Характеристики и свойства – Характеристики и свойства

Характеристики (свойства) – это… Что такое Характеристики (свойства)?


Характеристики (свойства)

4.2. Характеристики (свойства)

4.2.1 Зерновой состав щебня должен соответствовать требованиям, указанным в таблице 1.

Таблица 1

Размер отверстий контрольных сит, соответствующих размеру зерен, мм

Полный остаток на контрольном сите, % по массе

d

90-100

0,5 (d+D):

– для каждой фракции

30-80

– для смеси фракции

40-70

D

0-10

1,25D

0-0,5

4.2.2 Насыпная плотность щебня и смеси должна быть не менее 1000 кг/м3.

4.2.3 Щебень по прочности подразделяют на марки в соответствии с требованиями, указанными в таблице 2.

Таблица 2

Марка щебня по прочности

Потери массы при испытании на дробимость, %

1200

До 15

1000

Св. 15 до 25

800

Св. 25 до 35

4.2.4 Модуль кислотности щебня и смеси должен быть не менее 0,9.

4.2.5 В щебне и смеси содержание серы в пересчете на серный ангидрит (SO3) не должно быть более 5 % по массе.

4.2.6 Щебню и смесям должна быть дана радиационно-гигиеническая оценка. Суммарная удельная эффективность естественных радионуклидов в щебне и смесях не должна превышать 370 Бк/кг. [1].

4.2.7 В щебне и смеси не должно быть включений металла, топливных шлаков, зол, колошниковой пыли.

По согласованию с потребителем в щебне для плавления в вагранках допускается наличие металлических примесей не более 2 % по массе.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Характеристики
  • характеристики безопасности гидротехнического сооружения

Смотреть что такое “Характеристики (свойства)” в других словарях:

  • Характеристики — К.4. Характеристики Применяют следующие дополнительные характеристики: К.4.3.1.2. Номинальное напряжение изоляции Минимальное значение номинального напряжения изоляции должно быть 250 В. К.4.3.2.1. Условный тепловой ток на открытом воздухе… …   Словарь-справочник терминов нормативно-технической документации

  • свойства нервной системы — устойчивые особенности нервной системы, влияющие при прочих равных условиях на индивидуальные психологические особенности человека. Не предопределяя его социальную ценность, не обусловливая непосредственно содержательную сторону психики, С. н. с …   Большая психологическая энциклопедия

  • Характеристики бетонной смеси no удобоукладываемости — – бетонные смеси подразделяются на сверхжесткие, же­сткие и подвижные; жесткость и сверхжесткость бе­тонной смеси характеризуют временем в секундах, не­обходимым для уплотнения смеси; подвижные оце­нивают по осадке или расплыву конуса в см …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Характеристики гранулометрического состава цемента — – числовые значения, характеризующие гранулометрический состав цемента. [ГОСТ 30515 2013] Рубрика термина: Свойства цемента Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Свойства — – определенные характеристики вещества. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург 2002] Рубрика термина: Общие термины Термины рубрики: Свойства Влажность огнеупорного сырья Водопоглощение керамической плитки …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Характеристики летательного аппарата — комплекс количественных показателей и выраженных в аналитическом или графическом виде зависимостей их от каких либо факторов (или между собой), описывающих различные свойства или признаки ЛА. К числу основных X. л. а. относятся геометрические… …   Энциклопедия техники

  • СВОЙСТВА ИНДИВИДУАЛЬНОСТИ — (англ. properties of individuality) бесконечная совокупность свойств отдельного человека. Согласно концепции интегральной индивидуальности В. С. Мерлина (1898 1982), к С. и. относятся свойства разного уровня (которые традиционно изучаются разными …   Большая психологическая энциклопедия

  • свойства — – качественные и количественные характеристики предмета или явления. Словарь по аналитической химии [3] • кислотные свойства коллигативные свойства основные свойства …   Химические термины

  • Характеристики оперативного действия — Характеристики оперативного (операционного) действия геометрические показатели, описывающие свойства операционной раны с точки зрения удобства выполняемого оперативного вмешательства Н.Н. Бурденко писал оперативный доступ должен быть анатомичным …   Википедия

  • Характеристики лакокрасочных покрытий

    — Класс покрытия Характеристика внешнего вида лакокрасочного покрытия по декоративным свойствам (цвет, фактура, наличие дефектов, снижающих декоративные свойства). Класс покрытия определяется по ГОСТ 9.032 Источник …   Словарь-справочник терминов нормативно-технической документации


normative_reference_dictionary.academic.ru

Характеристик и (свойства) – это… Что такое Характеристик и (свойства)?

5.2 Характеристик и (свойства)

5.2.1 Изделия должны быть функционально пригодными.

5.2.2 Водопоглощение изделий не должно быть более: фарфоровых – 1 %, полуфарфоровых – 5 %, фаянсовых – 12 %.

5.2.3 Глазурь на изделиях должна быть термически и химически стойкой.

5.2.4 Изделия должны быть термически стойкими и механически прочными.

5.2.5 Изделия должны быть покрыты белой или цветной глазурью или декорированы различными методами.

5.2.6 Цвет или оттенки цвета изделий должны соответствовать цвету и оттенкам цвета образцов-эталонов, утвержденных предприятием-изготовителем.

5.2.7 Распределение поверхностей на видимую, функциональную, монтажную или невидимую следует указывать в рабочих чертежах в соответствии с приложением В.

5.2.8 Места на поверхностях изделий, которые допускается не покрывать глазурью, указывают в рабочих чертежах.

5.2.9 Изделия не должны иметь сквозных видимых и невидимых трещин, холодного треска и цека.

5.2.10 Внутренняя поверхность сифонов унитазов должна быть без засорки.

5.2.11 Изделия в зависимости от показателей внешнего вида подразделяют на три сорта: 1, 2 и 3-й.

Внешний вид видимых и функциональных поверхностей изделий должен удовлетворять требованиям, указанным в таблице 1.

Таблица 1

Вид дефекта

Дефекты по сортам

1

2

3

Плешинки

Не допускаются

Допускаются общей площадью не более:

1,0 см2

3,0 см2

Посечки:

– на умывальниках

Не допускаются

Допускаются общей длиной не более:

10 мм

20 мм

– на смывных бачках

Допускаются общей длиной не более:

10 мм

10 мм

20 мм

– на других изделиях

Допускаются общей длиной не более:

15 мм

15 мм

25 мм

Засорка

Не допускается

Допускается общей площадью не более:

0,5 см2

1,0 см2

Выплавки

Не допускаются

Допускаются диаметром до 2 мм не более 3 шт.

Откол

Не допускается

Допускается на ребрах, прилегающих к стене и полу, глубиной не более 2 мм

Вскипание глазури

Не допускается

Допускается общей площадью не более 3,0 мм2

Оттенок основного цвета, матовость, подтеки

Не допускаются на видимых поверхностях

Допускаются, если не ухудшают внешний вид изделия

Мушки:

– на умывальниках

Допускаются не более:

Допускаются, если не ухудшают внешний вид изделия

2 шт.

5 шт.

– на других изделиях

Допускаются не более:

6 шт.

10 шт.

Наколы

Допускаются рассеянные

Пятна

Не допускаются

Допускаются малозаметные

Волнистость

Не допускается

Допускается

Остеклованные места

Допускаются общей площадью не более:

0,25 см2

1,0 см2

3,0 см2

Прыщи и пузыри

Не допускаются

Допускаются диаметром до 2 мм не более 4 шт.

5.2.12 На монтажной и невидимой поверхностях изделий всех сортов допускаются дефекты, указанные в таблице 1, если они не препятствуют монтажу или эксплуатации.

5.2.13 Общее число допустимых дефектов на одном изделии не должно быть более:

– двух на изделиях 1-го сорта;

– трех  «       «        2-го       «

– пяти  «       «        3-го       «

5.2.14 Допускаемые посечки, выплавки (выгорки), засорки, отколы должны быть заделаны белым цементом или другим материалом, обеспечивающим прочность заделки, зачисткой, шлифовкой или другим способом, определяемым предприятием-изготовителем.

5.2.15 Деформация (коробление) поверхности в плоскости, прилегающей к стене, не должна превышать для умывальников 3 мм, для писсуаров – 4 мм.

5.2.16 Деформация (коробление) горизонтальной поверхности бортов умывальников не должна превышать 4 мм.

5.2.17 Деформация (коробление) нижней поверхности (в плоскости, прилегающей к полу) и верхней поверхности (в плоскости сидения) не должна превышать 4 мм для унитаза.

Для унитазов с цельноотлитой полочкой и бидэ деформация верхней поверхности (в плоскости сидения) не должна превышать 6 мм, нижней поверхности (в плоскости, прилегающей к полу) – 4 мм.

Деформация верхней поверхности (горизонтальной плоскости борта) и поверхности присоединительного кольца не должна превышать 6 мм для унитазов, устанавливаемых в санузлах железнодорожных вагонов.

Деформация поверхности цельноотлитой и приставной полочки в местах присоединения смывного бачка соединительной резинкой не должна превышать 3 мм, деформация поверхности полочки в зоне монтажных отверстий не должна превышать 2 мм.

5.2.18 Отклонение от горизонтальности верхней поверхности унитазов и бидэ не должно превышать 8 мм.

5.2.19 Деформация (коробление) нижней поверхности крышки и верхней поверхности корпуса бачка не должна превышать 2 мм.

5.2.20 Деформация (коробление) наружной поверхности днища бачков не должна превышать 4 мм.

5.2.21 Деформация (коробление) днища бачка в условно ограниченной кольцевой зоне, отступающей на 10 мм от краев отверстия, предназначенной для установки спускной арматуры, не должна превышать 4 мм.

5.2.22 Полезный объем смывных бачков должен быть не менее 6,0 л.

5.2.23 Умывальники должны выдерживать нагрузку не менее 1,50 кН (150 кгс).

5.2.24 Унитазы и бидэ должны быть функционально пригодными и выдерживать нагрузку не менее 2,00 кН (200 кгс).

5.2.15 – 5.2.24. (Введены дополнительно, Изм. № 1).

normative_reference_dictionary.academic.ru

Характеристики и свойства цвета

Опубликовано

Цвета спектральные, неспектральные, хроматические, ахроматические, смешанные.

Что же такое цвет — это свойство вызывать зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения. Свет разных длин волн возбуждает разные цветовые ощущения.

Есть такая наука — цветоведение которая изучает и показывает основные закономерности в области природы цветовых явлений, создаваемой человеком предметной среды и мира искусств, тех его видов, которые ориентированы на зрительное восприятие. Её в обязательном порядке должны знать специалисты, делающие цветокоррекцию и цветоделение в фотошопе, хотя бы в общих чертах.
Цветоведение объясняет эти явления, их природу, закономерности и особенности восприятия человеком, с позиций ряда наук: физики, математики, химии, психологии, психофизиологии, эстетики, искусствознания, теории композиции, археологии, этнографии, культурологии. Цветоведение объединяет эти разделы знаний о цвете в единую систему науки о цвете.

Оптический раздел физики раскрывает закономерности природы цвета и его характеристики.
Химия исследует свойства веществ и их соединений для разработки рецептур красителей, адекватных требуемым цветам и их сочетаниям, смесям.
Математика (колориметрия) позволяет осуществлять количественную оценку цветов и определять по соответствующим координатам цветовых графиков цветовой тон и насыщенность требуемого цвета.
Психофизиология раскрывает закономерности физиологии цветного и черно-белого зрения и природу оптических иллюзий.
Психология исследует ассоциации, эмоции, образы, вызываемые различными цветами и их сочетаниями.
Эстетика (в колористике) исследует законы гармонизации цветовых сочетаний, гармоничного сочетания цветов с позиций определенных идеалов эстетического общественного сознания в соответствии с мерой человека, мерой вещи, гармонизируемой цветом, и мерой среды, в которой вещь функционирует и воспринимается.
Теория композиции раскрывает закономерности использования цветов и их сочетаний в соответствии с многообразием функций цвета в композиции произведений искусств и дизайна.

С позиций физики (оптики) цвет имеет световую природу. Возникновение цветовых ощущений невозможно без света. Понятия «свет» и «цвет» неотделимы. Светоцветовые ощущения возникают тогда и постольку, когда свет начинает воздействовать на глаза человека. Лучи света, попадая на сетчатку глаза, вызывают импульсы, производящие в мозгу ощущение (впечатление) того или иного цвета или их сочетаний.

Среди большого диапазона существующих в природе видов электромагнитного излучения: радиоволнового, инфракрасного, ультрафиолетового, рентгеновского, гамма-излучения, не воспринимаемых зрением человека, выделяется относительно узкий сектор видимого электромагнитного излучения.

Видимый диапазон световых волн колеблется в пределах 380–760 нм.
Белый свет объективно представляет собой оптическое смешение волн различной длины и является не простым, а составным (сложным). Пропускаемый через прозрачную бесцветную трехгранную стеклянную призму луч белого света разлагается на составляющие простые цвета, представляющие собой полосу спектра цветов, плавно переходящих друг в друга в определенном порядке: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый — это спектральные цвета (точнее, цветовые тона), они те же, что и в солнечном спектре (радуге).
Отдельные спектральные цвета, соответствующие определенной длине световой волны, являются простым, или монохроматическим, светом. Они уже не разложимы на отдельные цвета, как белый цвет призмой.

Спектральные (видимый спектр)
Фиолетовый (синевато-пурпурный)
Сине-фиолетовый (пурпурно-синий)
Синий
Зеленовато-синий
Сине-зеленый
Синевато-зеленый
Зеленый
Желтовато-зеленый
Желто-зеленый
Зеленовато-желтый
Желтый
Желто-оранжевый
Оранжевый
Красновато-оранжевый
Красный

Неспектральные
Пурпурновато-красный
Красно-пурпурный
Красновато-пурпурный
Пурпурный

Пурпурный ряд цветовых тонов отсутствует в спектре солнечного света (или любого источника света), поэтому их и называют неспектральными. Их нельзя получить монохроматическим излучением. Но можно создать с помощью смешения лучей двух и более монохроматических излучений (например, красного и синевато-пурпурного).

Возникакет вопрос, как же мы видим эти цвета?
Ответ заключается в том, что наш глаз воспринимает какой-либо цвет как белый, когда все цвета спектра полностью отражаются от освещенной поверхности (либо когда луч света не разложен на монохроматические простые цветовые потоки). Цвет какой-либо поверхности воспринимается черным, когда все цвета спектра полностью поглощаются этой поверхностью. Тело или пространство воспринимается черным при отсутствии света. Частичное, избирательное отражение тех или иных цветовых монохроматических потоков (при поглощении остальных цветов спектра) определяет для нашего зрения цвет отражающей поверхности. Так, отражение красных лучей (при частичном отражении оранжевых и желтых) создает впечатление красного цвета отражающей поверхности. При этом зеленые, голубые, синие, фиолетовые цвета спектра поглощаются. Прозрачные (полупрозрачные) цветные поверхности, тела (представляющие собой светофильтры определенного цвета) избирательно пропускают те или иные цвета спектра, соответствующие цвету светофильтра. Остальные цвета спектра пропускаются светофильтром в незначительной степени или не пропускаются вовсе. Так, зеленый светофильтр пропускает зеленый цвет, частично голубой, может быть, синий или желтый и не пропускает красный, оранжевый, фиолетовый. Поэтому и цвет его воспринимается как зеленый. Цвет объекта (объектов), находящегося за светофильтром, смешивается с его цветом, образуя в нашем зрительном восприятии какой-либо сложный неспектральный цвет.

Поверхность воспринимается белой, если она отражает все цвета спектра (оптическое смешение которых и дает белый цвет).
Поверхность воспринимается черной, если она полностью поглощает все цвета спектра.
Зеленый светофильтр избирательно пропускает зеленый, синий, голубой, частично желтый, в результате чего воспринимается зеленый цвет определенного оттенка.
Красная отражающая поверхность избирательно отражает красный, оранжевый, желтый, частично фиолетовый, в результате чего воспринимается красный цвет определенного оттенка.
Всякое хроматическое тело (окрашенное, прозрачное или непрозрачное) отражает или пропускает лучи «собственного» цвета и поглощает цвет, дополнительный к собственному.

Все видимые нами в окружающем мире цвета делят на хроматические (спектральные и неспектральные) и ахроматические (черный, белый, серые), а также их смеси.
Для качественной и количественной характеристики цвета используют такие понятия, как цветовой тон, насыщенность (чистота) и светлота (яркость).

Цветовой тон — качество цвета, определяемое длиной световой волны и приравниваемое к одному из спектральных или неспектральных (пурпурных) цветов. Цветовой тон дает название цвету.
Насыщенность — степень отличия хроматического цвета от равного ему по светлоте (яркости) ахроматического (серого). (Из-за трудоемкости определения этой характеристики цвета ее обычно заменяют другой — чистотой цвета).
Чистота (колориметрическая насыщенность) — это процентная доля чистого спектрального цвета в общей яркости данного цвета.
Светлота — степень отличия данного цвета от черного, измеряемая числом порогов различия от данного цвета до черного. (Количественное определение светлоты сложно, требует специального оборудования. В практике колориметрии светлота нередко заменяется другой характеристикой — относительной яркостью).
Яркость (относительная яркость) — это отношение величины потока света, отраженного от данной поверхности, к величине потока света, на нее падающего. Измеряется коэффициентом отражения.

Насыщенность, или чистота, цвета зависит от степени «разбавления» спектрального цветового тона белым, черным или серым (различной светлоты). Чем больше «примесь» белого (или серого), тем менее насыщенным, чистым является цветовой тон. Он светлеет или темнеет по сравнению со 100 %-м чистым цветовым тоном.
Максимальнонасыщенные цвета — это цвета спектра и пурпурного ряда (неспектральные).

Цвета с сильно выраженной хроматичностью называются насыщенными.

Малонасыщенные цвета — это цвета, «разбавленные» в той или иной степени ахроматическими, например: бледно-зеленый, бледно-голубой, светло-сиреневый, розовый, светло-оранжевый, бежевый, а также темно-синий, коричневый, темно-зеленый, темно-красный, серо-фиолетовый, темно-коричневый, серо-синий, вишнево-черный.

Качественной характеристикой хроматических цветов является цветность: цветовой тон и насыщенность (чистота), а ахроматических цветов — только светлота.

Насыщенность цветов (так же как и яркость) неодинакова по отношению друг к другу. Например, желтый цвет наименее насыщен в спектре, к краям спектра насыщенность повышается. Но по светлоте (яркости) желтый доминирует над другими спектральными цветами.

Ахроматический (т. е. бесцветный) цвет — название нелогичное, но принятое и устоявшееся в цветоведении. С точки зрения спектральной теории цвета неправильно называть ахроматические цвета (черные, серые, белые) цветами, поскольку они лишены основной характеристики хроматических цветов — цветового тона, а также насыщенности. Если чистота хроматических спектральных цветов равна 100 %, то чистота цветового тона и насыщенности ахроматических цветов равна 0. Поэтому нельзя буквально понимать смысл словосочетаний: белый, серые, черный цвета, но к таким словосочетаниям привыкли, они удобны в разговорной и профессиональной лексике, а потому и закрепились в цветоведении.

Смешение хроматических и ахроматических цветов образует все богатство сложных (смешанных) цветов и их оттенков, наблюдаемых нами в природе и созданной человеком предметно-пространственной среде. Это бежевые, коричневые, оливковые, зелено-коричневые, синевато- и красновато-коричневые, все цветные оттенки серых (с разным количеством серого разной светлоты в смесях с хроматическими цветами) и многие другие цвета.


Взаимосвязь основных характеристик цвета может быть представлена в условно-графических координатных системах цветового пространства. Например, в пространственной цветовой модели — цилиндрическом цветовом пространстве (цветовой системе Манселла).


makeyourphoto.ru

Основные характеристики и свойства ощущений.

Поделись с друзьями

Процесс ощущения возникает вследствие воздействия на органы чувств различных материальных факторов. Ощущение является чувственным отображением объективной реальности.

Суть ощущения состоит в отражении отдельных свойств предмета. Каждый раздражитель имеет свои характеристики, в зависимости от которых он может восприниматься определенными органами чувств.

Существуют различные подходы к классификации ощущений. Принято различать пять (по количеству органов чувств) основных видов ощущений: обоняние, вкус, осязание, зрение и слух. Это классификация ощущений но основным модальностям. Классификация ощущений может быть проведена по крайней мере по двум основным принципам – систематическому и генетическому (иначе говоря, по принципу модальности, с одной стороны, и по принципу сложности или уровня их построения – с другой).

Систематическая классификацию ощущений. Данная классификация была предложена английским физиологом Ч.Шеррингтоном. Рассматривая наиболее крупные и существенные группы ощущений, он разделил их на три основных типа: интероцептивные, проприоцептивные и экстероцептивные ощущения. Первые объединяют сигналы, поступающие из внутренней среды организма; вторые передают информацию о положении тела в пространстве и о положении опорно-двигательного аппарата, обеспечивают регуляцию наших движений; наконец, третьи обеспечивают получение сигналов из внешнего мира и создают основу для сознательного поведения. Интероцептивные ощущения, сигнализирующие о состоянии внутренних процессов организма, возникают благодаря рецепторам, находящимся на стенках желудка и кишечника, сердца и кровеносной системы и других внутренних органов. Это наиболее древняя и наиболее элементарная группа ощущений. Рецепторы, воспринимающие информацию о состоянии внутренних органов, мышц и т. д., называются внутренними рецепторами. Интероцептивные ощущения относятся к числу наименее осознаваемых и наиболее диффузных форм ощущений и всегда сохраняют свою близость к эмоциональным состояниям. Следует также отметить, что интероцептивные ощущения весьма часто называют органическими.

Проприоцептивные ощущения передают сигналы о положении тела в пространстве и составляют афферентную основу движений человека, играя решающую роль в их регуляции. Описываемая группа ощущений включает ощущение равновесия, или статическое ощущение, а также двигательное, или кинестетическое, ощущение.

Периферические рецепторы проприоцептивной чувствительности находятся в мышцах и суставах.

Третьей и самой большой группой ощущений являются экстероцептивные ощущения. Они доводят до человека информацию из внешнего мира и являются основной группой ощущений, связывающей человека с внешней средой. Всю группу экстероцептивных ощущений принято условно разделять на две подгруппы: контактные и дистантные ощущения.

Контактные ощущения вызываются непосредственным воздействием объекта на органы чувств. Примерами контактного ощущения являются вкус и осязание.

Дистантные ощущения отражают качества объектов, находящихся на некотором расстоянии от органов чувств. К таким ощущениям относятся слух и зрение. Следует отметить, что обоняние, по мнению многих авторов, занимает промежуточное положение между контактными и дистантными ощущениями, поскольку формально обонятельные ощущения возникают на расстоянии от предмета, но в то же время молекулы, характеризующие запах предмета, с которыми происходит контакт обонятельного рецептора, несомненно, принадлежат данному предмету. В этом и заключается двойственность положения, занимаемого обонянием в классификации ощущений.

Все ощущения могут быть охарактеризованы с точки зрения их свойств. Причем свойства могут быть не только специфическими, но и общими для всех видов ощущений. К основным свойствам ощущений относят: качество, интенсивность, продолжительность и пространственную локализацию, абсолютный и относительный пороги ощущений.

Качество – это свойство, характеризующее основную информацию, отображаемую данным ощущением, отличающую его от других видов ощущений и варьирующую в пределах данного вида ощущений.

Интенсивность ощущения является его количественной характеристикой и зависит от силы действующего раздражителя и функционального состояния рецептора, определяющего степень готовности рецептора выполнять свои функции.

Длительность ощущения – это временная характеристика возникшего ощущения. Она также определяется функциональным состоянием органа чувств, но главным образом – временем действия раздражителя и его интенсивностью.

Для ощущений характерна пространственная локализация раздражителя. Анализ, осуществляемый рецепторами, дает сведения о локализации раздражителя в пространстве. Все вышеописанные свойства в той или иной степени отражают качественные характеристики ощущений. Однако не менее важное значение имеют количественные параметры основных характеристик ощущений, иначе говоря, степень чувствительности.

Различают два вида чувствительности: абсолютную чувствительность и чувствительность к различию. Под абсолютной чувствительностью подразумевают способность ощущать слабые раздражители, а под чувствительностью к различию – способность ощущать слабые различия между раздражителями.

Минимальная величина раздражителя, при которых впервые возникает ощущение, называется абсолютным порогом ощущения. Раздражители, сила действия которых лежит ниже абсолютного порога ощущения, не дают ощущений, но это не значит, что они не оказывают никакого воздействия на организм.

students-library.com

Основные свойства и характеристики стали

В промышленном производстве для создания наиболее качественных материалов очень часто используют комбинации из нескольких химических элементов. Особенно распространен такой подход в металлургии, где получаемые сплавы способны работать в таких условиях, которые неподвластны чистым металлам.


Соединения нескольких элементов позволяет добиться уникальных свойств, которые необходимо в той или иной отрасли. Одним из наиболее распространенных сплавов является сталь. Она получается в результате соединения железа с углеродом. Также в массовую долю материала входит незначительное количество примесей. При необходимости в сплав вводят легирующие присадки или покрывают поверхность металла защитным слоем.

 

Химический состав стали

 

Свойства и характеристики стали зависят от количественного состава химических элементов в ее структуре. Углерод придает материалу твердости и вязкости, но его повышенное содержание приводит к хрупкости и ухудшает свариваемость. Наиболее качественная сталь получается после обработки отжигом, когда углерод внедряется в структуру металлической решетки железа на молекулярном уровне и образует устойчивое соединение цементит. Содержание кремния в сплаве повышает текучесть и прочность, а также упругость. Но избыток этого элемента ухудшает свариваемость и ударную вязкость. Марганец массовой долей до 2% позволяет повысить прочность материала. При большем процентном содержании сварка становится затруднительной.

 

 

Хром защищает сталь от окисления и значительно продляет срок ее эксплуатации. Но при неправильной термической обработке образует карбид, который препятствует сварке. Никель улучшает пластичность, вязкость и ковкость, а также является одним из немногих элементов, повышенное содержание которых не приводит к побочным эффектам. Молибден повышает термическую стойкость стали, а также предельно допустимые нагрузки, поэтому, активно используется в качестве присадок в конструкционных сплавах.


Ванадий улучшает вязкость и упругость, активно способствует процессу закалки, но ухудшает свариваемость. Вольфрам добавляет материалу твердости и стойкости при работе с высокими температурами. Титан повышает коррозийную стойкость стали, но его избыток может приводить к горячим трещинам при сварке. Медь повышает коррозионную стойкость и ковкость металла и не несет негативных эффектов при избытке. Кроме перечисленных элементов, наделяющих сталь положительными свойствами, есть и вещества, чье присутствие несет только негативную нагрузку.

 

 

Сера повышает ломкость материала при высоких температурах и затрудняет свариваемость. Фосфор влияет на повышение параметра ломкости при нормальных температурах и тоже ухудшает свариваемость. Азот, кислород и водород отрицательно влияют на прочность и приводят к быстрому старению стали. Содержание негативных элементов должно сводиться к минимуму, чтобы качество материала удовлетворяло потребностям рынка.

 

Характеристики стали

 

Твердость стали зависит от массовой доли углерода, а также количества специальных присадок. В основном твердые материалы используются в тех случаях, когда они не будут находиться под воздействием динамической нагрузки, так как с твердостью обычно повышается и хрупкость сплава. Предел прочности стали на растяжение составляет 60 килограммосил на миллиметр квадратный. Остальные значения прочностей напрямую зависят от марки материала. Стойкости к определенному виду негативного воздействия достигаются при помощи закалки металла или введения в сплав нужных присадок.

 

 

 

Предел прочности стали всегда отражается в маркировке, чтобы покупатель мог быстро выбрать нужный ему материал. Удельное сопротивление стали варьируется от 0,103 до 0,137 Ом*миллиметр в квадрате/метр. Величина зависит от количественного содержания химических элементов в сплаве. Для электротехнических сталей показатель сопротивления составляет 0,25-0,6 Ом*миллиметр в квадрате/метр. Столь высокое значение по сравнению с обычной сталью объясняется условиями эксплуатации и соответствует техническим требованиям. Расчетное сопротивление стали может быть разным даже для одной партии изделий, так как количество примесей распределяется не равномерно по всей структуре сплава.

 

 

Стальные проводники на практике применяются очень редко, так как есть металлы, обладающие гораздо лучшими параметрами, необходимыми для использования в электротехнике. А вот электротехническая сталь является одним из основных материалов, применяемых при изготовлении корпусов электроприборов и трансформаторов. Теплопроводность стали находится на высоком уровне, что позволяет с успехом использовать материал в отопительных системах. С ростом температуры этот показатель несколько снижается, но общие потери не критичны по сравнению с затратами энергии. Конечно, есть металлы и сплавы с гораздо более высокими параметрами теплопроводности, но их использование является нерентабельным ввиду больших затрат на их производство.

 

 

Удельная теплоемкость стали составляет 0,462 килоджоуля/килограмм*Кельвин. Это является неплохим показателем для металла. Данная характеристика показывает, сколько тепловой энергии необходимо передать телу, чтобы его температура изменилась на один градус. То есть, чем меньше этот показатель, тем быстрее нагревается вещество. Фактическое значение теплоемкости стали позволяет еще раз доказать оправданность ее использования в отопительных сетях. К тому же сталь очень хорошо сохраняет полученное тепло и медленно остывает, так что на поддержание температуры на нужном уровне понадобится меньше топлива.


Коэффициент трения сталь-сталь в состоянии покоя составляет 0,15 без использования смазки и 0,1 с ней. При скольжении этот параметр составит 0,15 и 0,05 соответственно. Химические свойства стали зависят от количественного и качественного содержания элементов в сплаве. При необходимости эксплуатации материала в агрессивной среде в его состав вводятся дополнительные присадки, позволяющие не допустить или сильно замедлить протекания разрушительных химических реакций.

 

 

promplace.ru

Характеристики и свойства истинных растворов

В широком смысле растворы бывают газообразными, жидкими, твердыми. Примером газообразного раствора может служить воздух, жидкого – раствор сахара в воде, твердого – многочисленные сплавы металлов.

Раствором называется гомогенная система, состоящая из двух или более независимых компонентов, соотношение между которыми может изменяться.

Один из компонентов раствора считается растворителем, остальные – растворенными веществами.

Растворителем считается то вещество, количество которого преобладает в данной системе. С этой точки зрения, воздух – это раствор кислорода, паров воды, углекислого газа и благородных газов в азоте, так как содержание азота в воздухе составляет 78% (об.). Этиловый или метиловый спирты неограниченно смешиваются с водой. Поэтому в зависимости от соотношения количества спирта и воды эта система может быть раствором спирта в воде или раствором воды в спирте. Электролиты (вещества, растворы или расплавы которых проводят электрический ток) в растворах, например, серная кислота в воде, всегда рассматриваются как растворенные вещества независимо от их количества.

Вода остается пока наиболее важным и распространенным растворителем, хотя в последние годы все большее значение приобретают неводные растворители.

Вода – химическое соединение кислорода с водородом, отвечающее в парообразном состоянии формуле Н2О (11,9 % масс. водорода и 88,81 % масс. кислорода).

Природная вода, как правило, содержит те или иные примеси. Наиболее чистой природной водой считается дождевая. Однако и она содержит растворенные атмосферные газы (О2, СО2 и т.д.), некоторые твердые вещества (NaCl, нитраты и т.д.), микроорганизмы, частички пыли и т.п. В среднем в 1 литре дождевой воды растворено около 34 мг примесей (солей соляной, азотной, сернистой кислот, аммониевых солей).

В морской воде в 1 литре в среднем находится около 35 г растворенных солей (NaCl, MgCl2, MgSO4, CaSO4, KCl).

Вода, очищенная от нелетучих растворенных веществ перегонкой, называется дистиллированной.

Вода – самое распространенное огнетушащее вещество, что связано с ее особенностями:

Н2О – высший оксид водорода, не подвергающийся дальнейшему окислению.

Процесс фазового перехода жидкость-пар является эндотермическим, что вызывает значительное снижение температуры в зоне горения при ее испарении.

Аномально высокая теплоемкость требует значительного подвода тепла для ее нагревания до 100°, т.е. до температуры кипения.

Вода обладает хорошей смачивающей способностью по отношению ко многим поверхностям, хорошей растворяющей способностью по отношению ко многим веществам, что дает возможность улучшать ее огнетушащие свойства введением в ее состав различных веществ (ПАВов, солей, щелочных металлов и т.д.).

Основным механизмом огнетушащего действия воды является охлаждение зоны горения.

Свойства воды, ограничивающие ее использование.

Расширение воды при замерзании. При давлении в 1 атм. вода при 0 °С превращается в лед. Наибольшая плотность воды при 4 °С. Плотность воды при этой температуре и давлении 1 атм. принята за единицу плотности жидких и твердых веществ. Плотность льда при 0 °С составляет 0,9168 г/см3, т.е. он легче жидкой воды.

Термическая деструкция, сопровождающаяся выделением кислорода и водорода (при температуре выше 1000 °С).

Химическая активность по отношению к щелочным металлам и некоторым другим веществам.

Электропроводность воды (совершенно чистая вода электрический ток не проводит).

Молекула воды имеет угловое строение: входящие в состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине – ядро атома кислорода. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды

..

Н : О : Н две электронные пары образуют две ковалентные связи О-Н,

××

остальные четыре электрона представляют собой две неподеленные электронные пары.

Атом кислорода в молекуле воды находится в состоянии sp3–гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О-Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, и на этих атомах создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных sp3-орбиталях, смещены относительно ядра атома и создают два отрицательных полюса.

В жидкой воде происходит ассоциация молекул за счет образования водородных связей. В воде атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды согласно схеме

В окислительно–восстановительных реакциях вода играет, как правило, роль среды. Под действием сильных восстановителей при обычной температуре, а в остальных случаях при повышенной температуре, вода проявляет окислительные свойства, например, окисляет щелочные и щелочноземельные металлы (на холоду), железо, углерод и др. (при температуре накаливания). При взаимодействии с сильными окислителями (фтор, хлор, электрический ток и т.д.) вода склонна проявлять восстановительные свойства.

Растворы однородны в различных частях объема. Растворение вещества часто происходит с выделением или поглощением тепла, иногда с изменением объема (при смешении 1 л С2Н5ОН и 1 л Н2О объем полученного раствора равен 1,93 л при 25 °С). В водном растворе происходит образование гидратов, которые являются сравнительно непрочными соединениями растворенных частиц и растворителя (например, безводный CuSO4 – белое вещество, при его растворении в воде образуется голубой раствор. Окраска раствора обусловлена гидратированными ионами меди). Гидратированные частицы иногда настолько прочны, что при выделении растворенного вещества из раствора в твердую фазу молекулы воды входят в состав кристаллов (так, при выпаривании водного раствора сульфата меди в твердую фазу выделяется соль CuSO4·5h3O, в которой вода называется кристаллизационной). Гидратация обусловлена силами межмолекулярного воздействия между растворенным веществом и растворителем.

Наибольшая взаимная растворимость достигается тогда, когда эти силы имеют подобный характер. Неполярные или малополярные соединения хорошо растворимы в неполярных и малополярных растворителях и менее растворимы в высокополярных растворителях (так, СО (малополярное соединение) хорошо растворим в бензоле (неполярное соединение) и ограниченно растворим в воде (полярное соединение)). Вода является хорошим растворителем полярных соединений (Nh4, C2H5OH).

Растворение – процесс обратимый: в зависимости от условий происходит или растворение, или выделение из раствора растворенного вещества. Вследствие обратимости процесса растворения к нему применим принцип Ле Шателье. Если растворение вещества происходит с поглощением теплоты, то повышение температуры приводит к увеличению растворимости. Наоборот, если при растворении вещества теплота выделяется, то повышение температуры приведет к уменьшению растворимости. В большинстве случаев растворимость солей возрастает с повышением температуры, для одних умеренно (NaCl), а для других весьма сильно (KNO3, AgNO3), и лишь в отдельных случаях растворимость уменьшается.

Насыщенным называется раствор, находящийся в равновесии с твердой фазой растворенного вещества и содержащий максимально возможное при данных условиях его количество (имеет место динамическое равновесие).

Раствор, концентрация которого ниже концентрации насыщенного раствора, называется ненасыщенным. В таком растворе можно при тех же условиях растворить дополнительное количества вещества. Существуют и пересыщенные растворы, которые содержат вещества больше, чем это следует из его растворимости при данных условиях (получаются путем охлаждения растворов, полученных при более высоких температурах. Такие растворы метастабильны. «Затравки» в виде кристаллов или потирание стеклянной палочки о стенку сосуда вызывают бурную кристаллизацию вещества).

Растворы, содержащие большое количество растворенного вещества, называются концентрированными, а с малым содержанием растворенного вещества – разбавленными.

Способы выражения состава растворов

Массовая доля – отношение (обычно процентное) массы растворенного вещества к массе раствора. Например, 15% (масс.) водный раствор NaCl на 100 единиц массы содержит 15 единиц массы NaCl и 85 единиц массы Н2О.

.

Мольная доля – отношение химического количества растворенного вещества (или растворителя) к сумме химических количеств всех веществ, составляющих раствор. В случае раствора одного вещества в другом мольная доля растворенного вещества (N2) равна

,

а мольная доля растворителя (N1)

,

где n1 и n2 – соответственно количество растворителя и растворенного вещества.

Молярная концентрация (молярность) – отношение химического количества растворенного вещества к объему раствора. Обычно молярность обозначается См или (после численного значения молярности) М. Так, 2 М Н2SO4 означает раствор, в каждом литре которого содержится два моля серной кислоты, то есть См = 2 моль/дм3.

.

Моляльность (моляльная концентрация) – отношение химического количества растворенного вещества к массе растворителя. Обычно моляльность обозначается буквой m. Так, для раствора h3SO4 запись m=2 моль/кг (Н2О) означает, что в этом растворе на каждый килограмм растворителя (воды) приходится два моля Н2SO4. Моляльность раствора в отличие от молярности не изменяется при изменении температуры.

mirznanii.com

Характеристика и основные свойства – Энциклопедия по машиностроению XXL

Таблица 20.1. Характеристика и основные свойства хладонов [1]

ХАРАКТЕРИСТИКА И ОСНОВНЫЕ СВОЙСТВА  [c.53]

Основными исходными данными для проектирования склада являются 1) характеристика и основные свойства топлива, хранимого на складе 2) требуемая емкость склада и перспектива его расширения 3) система доставки топлива на склад и выдачи со склада и часовая производительность системы 4) отводимая площадь под склад для размещения расчетного запаса с учетом перспективы увеличения мощности электростанции.  [c.12]

ХАРАКТЕРИСТИКА И ОСНОВНЫЕ СВОЙСТВА ГУММИРОВОЧНЫХ МАТЕРИАЛОВ  [c.50]

ОСНОВНЫЕ СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ИХ СВОЙСТВА  [c.162]

Приводятся методика и результаты испытаний, оценка основных характеристик и динамических свойств сварочных роботов.  [c.173]

Основные характеристики и механические свойства медных полуфабрикатных изделий  [c.84]

Выбор вида смазочных материалов производится в зависимости от их физико-химических свойств, характеристики и основных условий работы машины нагрузки, скорости, температуры, а также конструкции подшипников и качества поверхности трения. Смазка узлов трения агрегатов и механизмов осуществляется в основном одним из следуюш.их видов смазочных систем  [c.7]

Основная идея обобщения заключается в том, что в рассмотрение вводится эффективная поверхность микрочастиц среды, заполняющей объем, на которых происходит поглощение и рассеяние излучения, а все энергетические характеристики и радиационные свойства среды относятся к единице этой эффективной поверхности.  [c.203]

Характеристика и основные физические свойства топлива указываются в задании на разработку проекта электростанции.  [c.12]

При изучении динамического поведения жидкостей мы обычно рассматриваем некоторые аспекты явлений переноса, а именно способность жидкостей в своем движении переносить присущие им материальные характеристики и физические свойства от точки к точке пространства, и механизм, посредством которого эти характеристики и свойства распространяются и переносятся в жидкой среде. Основными явлениями переноса, которые связаны с движением жидкости, являются перенос массы, тепла и импульса (количества движения). Каждый из этих процессов в свою очередь связан с тем или иным фундаментальным законом физики, который сформулирован на основании наблюдений и опыта. Связь этих процессов и законов может быть представлена в следующем виде.  [c.61]

Необходимо отметить, что при проведении теоретических расчетов структурно — механических свойств торфяных систем возникают определенные сложности. Они, в первую очередь, связаны со сложившимися подходами в формировании комплекса характеристик, определяющих основные свойства торфа. К таковым в настоящее время относятся [137] общетехнические, физико-химические и химические свойства. Среди этих свойств имеются характеристики, связанные со структурой дисперсность, степень разложения (доля гель —фракций), ботанический состав, плотность. Однако показатели механических свойств в них не входят. В результате, хотя и имеется значительный массив экспериментальных данных по механическим свойствам, он не базируется на единой методический основе и в этом его существенный недостаток. Поскольку зачастую, если механические характеристики и определялись, то они оказались оторванными от структурных и типологических свойств.  [c.117]

В приложении III дан перевод статьи Многослойные структуры для рентгеновской оптики , опубликованной в 1986 г. Т. Барби — одним из пионеров и ведущих специалистов в области изготовления и применения многослойных рентгеновских зеркал. Это обзор, в котором подробно освещена история вопроса. Основной упор делается на взаимосвязь технологии нанесения многослойных покрытий, их структурных характеристик и оптических свойств в рентгеновском диапазоне. Т. Барби дает представление о многослойной рентгеновской оптике как быстро развивающейся, многообещающей области, которая находится на стыке современных направлений развития физики и технологии.  [c.10]

Большая часть деталей, изготовленных из чугунов, работает при повышенных температурах. Например, широкое распространение в качестве конструкционного материала теплонапряженных деталей двигателей приобретают чугуны с шаровидной и пластинчатой формой графита. Опыт применения поршней из высокопрочного чугуна ведущих зарубежных фирм убедительно показал преимущества чугунных поршней перед алюминиевыми и составными поршнями в отношении теплоустойчивости, жаростойкости, КПД сгорания, дымления, расхода масла. В связи с высокими теплофизическими характеристиками и прочностными свойствами большой интерес вызывают также ковкие чугуны, основные свойства которых можно изменять методами ТО.  [c.135]

Авторы ставили своей целью рассмотрение физики процессов и основных свойств излучения лазеров на неодимовом стекле, методов управления характеристиками излучения этих лазеров. Наряду с рассмотрением современного состояния физики и техники лазеров на неодимовом стекле, основное внимание уделено проблемам реализации их предельных возможностей и прежде всего вопросам, представляющим общий для многих типов лазеров интерес. В то же время мы стремились дать по возможности максимум фактических справочных данных о лазерах на неодимовом стекле.  [c.6]

Выбрать марку стали для сверл, дать характеристику ее основным свойствам, привести режим термической обработки, указать структуру после закалки и отпуска.  [c.390]

Интенсивность рассеянного излучения. Коэффициенты рассеяния, поглощения и ослабления. Приведенные выше краткая схема решения уравнений Максвелла, формулы для составляющих рассеянного поля и основные свойства этих полей исчерпывают математическое содержание теории Ми. Следующая задача состоит в использовании этих решений и свойств с целью получения формул для физически измеряемых величин. К числу последних относятся интенсивность рассеянного излучения и параметры Стокса. Из сопоставления именно этих величин для падающего и рассеянного излучения следуют основные оптические характеристики для рассеивающих частиц.  [c.16]

Технические характеристики отражают основные свойства топлив применительно к процессу горения и способам их использования в топочных устройствах. Важнейшими среди них являются  [c.345]

Одни.м из основных требований, предъявляемых к упругим ЧЭ, является стабильность их характеристики и упругих свойств. Это достигается выбором материала с высокими упругими свойствами, соответствующей технологией изготовления элементов, а также ве-  [c.86]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]

Особое место в обеспечении высокого качества продукции принадлежит стандартизации. Комплексная стандартизация сырья, материалов, полуфабрикатов, комплектующих изделий и готовой продукции — эффективное средство планомерного повышения качества. Стандартизация устанавливает оптимальные показатели качества, его параметрические ряды, приемы контроля и испытаний, режимы технического обслуживания, методы ремонта, нормы запасных частей и т. п. На каждое разрабатываемое изделие составляют технические условия (ТУ) — документ, входящий в комплект технической документации на промышленную продукцию (изделие), в котором указывают комплекс технических требований к продукции, правила ее приемки и поставки, методы контроля, условия эксплуатации, транспортирования и хранения. Технические требования определяют основные параметры и размеры, свойства или эксплуатационные характеристики изделия, показатели качества, комплектность и т. д.  [c.26]

Качество продукции оценивают показателями качества, которые представляют собой количественные характеристики основных свойств продукции. Так, качество металл,ов оценивают его механическими характеристиками, а также процентным содержанием легирующих элементов или вредных примесей надежность. машин и их деталей оценивают коэффициентом надежности долговечность – сроком службы.  [c.15]

Пространственное расположение плоскостей и поверхностей определяет на изображении визуальную структуру графической модели. Адекватность восприятия объекта графического моделирования по изображению выдвигает на первый план его целостно-визуальные характеристики, задаваемые геометрическими свойствами внешних поверхностей формы и подразумеваемыми условиями моделируемой световой пространственной среды. Учет дифференциации оптических свойств поверхностей позволяет осуществить на графической модели акцентирование отдельных частей формы, показать тождество или различие локальных областей, связанных одним характером пространственной ориентации. Варьирование визуальных характеристик поверхностей позволяет достигать необходимой выразительности изображения, выявления как объемных, так и пространственных отношений основных частей формы.  [c.53]

Основные свойства упругих элементов. Требования, предъявляемые к упругим элементами, зависят от их назначения, условий работы и точности механизмов. Однако упругие элементы разного назначения обладают рядом общих свойств. Точность работы механизмов во многом зависит от стабильности упругих характеристик пружин, достигаемой за счет использования высококачественных материалов при их изготовлении. Кроме того, упругие элементы приборов должны обладать достаточной прочностью и выносливостью, а в ряде случаев электропроводностью и устойчивостью к агрессивным средам.  [c.460]

Показателями основных свойств упругих элементов являются упругая характеристика, коэффициент жесткости, коэффициент чувствительности, упругое последействие и упругий гистерезис.  [c.460]

Марочник не заменяет собой действующую нормативно-техническую документацию (ГОСТы, ОСТы, ТУ, РТМ и т. п.). Его основная цель — облегчить конструкторам, технологам, исследователям получение справочных данных об основных свойствах и характеристиках сталей, необходимых для обоснованного выбора марки материала при проектировании изделий и разработке технологии их изготовления. В соответствии с этой целью марочник содержит номенклатуру марок сталей, наиболее широко применяемых на машиностроительных предприятиях, и сведения справочного характера о химическом составе сталей, механических свойствах и твердости заготовок или готовых деталей в зависимости от размеров их поперечного сечения и режима термической обработки, примерном назначении, основных технологических свойствах и т. д.  [c.7]

Основным достоинством кузнечной сварки следует считать получение сварного соединения со значительной степенью деформации металла шва, что повышает его механические характеристики и приближает их к свойствам основного металла.  [c.134]

Применение конструкционных низколегированных сталей повышенной и высокой прочности, теплоустойчивых и жаропрочных хромомолибденованадиевых, нержавеющих хромоникелевых сталей, биметаллов и композиционных материалов для изготовления аппаратов актуализирует проблему механической неоднородности. Механическая неоднородность, заключающаяся в различии механических характеристик зон (шва Ш, зоны термического влияния ЗТВ и основного металла) сварного соединения, является, с одной стороны, следствием локализованных температурных полей при сварке структурно-неравновесных сталей, с другой – применения технологии сварки отличающимися по свойствам сварочных материалов с целью повышения технологической прочности.  [c.93]

Однако прежде чем ввести понятие об эквивалентности двух множеств векторов, мы в 2 введем в рассмотрение две векторные характеристики — главный вектор и главный момент системы, — которые имеют смысл для любого множества векторов. Далее в 3 дается определение эквивалентности систем векторов, и тем самым выделяется интересующий нас класс таких множеств. Наконец, в 4 устанавливаются основные свойства множеств векторов выделенного класса.  [c.338]

В условиях малоциклового нагружения старение протекает на фоне повторного деформирования за пределами упругости. Последнее обстоятельство определяет повышенную интенсивность процессов, сопровождаюш их остаривание, так что за времена порядка 5—10 мин в основном происходит снижение пластических свойств. В качестве примера в табл. 1 приведены данные о статической прочности и пластичности малоуглеродистой низколегированной стали при температуре 270° С, полученные при длительностях нагружения до разрушения в диапазоне 1,5— 105 мин. Можно отметить весьма слабую зависимость прочностных характеристик и особенно свойств пластичности от времени нагружения. Для подтверждения полученного результата проведены испытания той же стали при малоцикловом жестком нагружении при частотах нагружения порядка 1 и 0,1 цикла мин.  [c.41]

Специфические свойства той или иной смолы (олигомера), входящей в состав термореактивных пластмасс, определяют не только их рецептуру (необходимость введения отвердителей, количественное содержание того или иного наполнителя и т. п.) и его технологические характеристики (текучесть, параметры прессования — температура, давление, время, величину технологической усадки, количество выделяющихся летучих), но и основные свойства готовой детали (теплостойкость, формо-и размероизменяемость во времени и под действием различных внешних факторов, механическую прочность, химическую стойкость, электроизоляционные свойства и т. п.). В состав большинства пластических масс, кроме полимерного связующего, могут входить отвердители, пластификаторы, наполнители, красители, порообразо-ватели, смазывающие вещества и другие добавки.  [c.12]

Несмотря на сравнительно низкое содержание углерода, пирофералю присуш,и основные свойства чугуна он имеет эвтектическое превраш,ение, непластичен, обладает хорошими линейными свойствами и другими характеристиками, свойственными чугуну. Литейные свойства этого сплава приблизительно такие же, как у чугуна с шаровидным графитом, легированного 19—25% алюминия.  [c.216]

Помимо условий непрерывности и дифференцируемости, при исследованиях характеристик выбросов в большинстве задач необходимо также знать и основные свойства производных ( ), = 1, 2,. . ., рассматриваемого случайного процесса ( ). Перечислим кратко некоторые из этих свойств, предполагая, что соответствующие условия (1.3.2) и (1.3.5) выполнены, и не накладывая пока особых ограничений на конкретный вид конечномерных распределенпй процесса.  [c.23]

Как было указано выше, при производстве автомобилей в настоящее время в основном используются отделочные покрытия с металлическим огтенком. Таким покрытиям благодаря привлекательному внешнему виду, вероятно, и в дальнейшем обеспечен большой спрос, т. к. и по цветовым характеристикам и по свойствам они отвечают требованиям потребителей. Однослойные отделочные покрытия с металлическим оттенком в том виде, в каком они сейчас существуют, готовятся на основе термопластичных или термореактивных акрилатных связующих.  [c.299]

При решении задач автоматизации основные свойства и характеристики объектов описывают с помощью формальных математических объектов, обеспечивающих адекватность и сохраняющих наглядность и необходимую содержательность. При решении задач с помощью САПР и при разработке компонентов КСАП возникает необходимость построения различных ММ и выбора из них наиболее приемлемой.  [c.215]

Таким образом, методом осреднения мы получили уравнения импульса, притока тепла фаз, а также уравнения момента импульса и энергии их пульсационного (мелкомасштабного) движения. В отличие от феноменологического подхода гл. 1, метод осреднения позволил последовательно учесть влияние мелкомасштабного движения фаз поверхностного натяжения и получить выражения для определения таких макроскопических характеристик, как тензор напряжений в фазах, интенсивности межфазного взаимодействия, потоки различных видов энергий и т. д. через значения микропараметров. Реализация этих выражений, приводящая к реологическим соотношениям теперь уже только между макропараметрами (которые можно называть явными реологическими соотношениями) и, как результат, к замыканию системы уравнений, должна производиться с учетом структуры и физических свойств фаз в смеси. И это есть основная проблема при моделировании гетерогенных сред.  [c.87]


mash-xxl.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *