечного излучения зависит от следующих факторов:

  • Рода и структуры материалов ограждения
  • Состояния поверхности (например, через грязное стекло пройдет меньше излучения)
  • Угла, под которым солнечные лучи падают на поверхность
  • Ориентации помещения по сторонам света (теплопоступления от радиации через окна, выходящие на север, вообще не учитываются)

За расчетную величину теплопоступлений от излучения принимается большая из двух величин:

  1. тепло, поступающее через остекленную поверхность той из стен, которая наиболее выгодно расположена относительно поступления тепла или имеющей максимальную световую поверхность
  2. 70% от тепла, поступающего через остекленные поверхности двух перпендикулярных стен помещения.

Как уменьшить поступление тепла от солнечного света?

Если нужно уменьшить теплопоступления от солнечной радиации, рекомендуется принимать следующие меры:

  • ориентировать помещения окнами на север
  • делать минимальное количество световых проемов
  • применять защиту от солнечных лучей: двойное остекление, побелку стекол, устройство штор, жалюзи и т.д.

При использовании комплексной защиты от солнца теплопоступления от излучения можно сократить практически вдвое, и мощность требуемой холодильной установки уменьшится на 10-15%.

Теплопоступления от инфильтрации воздуха

Под действием ветра разницы температур воздух может проникать в помещение через неплотности стен, окон, дверей и т.п. Это явление называют инфильтрацией.

Особенно сильна инфильтрация через окна и двери, расположенные с подветренной стороны. Масса воздуха, который инфильтруется через щель, вычисляется по формуле:

М = сумма (a*m*l)

Здесь a – коэффициент, который зависит от типа щелей, m – удельная масса воздуха, проникающего через 1 погонный метр щели, зависит от скорости ветра, l – длина щели.

Воздух, поступивший за счет инфильтрации в холодное время года, требует подогрева. Расход тепла составит

Q = M*c*(t-T)

Здесь с– теплоемкость воздуха, t – внутренняя расчетная температура, T – температура внешнего воздуха.

Если требуется лишь приблизительный подсчет расхода тепла на подогрев инфильтрованного воздуха, можно просто ввести поправку на теплопотери через инфильтрацию в размере 10-20% общей потери тепла.
В летний период наружный воздух может иметь температуру выше, чем в помещении, и тепловая нагрузка от инфильтрации будет положительна, то есть потребуется увеличить мощность охлаждения. Однако летом влияние инфильтрации воздуха меньше, потому что обычно меньше скорость ветра и разность внешней и внутренней температур.
Кроме того, вместе с воздухом в помещение поступает и дополнительная влага. Поэтому желательно герметизировать все ограждения. Если притворы окон и дверные проемы уплотнены, то инфильтрацию воздуха можно вообще не учитывать при составлении теплового баланса помещения.


Теплопоступления от людей

Количество тепла, выделяемое людьми в помещении, всегда положительно. Оно зависит от числа людей, находящихся в помещении, выполняемой ими работы и параметров воздуха (температуры и влажности).

Кроме ощутимого (явного) тепла, которое организм человека передает окружающей среде путем конвекции и лучистой энергии, выделяется еще и скрытое тепло. Оно тратится на испарение влаги поверхностью кожи человека и легкими.

От рода занятий человека и параметров воздуха зависит соотношение явной и скрытой выделяемой теплоты. Чем интенсивнее физическая нагрузка и выше температура воздуха, тем больше доля скрытого тепла, при температуре воздуха выше 37 градусов все тепло, выработанное организмом, выделяется путем испарения.

  • При любом виде деятельности – от сна до тяжелой работы – тепловыделение больше при низкой температуре окружающей среды.
  • Чем выше температура воздуха, тем больше скрытое тепловыделение и меньше явное тепловыделение.

При расчете тепловыделения от людей нужно принять во внимание, что в помещении не всегда будет находиться максимальное число людей. Среднее число людей, которые обычно будут находиться в помещении, определяют на основании опыта (например, число посетителей в магазине), или с помощью установленных коэффициентов (например, в учреждениях – 0.95 от общего числа сотрудников).

Таблица тепловыделения от людей в зависимости от температуры среды и физической нагрузки

Температура внешней средыТепловыделение в состоянии покоя, ВтТепловыделение при легкой нагрузке, ВтТепловыделение при тяжелой нагрузке, Вт
10 130 156 290
14 118 138 263
18 104 133 250
22 102 132 249
26 102 132 249
30 100 130 246
32 98 128 244

Замечание: приведены средние данные для взрослых мужчин. Считается, что женщины выделяют 85%, а дети – 75% теплоты и влаги, выделяемых мужчинами.


Теплопоступления от искусственного освещения

В помещениях сейчас используются два типа осветительных приборов: лампы накаливания и люминесцентные лампы. Количество тепла, поступившее от освещения, зависит от типа ламп, их мощности и способа их крепления в помещении.

Расчет теплоты от искусственного освещения

Теплопоступление от ламп рассчитывается по формуле:

Q = n*N

Здесь n – коэффициент перехода электроэнергии в тепловую. Он составляет около 0.95 для ламп накаливания и примерно 0.5 для люминесцентных ламп. N – мощность ламп. Если она заранее не известна, можно оценить ее из расчета 50 – 100 Вт/кв.м. для хорошо освещенных помещений.

При большом количестве ламп и постоянной их работе тепловая нагрузка от искусственного освещения может быть весьма велика. Если же известно, что не будут использоваться все светильники одновременно, нужно воспользоваться коэффициентом одновременности работы освещения, указывающим, какая часть мощности освещения в среднем будет задействована.

Зависимость тепловыделения от расположения ламп

Количество теплоты, выделяемое осветительными приборами, зависит и от их расположения в помещении. Например, если светильник закреплен в чердачном перекрытии, то лишь часть выделенного им тепла попадет внутрь помещения.

Если лампы встроены в подвесной невентилируемый потолок, то часть тепла сразу попадет в помещение, а остальное тепло задержится в подвесном потолке. Но поскольку потолок невентилируемый, то впоследствии и эта часть тепла выделится в помещение. Таким образом, в помещение попадут все 100% выделенного светильником тепла.

Если лампы встроены в подвесной вентилируемый потолок, который используют как вытяжной короб, то около 40% тепла сразу попадет в помещение. Часть остального тепла (примерно половина) унесется с вытяжным воздухом, а остаток попадет в помещение. Таким образом, в сумме помещение получит 60-70% выделенного светильником тепла.

Теплопоступления от оборудования и материалов

Количество теплоты, которая поступает в помещение от нагретого технологического оборудования и материалов, рассчитывают по технологической части проекта или определяют в соответствии с ведомственными указаниями.

Если температуры нагретых поверхностей известны, для расчета теплопоступлений можно использовать обычные формулы теории теплопередачи.

Нужно учесть поступление (или удаление) теплоты поверхностей воздуховодов, местных отсосов и т.д.

Передача тепла через стенки воздуховодов:

Q = K*S*(tср – t),

где K – коэффициент теплопередачи конструкции, S – площадь нагретой поверхности, tср – температура нагретой среды (например, воздуха в воздуховоде), t – температура воздуха в помещении.

Теплоотдача от нагретых поверхностей:

Q = a*S*(tпов – t),

где а – коэффициент теплоотдачи от поверхности к воздуху, S – площадь нагретой поверхности, tпов – температура нагретой поверхности, t – температура воздуха в помещении.

Например, для поверхности нагретой воды коэффициент теплопередачи а = (4.9 + 3.5v)*4.2 кДж/(час*кв.м.*градус). Здесь v – скорость движения воздуха у поверхности воды.

splitstream.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *