Узел ввода теплосети в здание – Узел ввода труб теплотрассы через стену здания. Герметизация проходов инженерных коммуникаций

Узлы управления местными системами отопления

Категория: Водоснабжение и отопление


Узлы управления местными системами отопления

Из наружных тепловых сетей вода поступает в здания к узлам управления (рис. 255), установленным на вводах при помощи которых включают, выключают, контролируют и регулируют местные системы.

У ввода в здание на подающем и обратном трубопроводах установлены задвижки для отключения местной системы от наружной сети. Для пуска системы в зимний период во избежание замерзания трубопровода от тепловой магистрали до узла управления устраивают обводную линию, которая действует во время пуска системы зимой. Вода с температурой выше 100 °С из теплосети поступает в водоструйный элеватор, где она смешивается с частью обратной воды из местной системы отопления.

Требуемая температура смешанной воды, поступающей в систему, достигается регулированием задвижками у элеватора. Обратная вода, не подмешиваемая к горячей, из системы направляется через водомер в теплоаую сеть. Водомер соединен с тепломером штуцерами.

Водомер устанавливают на обратной линии, в которой теплоноситель имеет более низкую температуру, что обеспечивает нормальные условия его работы.
Чтобы контролировать температуру воды, устанавливают три термометра: до элеватора, после элеватора и на обратной линии.

Давление контролируют тремя манометрами, установленными на одинаковом уровне. Под манометрами расположены трехходовые краны. Потери давления в системе и сопротивление элеватора составляют не менее 8—10 м вод. ст.

Ввод оборудован регулятором, автоматически поддерживающим постоянный расход воды. В отдельных случаях устанавливают также регулятор подпора.

Рис. 1. Узел управления местными системами отопления: 1 —- трехходовой кран, 2 — задвижки, 3 — пробочные краны, 4, 12 — грязевики, 5 — обратный .клапан, 6 — дроссельная шайба, 7 — штуцер для тепломера, 8 — термометр, 9 — манометр, 10 — элеватор, 11 — тепломер, 13 — водомер, 14 — регулятор расхода воды, 15 — регулятор подпора, 16 —. вентили, 17 — обводная линия

Для улавливания грязи, попавшей в сеть, ставят грязевики со спускными пробочными кранами. Для регулирования сопротивления после регулятора устанавливают обратный клапан и дроссельную шайбу.



Водоснабжение и отопление – Узлы управления местными системами отопления

gardenweb.ru

Тепловой узел. Схема теплового узла. Тепловые сети

Тепловой пункт является главным элементом отопительной системы, от эффективности работы которого во многом зависит качество горячего водоснабжения и отопления подключенного объекта, а также работа центральной системы. По этой причине тепловой узел, схема теплового узла должны проектироваться для каждого объекта индивидуально, с учетом технических особенностей и нюансов.

Назначение

Тепловой пункт располагается в обособленном помещении и представляет собой совокупность элементов, предназначенных для распределения тепла, которое поступает из тепловой сети к отопительной и вентиляционной системе, а также горячему водоснабжению производственных и жилых помещений, в соответствии с установленными для них параметрами и видом теплоносителя.

Тепловой узел (схема теплового узла ниже) позволяет не только распределять тепло по потребителям, но и учитывать затраты на его потребление, а также обеспечивать экономию энергетических ресурсов. Он поддерживает в здании комфортные условия при экономичном расходовании ресурсов посредством автоматического регулирования отпуска теплоты на отопительную, вентиляционную системы, а также горячее водоснабжение в соответствии с установленным расписанием, с учетом температуры наружного воздуха.

Типовая комплектация

Для обеспечения надежной эксплуатации теплового пункта важно, чтобы он был укомплектован следующим минимальным набором технологического оборудования:

  • Два пластинчатых теплообменника (разборные или паяные) для горячего водоснабжения и системы отопления.
  • Насосное оборудование для перекачки теплоносителя к отопительным приборам здания.
  • Система водоподготовки.
  • Система автоматической регулировки температуры и количества теплоносителя (расходомеры, контроллеры, датчики) для учета нагрузок на теплоснабжение, контроля параметров теплоносителя и регулирования расхода.
  • Технологическое оборудование – регуляторы, контрольно-измерительные приборы, обратные клапаны, запорная арматура.

Стоит обратить внимание, что комплектация теплового узла технологическим оборудованием зависит во многом от того, каким образом тепловые сети подключены к отопительной системе и горячему водоснабжению.

Основные системы

Тепловой пункт состоит из следующих основных систем:

  • Отопительная система – поддерживает заданную температуру воздуха в помещении.
  • Холодное водоснабжение – обеспечивает в жилых помещениях необходимое давление.
  • Горячее водоснабжение – предназначено для обеспечения здания горячей водой.
  • Вентиляционная система, обеспечивающая подогрев воздуха, который поступает в систему вентиляции здания.

Тепловой узел: схема теплового узла независимая

Подобная схема представляет собой совокупность оборудования, подразделяемого на несколько узлов:

  • Подающий и обратный трубопровод.
  • Насосное оборудование.
  • Теплообменники.

В зависимости от типа схемы будет различаться оборудование, из которого состоит тепловой узел. Схема теплового узла, разработанная по независимому принципу, будет укомплектована системой теплообменников, используемых для регулировки температуры циркулирующей жидкости перед ее подачей к потребителю. Для такой схемы характерен ряд преимуществ:

  • Точная настройка системы.
  • Экономичное теплопотребление.
  • За счет регулирования температурного режима при различной температуре наружного воздуха для потребителей создаются более комфортные условия.

Зависимая схема

Данная схема подключения теплового пункта является более простой. В таком случае теплоноситель попадает к потребителю напрямую из тепловой сети, без каких-либо преобразований.

С одной стороны, такой способ подключения не требует установки дополнительного оборудования, соответственно, и дешевле обходится. Но в процессе эксплуатации подобная установка неэкономична, так как совершенно не регулируется – температура циркулирующей жидкости всегда будет такой, какую задал поставщик тепловой энергии.

Принцип действия

Теплоноситель от котельной по трубопроводам поступает в подогреватели отопительной системы и горячего водоснабжения квартиры, после чего направляется по обратному трубопроводу в тепловые сети, а затем котельную для повторного использования.

Посредством насосного оборудования система холодного водоснабжения поставляет воду в систему, где происходит ее распределение: одна часть направляется в квартиры, а другая уходит в циркуляционный контур системы горячего водоснабжения для последующего подогрева и распределения.

Обслуживание

Как уже было сказано выше, тепловой узел состоит из большого количества элементов – входные и выходные трубопроводы, коллекторы, теплообменные аппараты, насосы, терморегуляторы, контрольно-измерительные приборы и другое. Это довольно непростая система, поэтому обслуживание тепловых узлов должно состоять из следующих основных этапов:

  • Осмотр элементов отопительной системы (КИП, насосы, теплообменники). В случае необходимости производится замена или ремонт этих узлов, а также очистка и промывка теплообменников.
  • Осмотр вентиляционной системы (запорная арматура КИП, приборы автоматической регуляции).
  • Осмотр системы горячего водоснабжения.
  • Проверка узла подпитки.
  • Контроль параметров теплоносителя (расход, температура, давление).
  • Осмотр терморегуляторов горячего водоснабжения.
  • Осмотр других устройств, которые предполагает установка тепловых узлов.

Проектирование

Грамотно разработанная проектная документация имеет определяющее значение. Проект теплового узла может пригодиться при возникновении любых технических вопросов от организации, поставляющей теплоснабжение, а также при повторных ежегодных допусках.

Ведь еще на этапе проектирования определяется, какие будут установлены приборы, каким образом будет происходить регулирование теплогидравлического режима, в каком месте будет смонтировано оборудование, и какой в результате получится стоимость монтажа теплового узла на объекте.

fb.ru

СНиП 41-02-2003 Актуализированная редакция СП 124.13330.2012 Тепловые сети

Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭ

files.stroyinf.ru

Ввод теплосети в здание – 11 Декабря 2014

1. Проект технического перевооружения теплоснабжения школы.

2. Проект автомойки для пром. предприятия.

3. Проект строительства КЛ 6кВ. Переход через мост.

4. Проект реконструкции ВЛ 110 кВ.

5. Схемы АВР от ABB.

6. Проект молниеотвода Н=30,55 м. с прожекторной площадкой на высоте Н=22,81 м.

7.

Проект стоянки для тяжелой техники.

8. Проект строительства водоспускной ЖБ трубы через дорогу.

9. Коллекция элементов AutoCAD.

10. Чертежи промышленных манипуляторов.

11. Промышленная гидроизоляция Drizoro.

12. УГО для проектирования ЛЭП.

13. Чертежи аппаратных средств ABB EIB KNX.

14. Типовой проект РП с питанием от 1-ого ввода.

15. Проект электроснабжения школы на 70 квартир.

16. Чертеж футбольного поля по стандартам FIFA.

17. Элементы ГП промышленного предприятия

18. Строительство фундаментов под опоры ВЛ 110 кВ

19. Монтажная часть ВЛ 110 кВ

20. Тепловые сети промышленного предприятия

21. Конструкции для газовых трубопроводов ВД

22. Инженерные коммуникации промышленного предприятия

23. Изоляция резервуаров масла

24. Анодное заземление

25. Ограждение площадки завода

26. Дренажная емкость

27. СКУД промышленного предприятия

28. Опоры газовых трубопроводов

29. Звукопоглощающая изоляция трубопроводов

30. Емкость для сбора конденсата

31. Жалюзийная решетка для склада ГСМ

32. Резервуары для нефтепродуктов

33. Узел прохода воздуховодов через стакан

34. Пожарная сигнализация склада ГСМ

35. Площадка для резервуаров

36. Площадки обслуживания

37. Фундамент для ДЭС

38.

Заземление энергоблока

39. Аккумуляторная

40. Стропильная кровля здания

41. Крепление дефлекторов к кровле

42. Установка дымовой трубы

43. Отопление калорифером

44. Газовое пожаротушение

45. Эскизы установки датчиков

46. Благоустройство кабинетов руководства

47. Пути подвесного транспорта

48. Встроенная КТП

49. Ввод теплосети в здание

50. Узел управления системой отопления

51. Контроль загазованности мастерской

52. Газоходы котельной

53. Слуховое окно

54. Осмотровая канава

55. Автоматизация воздушных завес

56. Установка концевого выключателя

57. Комплексная сеть связи

58. Шкаф для зарядки аккумуляторов

59. Свайной фундамент для склада

60. Комната хранения оружия

61. Металлические конструкции теплого склада

62. Вентиляция холодного склада

63. Водопровод холодного склада

64. Металлическая крыша здания

65. Пожарная сигнализация пункта охраны

66. Отопление пункта охраны

67. Локальная сеть АБК

68. Телефонная станция АБК

69. Фундамент антенной опоры

70. Фундамент силового трансформатора ПС 110 кВ

71. Устройство уклона трансформаторов

72. Резервуары и поддоны ПС 110 кВ

73.

Плавка гололеда ПС 110 кВ

74. Волновая эстакада

75. Металлический навес

76. Определение расходов воды

77. Заземление столовой

78. Вентустановка столовой

79. Охранная сигнализация столовой

80. Технологическое оборудование столовой

81. Меблировка столовой

82. Радиофикация столовой

83. Электроосвещение водоблока

84. Отопление водоблока

85. Водоснабжение водоблока

86. Проверка габаритов ОРУ 110 кВ

87. Блок выключателя ОРУ 110 кВ

89. Блок линии ОРУ 110 кВ

90. Гирлянда изоляторов ПС70Е

91. Заземление ПС 110 кВ

92.

Установка разъединителя РГ.1-35

93. Установка оборудования ВЧ-связи

94. Колодец с маслоуловителем ПС 110 кВ

95. Ввод кабеля в ОПУ

96. Установка трансформатора ТМН-6300

97. Установка заземлителя ЗОН-110М

98. Токопроводы 10 кВ

99. Установка трансформатора ТМ-100

100. Монтажная схема трансформатора ТМН

101. Вентиляция ЗРУ-10 кВ

102. Оперативный ток для ОРУ 110 кВ

103. Шкаф управления оперативным током

104. Собственные нужды ЗРУ-10 кВ

105. Доска проходная с изоляторами

106. Освещение ЗРУ 10 кВ

107. Кабельные трассы ЗРУ 10 кВ

108. Передвижная площадка для котельной

109. Телемеханизация ПС 110 кВ

110. Расчет токов КЗ в сети 10 кВ

111. Топливозаправочный пункт

112. Автоматизация котельной

113. Эскизы установки датчиков

114. Котел водогрейный

115. Резервуар метанола

116. Резервуар керосина

117. Пробка сливная

118. Заземление склада метанола

119. Автоматизация склада метанола

120. Пожарная сигнализация склада метанола

121. Водоснабжение склада метанола

122. Технологическая часть АГНКС

123. Емкость дренажная

124. Складское хозяйство

125. Площадка очистных сооружений

126. Станция по очистке бытовых стоков

127. Емкость-накопитель очищенной воды

128. Площадка для осадка

129. Мойка машин. Дренажные приямки

130. Мойка машин. Свайной фундамент

131. Островок заправочного поста

132. Элементы навеса АГНКС

133. Дистанционное управление АГНКС

134. Пожарная сигнализация. Складское хозяйство

135. Технологическая часть. Складское хозяйство

136. Электроснабжение складского хозяйства

137. Охранная сигнализация. Складское хозяйство

138. Заземление очистных сооружений

139. Очистные сооружения. Конструкции металлические

140. Очистные сооружения. Прокладка кабелей

141. Очистные сооружения. Водоснабжение

142. Очистные сооружения. Отопление

143. Очистные сооружения. Вентиляция

144. Очистные сооружения. Автоматизация

145. Очистные сооружения. Пожарная сигнализация

146. Установка для очистки дождевых вод

147. Установка для очистки дождевых вод. Автоматизация

148. Технология очистки дождевых стоков

149. Вентиляция резервуара очищенной воды

150. Площадка для осадка. Водоотведение

151. Мойка машин. Строительство кровли

152. Мойка машин. Электроснабжение

153. Мойка машин. Автоматизация

154. Мойка машин. Пожарная сигнализация

155. Мойка машин. Системы связи

156. Стойка для КТП 10 кВ

157. КТП 10 кВ электроснабжение

158. Насосная второго подъема. Фундаменты

159. Насосная второго подъема. Отопление

160. Насосная второго подъема. Водоснабжение

161. Насосная второго подъема. Освещение

162. Насосная второго подъема. Автоматизация

163. Подпорная стена

164. Газовое пожаротушение АБК

165. Склад инвентаря. Пожарная сигнализация

166. Склад масел в таре. Пожарная сигнализация. Рабочие чертежи марки ПС

167. Канализационная насосная станция. Фундаменты

168. 2КТПП630. Электроснабжение

169. Внутриплощадочные сети. Прожекторное освещение

170. Электроснабжение заградительных огней

171. Сигнальное освещение антенной опоры

172. Эстакада маслопроводов

173. Кабельная эстакада

174. Эстакада тепловых сетей

175. Инженерные сети. Фундаменты

176. Емкость. Конструкции металлические

177. Склад масел. Технология

178. Дренажная емкость. Строительная часть

179. Автоматизация газоснабжения. Установка датчиков

180. Дизельная электростанция. Электроснабжение

181. Топливозаправочный пункт. Автоматизация

182. Молниеотвод высотой 30.55 метров

183. Молниеотвод высотой 37.85 метров

184. Склад масел. Автоматизация

ingeniumfiles.ru

Указания по проектированию тепловых сетей в стесненных условиях города Москвы

 

Настоящие «Указания” разработаны для проектирования 2-х трубных тепловых сетей в г. Москве и учитывают большую плотность городской застройки, насыщенность территории подземными коммуникациями, ограниченность свободного пространства для строительства подземных инженерных сооружений, и являются обязательными для всех проектных организаций, а также для организаций, согласовывающих проекты в городе Москве. Указаниями следует пользоваться в случаях отступления от действующих нормативных документов.

В случае возникновения при проектировании ситуации, не регламентируемой настоящими “Указаниями…» следует руководствоваться действующими нормативными документами.

Все изменения в проектах, необходимость которых возникает в процессе строительства, должны быть согласованы с проектной организацией до начала строительства участка теплосети, где эти изменения должны быть внесены.

Тепловые сети распределяются на: магистральные, распределительные внутриквартальные абонентские вводы и местные тепловые сети после индивидуальных или центральных тепловых пунктов.

Тепловые сети диаметром более 400 мм как правило, должны прокладываться: вдоль городских проездов в зеленых или технических зонах, за пределами жилой застройки, в промзонах, вдоль полосы отвода железнодорожных линий.

Проектирование тепловых сетей диаметром более 400 мм в пределах жилой застройки допускается только в исключительных случаях с выполнением необходимых защитных мероприятий (см.п.2.19).

Распределительные внутриквартальные тепловые сети, как правило, должны прокладываться внутри квартальной застройки с устройством камер ответвлений к абонентам.

К абонентским вводам относятся тепловые сети от узлов или камер на внутриквартальных тепловых сетях до центрального или индивидуального теплового пункта.

К местным тепловым сетям относятся тепловые сети после индивидуальных или центральных тепловых пунктов.

Строительств о магистральных и внутриквартальных распределительных тепловых сетей, дождевой канализации в новых районах застройки города должно опережать строительство жилых и общественных зданий.

Технический надзор за строительством тепловых сетей осуществляется заказчиком и эксплуатирующими организациями, авторский надзор — проектной организацией.

2. Проектирование тепловых сетей

2.1. В г. Москве, как правило, для сетей с условным диаметром 1000 мм и менее, имеющими рабочее давление <= 1,6Мпа (16кг/см2 ) и рабочую температуру тепломагистрали 130°С с кратковременной пиковой температурой до 140°С, должна приниматься подземная бесканальная прокладка трубопроводов с изоляцией из пенополиуретана в полиэтиленовой оболочке.

2.2. Прокладка выводов от ТЭЦ и РТС с условным диаметром 1400-1200 мм, в отдельных случаях и меньшего диаметра, где температура теплоносителя в рабочем режиме превышает 135°С, должна производиться в непроходных и проходных каналах с теплоизоляцией из минеральной ваты, с защитным слоем из асбоцементной штукатурки по металлической сетке. При рабочей температуре до 130°С допускается прокладка теплопроводов в проходных каналах с пенополиуретановой изоляцией в металлической оболочке.

2.3. Температурный режим теплосети и тип изоляции теплопроводов должны указываться в технических условиях эксплуатационной организации при их оформлении.

2.4. При прокладке тепловых сетей в бесканальном варианте трубы укладываются на песчаное основание с песчаной обсыпкой при несущей способности грунтов не менее 0,15 МПа (1,5 кгс/см2). При несущей способности грунтов менее 0,15 МПа (1,5 кгс/см2) основание должно устраиваться по индивидуальным чертежам.

2.5. В слабых грунтах с расчетным сопротивлением менее 0,1 МПа (1,0 кгс/см2), а также в грунтах с возможной неравномерной осадкой (в неслежавшихся насыпных грунтах) применение бесканальной прокладки тепловых сетей без искусственного основания не допускается.

2.6. Дренаж при бесканальной прокладке тепловых сетей с пенополиуретановой изоляцией в полиэтиленовой оболочке не требуется.

2.7. При обосновании допускается надземная прокладка тепловых сетей с пенополиуретановой изоляцией в металлической оболочке.

2.8. Надземная прокладка тепловых сетей на территории детских и лечебных учреждении, как правило, не допускается.

В исключительных случаях, при отсутствии других вариантов трасс, допускается такая прокладка вдоль существующих глухих заборов, ограничивающих территорию детских и лечебных учреждений с устройством дополнительного ограждения с другой стороны.

2.9. Прокладку тепловых сетей под проездами общегородского значения и площадями с усовершенствованными покрытиями, при пересечении  крупных автомагистралей и железных дорог следует предусматриваться в проходных каналах или щитовых тоннелях. При этом теплопроводы имеющие изоляцию из пенополиуретана должны иметь несгораемый, из тонколистового металла, покровный слой.

2.10. Пресечения теплопроводами проездов местного значения допускается предусматривать в полупроходных канал высотой не менее 1,4 м или футлярах.

2.11. В отдельных случаях, по согласованию со службой технического надзора «Тепловых сетей», разрешается пересечение теплопроводами местных проездов в непроходных каналах.

2.12. При пересечении тепловыми сетями въездов (пандусов) в подземные гаражи, склады и пр. в пределах пересечения и на 5 м в каждую сторону от него, должно предусматриваться устройство монолитного канала при канальной прокладке или стального футляра при бесканальной прокладке.

2.13. При проектировании тепловых сетей в зонах пешеходных переходов теплопроводы могут располагаться либо над пешеходным переходом в толще перекрытия пешеходного перехода с устройством монолитного участка перекрытия корытообразного профиля с минимальной толщиной железобетона 12 см, либо в пазухе лестничного схода с устройством, в этом случае, монолитного канала или стенки схода из монолитного железобетона.

2.14. В зоне пешеходных переходов, совмещенных с входами в метрополитен, как правило, необходимо предусматривать прокладку тепловых сетей на расстоянии не менее 2 м от стенки лестничного схода с устройством монолитного железобетонного канала выходящего на 5 м за габарит схода.

2.15. При пересечении линий метрополитена на тепловых сетях должны устанавливаться секционирующие задвижки на расстоянии до 0,1 км от места пересечения.

В местах плотной застройки, при невозможности выдержать указанные расстояния, разрешается, по согласованию со службами эксплуатации тепловых сетей и метрополитена (на проектируемых и строящихся линиях метрополитена с институтом Метрогипротранс), увеличивать это расстояние, но не более чем до 1,0 км.

2.16. При бесканальной прокладке теплопроводов расстояние от наружной поверхности изолированного теплопровода до фундаментов жилых и общественных зданий должно быть не менее 5м для теплопроводов Ду <= 400мм и 7м для теплопроводов Ду >= 500мм.

2.17. При невозможности выдержать указанные расстояния теплопроводы должны прокладываться либо в каналах, на расстоянии не менее 2-х метров от, фундаментов зданий, либо в пристенных (пристроенных к фундаментам здании) проходных каналах из монолитного железобетона с металлоизоляцией.

2.18. Разрешается пересечение транзитными водяными тепловыми сетями диаметром Ду 300мм и менее жилых и общественных зданий (кроме детских и лечебных) при условии прокладки сетей в технических подпольях, коридорах (высотой не менее 1,8м) или в футлярах с устройством дренирующего колодца в нижней точке на выходе из здания.

2.19. В виде исключения, допускается прокладка тепловых сетей диаметром от 400 до 600мм с пересечением жилых и общественных зданий (кроме детских и лечебных) при обосновании невозможности прокладки тепловых сетей за пределами зданий. При этом следует предусматривать следующие дополнительные меры, обеспечивающие надежную эксплуатацию тепловых сетей:

устройство под зданием железобетонного монолитного тоннеля или футляра внутренним диаметром не менее Ду 1000мм. Ограждающие конструкции тоннеля или футляра должны выдерживать нагрузку, возникающую при аварии трубопровода с давлением 3,6 МПа (16 кгс/см2).

концы тоннеля или футляра должны выходить за пределы фундамента здания не менее 5м.

стенки тоннеля или футляра должны иметь гидроизоляцию, исключающую проникновение случайных и аварийных вод к фундаментам зданий.

температура воздуха в тоннеле не должна превышать 40°С.

трубопроводы, проходящие в подвалах зданий, не должны иметь ответвлений и на них не допускается установка запорной и регулировочной арматуры.

толщины стенок труб должны быть увеличены в 1,5 раза по отношению к расчетным.

устройство трубопроводов должно соответствовать требованиям «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды» (издания 1994 г.).

100% контроль заводских и монтажных сварных швов.

устройство из нижней точки тоннеля самотечного водовыпуска диаметром 300мм в существующую дождевую канализацию.

2.20. Расстояние от жилых и административных здании до надземных камер-павильонов при отсутствии в них насосных установок, как правило, должно быть не менее 15м, в стесненных условиях городской застройки допускается уменьшать его до 10м, до промышленных зданий 5м.

2.21. Минимальное расстояние в свету от отдельно стоящих наземных центральных тепловых пунктов (ЦТП) до наружных стен жилых и общественных здании, в соответствии с пунктом 10.3 «Руководства по проектированию тепловых пунктов”, должно приниматься не менее 25 метров .В стесненных условиях города допускается уменьшение расстояния до жилых , административных и общественных зданий до 15 метров при условии соблюдения требований по снижению уровней шума и вибрации от работы насосного оборудования (смотри раздел 10 «Руководства по проектированию тепловых пунктов»). При реконструкции зданий и расположенных в них тепловых пунктов рекомендуется установка бесшумных насосов исключающих вибрацию трубопроводов, выпускаемых фирмами СНГ или иностранными фирмами, а также необходимо предусматривать дополнительные акустические мероприятия.

2.22. Прокладка теплопроводов в районе расположения резервуаров автомобильно-заправочных станций (АЗС) должна производиться на расстоянии не менее 10м для бесканальной прокладки, 15 м. для канальной прокладки, при условии устройства вентиляционных шахт на канале теплосети.

2.23. При проектировании теплопроводов вблизи трансформаторных станций (ТП) и газорегуляторных подстанций (ГРП) расстояние от ТП и ГРП до наружной стенки канала при канальной прокладке или до ближайшего теплопровода при бесканальной прокладке, должно быть не менее 4,0 метров, но не менее 2,0 метров от существующих электрических кабелей.

2.24. Расстояния от теплопроводов до убежищ должны приниматься не менее 5,0 метров при диаметре теплопроводов до 200мм включительно, и не менее 15 метров при диаметре теплопроводов 250мм и более, (см. СНиП II—II-77*).

В стесненных условиях допускается уменьшение расстояния до 3 м. от защитнных сооружений до теплопроводов диаметром 200мм и не менее 5м до теплопроводов диаметром 250мм и более при условии выполнения следующих мероприятии:

устройство монолитного канала с металлоизоляцией или устройство стального футляра заключенного в железобетонную обойму с выходом последних за пределы защитного сооружения по 5 м в каждую сторону. Уклон канала с металлоизоляцией должен выполняться от защитного сооружения.

2.25. Минимальное заглубление от поверхности земли или дорожного покрытия до верха изолированного теплопровода бесканальной прокладки допускается:

в пределах проезжей части —  0.6м.

вне пределов проезжей части — 0,5м.

максимальное заглубление до верха теплопровода бесканальной прокладки допускается до 2,0м.

2.26. Пересечения теплопроводов с существующими подземными коммуникациями должны выполняться в соответствии со СНиП 2.04.07.-86* “Тепловые сети. Нормы проектирования” и альбомами Мосинжпроекта:

СК 3105-88 «Конструкции пересечений теплосети с подземными коммуникациями» (газопровод, водопровод теплосеть, электрокабели).

СК 3107-85 «Конструкции пересечений теплосети с подземными коммуникациями» (дождевая канализация).

СК 3108-90 “Типовые проектные решения мест пересечения теплосети и канализации” согласованными с эксплуатационными организациями г. Москвы.

2.27. Расстояние по вертикали до бронированных кабелей связи, силовых, контрольных кабелей напряжением до 35 кВт допускается 0,25 м при условии подтверждения расчетами, что температура почвы в местах пересечения тепловых сетей с электрокабелями на глубине заложения кабелей не должна повышаться более чем 10° С по отношению к высшей среднемесячной летней температуре почвы и на 15°С к низшей среднемесячной зимней температуре почвы; на глубине заложения маслонаполненого кабеля не должна повышаться более чем на 50С по отношению к среднемесячной температуре в любое время года на расстоянии до 3м от крайних кабелей (пункт 2-3-06 ПУЭ).

Во всех случаях пересечения кабеля с теплопроводами должны выполняться по альбому СК-3105-88 “Констукции пересечения теплосети с подземными коммуниакциями”.

В особо стесненных условиях допускается применение нетиповых решений, но их чертеж и тепловой расчет должны быть согласованы с Московской кабельной сетью (МКС). Мероприятия типового альбома СК-3105-88 должны выполняться владельцем тепловой сети, как при новом строительстве, так и при капитальном ремонте тепловых сетей.

2.28. Допускается уменьшение расстояний по вертикали от низа канала теплосети до перекрытии метрополитена приведенных в таблице СНиП 2.04.07-86* “Тепловые сети: Нормы проектирования” при выполнении дополнительных мероприятий, исключающих протечки, согласованных со службами метрополитена или институтом «Метрогипротранс».

2.29. При прокладке теплопроводов в проходных каналах (тоннелях) высота последних в свету должна быть не менее 1,8м, а ширина прохода между теплопроводами не менее 0,7м.

2.30. Запорная арматура на тепловых сетях диаметром 500мм и более, за исключением шаровых задвижек, должна предусматриваться электрофицированной и размещаться в наземных павильонах, причем электрооборудование должно размещаться в выделенных электрощитовых, имеющих отдельный вход.

Схема электроснабжения задвижек должна соответствовать 2-й категории (смотри ПУЭ 1.2.19).

2.31. При невозможности, по архитектурным соображениям, устройства наземного павильона допускается, при согласовании с эксплуатирующей организацией, размещение электрофицированной запорной арматуры в подземной камере, с размещением электрощитовой на поверхности земли и обязательным устройством естественного водоудаления с пола подземной камеры. В этих случаях, для уменьшения габаритов камер, рекомендуется применение задвижек Австрийской фирмы “Клингер” с механическим приводом.

2.32. Сильфонные компенсаторы при канальной прокладке могут располагаться как в камерах, так и в каналах. Направляющие опоры должны быть установлены на расстоянии не более 14 диаметров трубопроводов от компенсатора.

2.33. При прокладке теплопроводов в проходных каналах вдоль проезжей части дорог, выходы из камер должны располагаться за пределами проезжей части.

2.34. Шахты перехода с подземной канальной прокладки теплопроводов на надземную на низких опорах, должны иметь перекрытие и порожек высотой 30см для защиты от атмосферных вод, а так же решетку, предотвращающую проникновение в канал посторонних лиц. В случае прокладки наземного теплопровода на высоких опорах над шахтой устанавливается металлический зонт.

2.35. В тоннелях (проходных каналах) и непроходных каналах необходимо предусматривать приточно-вытяжную вентиляцию с устройством вентшахт сбоку канала или камеры.

2.36. При размещении тепловых сетей в коллекторах и туннелях, в том числе эксплуатируемых организаций “Москоллектор” магистральные и распределительные внутриквартальные теплопроводы с Ду>=300мм должны располагаться за перегородкой, исключающей попадание теплоносителя и пара в отсек кабельных линий.

2.37. Монолитные щитовые железобетонные опоры в каналах должны иметь вентиляционные отверстия над теплопроводами для обеспечения вентиляции по всей длине канала или вентиляционные шахты по обе стороны опоры.

2.38. При проектировании канальной прокладки теплосети в стесненных условиях допускается прокладка дренажа под каналом теплосети с устройством колодцев за габаритами канала.

2.39. Разрешается, на отдельных участках, предусматривать в основании канала пластовый дренаж из гравия или крупнозернистого песка.

2.40. При отсутствии в районе проектирования тепловой сети действующей дождевой канализации разрешается, по согласованию с эксплуатирующей организацией, предусматривать для удаления технологической воды водоприемные колодцы с последующей откачкой ее передвижными насосными станциями.

2.41. При реконструкции тепловых сетей допускается как вариант укладка теплопроводов с изоляцией из пенополиуретана в полиэтиленовой оболочке в существующий непроходной канал с засыпкой последнего песком.

2.42. Все виды подземной прокладки труб, фасонных деталей и арматуры в пенополиуретановой изоляции в полиэтиленовой оболочке не зависимо от диаметров должны оснащаться системами контроля состояния изоляции теплопроводов.

2.43. При бесканальной прокладке тепловых сетей в пенополиуретановой изоляции в полиэтиленовой оболочке предусматривать водовыпуски из камер в существующую дождевую канализацию, при отсутствии дождевой канализации, в водоприемные колодцы с последующей откачкой.

 

world-engineer.ru

Тепловые пункты, тепловые центры и элеваторные узлы

Категория: Водяное отопление


Тепловые пункты, тепловые центры и элеваторные узлы

В настоящее время теплоснабжение большинства зданий гражданского и жилого назначения осуществляется от тепловых систем, подающих горячую воду от теплоцентралей (ТЭЦ) или мощных районных котельных с параметрами 150—70 °С или 130—70 °С при расчетной наружной отопительной температуре. Теплоснабжение от этих источников значительно дешевле по сравнению с теплоснабжением от мелких котельных, так как на ТЭЦ осуществляется наиболее эффективная комбинированная выработка тепловой и электрической энергии и на них, как и в крупных котельных, применяется оборудование, позволяющее сжигать топливо с высоким коэффициентом полезного действия.

Применение высоких параметров теплоносителя объясняется тем, что в этом случае 1 кг теплоносителя переносит больше тепла, чем при применении теплоносителя с пониженными параметрами. Так, например, 1 кг воды, нагретой до температуры +150 °С и охлажденной до +70 °С, выделит 80 ккал тепла, а 1 кг воды, нагретой до температуры +95 °С и охлажденной до +70 °С, выделит 25 ккал тепла. Естественно, что в первом случае все затраты, связанные с транспортировкой 1 ккал тепла, будут значительно ниже, чем во втором.

Применение более высокой температуры теплоносителя, чем +150 °С, повлечет за собой увеличение давления во всей системе до величины, предотвращающей вскипание воды, что в настоящее время экономически нецелесообразно.

В системе теплофикации применяют в основном две схемы теплоснабжения: открытую с непосредственным водоразбором и закрытую. В этих системах теплоснабжение систем отопления одинаковое и осуществляется следующим образом.

Теплоноситель с высокой температурой у потребителя понижает свою температуру за счет подмешивания части охлажденной воды, возвращающейся из системы отопления, до уровня, предписываемого строительными нормами и правилами (СНиП) для данной системы, и затем поступает в систему.

Так, например, в системах отопления гражданских и жилых зданий с верхней разводкой температуру воды можно поднимать до +95 °С, а в системах с нижней разводкой — до +105 °С.

Пройдя систему отопления и охладившись в ней, вода частично идет на подмешивание, а частично возвращается к источнику теплоснабжения для нагрева.

Горячее водоснабжение в схеме с непосредственным водоразбором осуществляется водой, поступающей от источника теплоснабжения, т. е. одна и та же вода идет в систему отопления и в систему горячего водоснабжения. Такая схема наиболее экономична и, кроме того, позволяет производить централизованное умягчение воды и обескислороживание ее, уменьшающее коррозию труб систем горячего водоснабжения.

Однако вода, поступающая к водоразборным кранам из такой системы в период пуска систем отопления осенью и в конце отопительного сезона, а также после любых ремонтов как на сети, так и в системе, имеет коричневый цвет и неприятный запах. Это объясняется плохой промывкой трубопроводов и нагревательных приборов, в результате чего органические вещества, не вымытые из системы, разлагаются под воздействием высокой температуры и загрязняют ее.

Горячее водоснабжение при закрытой схеме осуще: ствляется водой из городского водопровода, нагретой в бойлерной установке водой, поступающей из теплосети. В этом случае приходится предусматривать устройства по умягчению воды, идущей на водоразбор. Это можно сделать в катионитовых установках или деаэрированием, т. е. удалением кислорода, осуществляемым в вакуумных или при наличии пара в термических деаэраторах.

При непосредственном водоразборе на вводе теплосети к группе потребителей (например, жилому кварталу) устраивают тепловой пункт (рис. 1). В таком пункте устанавливают грязевики на горячем и обратном трубопроводах, очищающие воду от различного рода взвешенных частиц, приборы учета, контроля и распределительные коллекторы для подачи воды к элеваторным узлам, обслуживающим отдельные системы, и к системам, потребляющим воду высоких параметров.

В качестве приборов учета применяет горячеводные водомеры, устанавливаемые как на горячем, так и на обратном трубопроводах. Установка двух водомеров позволяет определить расход воды, идущей не только на отопление и вентиляцию, но и на горячее водоснабжение.

Рис. 1. Тепловой пункт на вводе теплосети в квартал: 1 — манометр; грязевик; 3 — водомер; 4 — термометр; 5—-штуцера для промывки; 6 — ответвления на элеваторные узлы; 7 — возврат охлажденной воды из системы; 8 — штуцер для подключения гидравлического пресса; 9 — штуцер для подключения линии от водопровода; 10 — штуцер для подключения линии от гидравлического пресса; 11 —канализационный трап; 12—место установки регулятора подпора; 13 — ввод теплосети

Для этого вычитают из показания водомера на горячем трубопроводе показания водомера на обратном трубопроводе.

В настоящее время ведутся работы по созданию простого и надежного в эксплуатации теплосчетчика, который позволит определять расход тепла.

Самопишущие дифманометры, способные замерить и записать расход воды, применяют только для крупных тепловых пунктов, да и то лишь в отдельных, особо оговоренных случаях.

Для обеспечения правильных показаний водомеры и дифманометры должны устанавливаться на прямом трубопроводе определенной длины, благодаря чему выравниваются потоки воды и обеспечивается работа приборов полным сечением. До водомера прямой участок должен иметь не менее 10 калибров, а после водомера 5. В случае, если диаметр водомера не соответствует диаметру трубы, к водомеру присоединяют прямые участки труб того же диаметра, что и водомер, а за пределами их устанавливают плавные переходы.

Контроль в теплоцентрах осуществляется при помощи манометров и термометров, причем все манометры для обеспечения показаний, свободных от необходимости производить корректировку на высоту столба жидкости, равного разности отметок установки манометров, устанавливают на одном уровне.

Помимо вышеуказанного оборудования в тепловом пункте при надобности на обратном трубопроводе устанавливают регулятор подпора. Назначение его — автоматически поддерживать необходимое давление. Обычно его устанавливают в случае присоединения к тепловой сети зданий повышенной этажности и тогда, когда давление в обратном трубопроводе меньше давления столба воды, находящейся в системе таких зданий.

Применение вместо регуляторов подпора ограничительных диафрагм в системах с непосредственным водо-разбором невозможно, так как при изменяемых расходах, вызванных разбором воды, величина разности давлений, создаваемой диафрагмой, будет различна. В простейшем виде диафрагма представляет собой диск, зажимаемый между фланцами, в котором имеется отверстие диаметром меньшим, чем диаметр трубопровода. Величина отверстия определяется расчетом,

Помимо тепловых пунктов на вводах могут устанавливаться комплексные тепловые центры, в которых кроме элементов теплового пункта устанавливают оборудование элеваторных узлов и узлов отбора воды на горячее водоснабжение. Схема такого теплоцентра, устанавливаемого в отдельных зданиях, присоединяемых к тепловым сетям, приведена на рис. 20.

Как уже отмечалось выше, у потребителей производится подмешивание к высокотемпературной воде, поступающей от источника теплоснабжения, воды, охладившейся в системе отопления. В результате смешивания получают воду с температурой, на которую рассчитана система отопления. Подмешивание может осуществляться насосом, устанавливаемым на трубопроводе обратной воды, или при помощи водоструйного элеватора.

В настоящее время схемы с подмешивающим насосом применяют очень редко, только в особых, специфических условиях, когда нельзя применить элеватор. Это объясняется тем, что стоимость и эксплуатация такой системы выше, чем стоимость элеватора. Кроме того, из-за шума насосы нельзя размещать под жилыми помещениями, в то время как теплоцентры и элеваторные узлы, как правило, размещаются под ними в подвальных помещениях.

Намеченный промышленностью выпуск специальных малогабаритных бесшумных насосов пропеллерного типа, устанавливаемых непосредственно на трубопроводах, позволит шире применять схему с подмешиванием воды при помощи иасосов.

В элеваторе, устанавливаемом на горячем трубопроводе, производится подмешивание охлажденной воды, поступающей по специальному патрубку от трубопровода обратной воды. Перемешивание воды осуществляется в диффузоре элеватора.

За элеватором устанавливают термометр и манометр, по показаниям которых судят о параметрах смешанной воды. Вода из элеватора поступает к водораспределителю (коллектору) такого же типа, как и в котельных, от которого подается в системы отопления. Охлажденная вода из систем поступает в коллектор. Из коллектора, пройдя грязевик, водомер и в необходимых случаях регулятор подпора, она уходит в сеть. Ответвление на элеватор осуществляется до грязевика.

На трубопроводах охлажденной воды, собираемых коллектором, устанавливают термометры. По показаниям этих термометров можно судить о работе подсоединенных систем. Так, в случае, если все термометры показывают +65 °С, а один +75 °С, то это говорит о том, что система получает больше воды, чем следует.

Рис. 2. Принципиальная схема комплексного теплового центра:

В системах отопления нагревательные приборы могут работать при давлении не свыше 6 кгс/см2, а в трубопроводе горячей воды давление может быть до 13 кгс/см2.

Часть давления снимается элеватором. Но все же в отдельные моменты возможно повышение давления выше допустимого. Для того чтобы в этом случае не произошло разрушения приборов, после элеватора устанавливают грузовой предохранительный клапан. Вода от этого клапана выводится к раковине, устанавливаемой в теплоцентре, или к специальной воронке, соединенной с канализацией через гидрозатвор.

В вентиляционных системах нагрев воздуха в калориферных установках осуществляется высокотемпературной водой, для чего до элеватора к горячему трубопроводу подсоединяют трубопровод с коллектором, число штуцеров на котором соответствует числу подсоединяемых систем теплоснабжения калориферов. К этому же коллектору могут быть подсоединены элеваторные узлы, расположенные вне теплоцентра (например, в соседних домах).

В тех случаях, когда расход воды, идущей на подогрев воздуха в системе вентиляции, постоянен в течение суток, трубопровод охлажденной воды после сборного коллектора подсоединяют к обратному трубопроводу между грязевиком и ответвлением на элеватор, т. е. до водомера. В случае же переменного расхода теплоносителя, колеблющегося в больших пределах, подсоединение производят за водомером, установив отдельный водомер на трубопроводе после коллектора, собирающего воду от калориферов вентиляционных систем.

Такая параллельная установка водомеров необходима потому, что водомеры могут давать правильные показания только при определенных колебаниях расхода воды.

В связи с тем что калориферы рассчитаны на рабочее давление 6 кгс/см2, запрещается закрывать вентили или задвижки на обратных трубопроводах этих систем раньше, чем они закрыты на горячем трубопроводе, так как в противном случае при закрытом вентиле на обратном трубопроводе калорифер или система калориферов будет поставлена под давление, имеющееся в горячем трубопроводе.

По санитарным нормам температура воды в системах горячего водоснабжения не должна превышать +70 °С. Температура же горячей воды, поступающей из теплосети при расчетной наружной температуре, равна + 150 °С, а в переходный период снижается до +65 °С, т. е. во все времена года, кроме переходного периода, когда наружная температура составляет примерно + 10 °С, из горячего трубопровода воду для целей горячего водоснабжения брать нельзя.

Температура в обратном трубопроводе при расчетной наружной температуре равна +70 °С, а при более высоких наружных температурах она понижается. Поэтому большую часть отопительного периода приходится брать воду из обоих труб — горячей и обратной, смешивая ее в разных пропорциях, чтобы температура смеси была в пределах от +60 до +70 °С.

Для автоматического смешивания применяют серийно выпускаемый жидкостный терморегулятор ТРЖ. Кроме того, могут применяться регуляторы расхода РР прямого действия в комплекте с биметаллическим термореле ТРБ-2.

Перед регуляторами на ответвлениях от горячего и обратного трубопроводов устанавливают вентили и сетчатые фильтры, исключающие попадание окалины и грязи к клапанам регулятора, а следовательно, обеспечивающие нормальную его работу. Время от времени, закрыв вентили до регулятора и после него, фильтры необходимо тщательно очищать от окалины и грязи.

Для предотвращения прохода воды из горячего трубопровода в обратный через неисправные регуляторы на трубопроводе, подводящем охлажденную воду, устанавливают обратный клапан. После регуляторов вода проходит водомер для определения ее расхода на горячее водоснабжение.

Следует отметить, что регуляторы дают качественное смешивание воды только при квалифицированной наладке и эксплуатации.

На вводах теплосети, на горячем и обратном трубопроводах до входных задвижек устанавливают штуцеры с фланцевыми вентилями, к которым подсоединяют инвентарный шланг для промывки ввода. Вода в этом случае отводится по шлангу в раковину или воронку, установленную в помещении, или через окно в ближайший канализационный люк.

Следует помнить, что температура отводимой води по условиям нормальной работы канализационных трубопроводов не должна превышать +40 °С.

Для промывки систем используют спускные линии, подсоединяемые к системам коллекторов. Эти же линии служат для заполнения систем водой и присоединения гидравлического пресса при испытании.

В тех случаях, когда вода не может самотеком стечь по спускной линии в канализацию, устанавливают ручной насос по той же схеме, что и в котельных.



Водяное отопление – Тепловые пункты, тепловые центры и элеваторные узлы

gardenweb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *