Схема итп с элеватором и гвс – Индивидуальный тепловой пункт: схемы и решения

Типовые схемы

     
1.

Принципиальная схема ИТП для одной системы отопления при независимом подключении к тепловой сети.

2. Принципиальная схема ИТП для двух систем отопления при независимом подключении к тепловой сети.  
3. Принципиальная схема ИТП бля одной системы отопления при зависимом подключении к тепловой сети.  
4. Принципиальная схема ИТП для двух систем отопления при зависимом подключении к тепловой сети.  
5. Принципиальная схема ИТП для ситемы ГВС с одноступенчатым подключением водоподогревателя.  
6. Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с одноступенчатым водонагревателем.  
7. Принципиальная схема ИТП для систем отопления при независимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем.  
8. Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем.  
9.  Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем.  
10А.  Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе раздельных одноходовых теплообменников.  
10Б. Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе двухходового моноблочного теплообменника.  
11А. Принципиальная схема ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе раздельных одноходовых теплообменников.  
11Б. Принципиальная схема ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе двухходового моноблочного теплообменника.  
12А. Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе одноходовых теплообменников.  
12Б. Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе двухходового моноблочного теплообменника.  
13А. Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе одноходовых теплообменников.  
13Б. Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе моноблочного теплообменника.  
14. Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором.  
15. Принципиальная схема ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором.  
16. Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором.  
17. Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором.  
     

tovk.ru

Работа ИТП | Блог инженера теплоэнергетика

      

 Как мы видим из фото, в ИТП заходят два трубопровода – подача и обратка. Рассмотрим все последовательно. На подаче (это верхний трубопровод) обязательно на вводе в теплоузел стоит задвижка, она так и называется – вводная. Задвижка эта обязательно должна быть стальная, ни в коем случае не чугунная. Это один из пунктов «Правил технической эксплуатации тепловых энергоустановок», которые были введены в действие с осени 2003 года.

Связано это с особенностями централизованного теплоснабжения, или центрального отопления, другими словами. Дело в том, что такая система предусматривает большую протяженность, и много потребителей от источника теплоснабжения. Соответственно, чтобы у последнего по очереди потребителя хватало давления, на начальных и далее участках сети держат давление повыше. Так, например, мне в работе приходится сталкиваться с тем, что в теплоузел приходит давление 10-11 кгс/см² на подаче. Чугунные задвижки могут и не выдержать такого давления. Поэтому, от греха подальше, по «Правилам технической эксплуатации»  решено от них отказаться. После вводной задвижки стоит манометр. Ну с ним все понятно, мы должны знать давление на вводе в здание.

Затем грязевик, назначение его становится понятно из названия – это фильтр грубой очистки. Кроме давления, мы должны еще обязательно знать и температуру воды в подаче на вводе. Соответственно, обязательно должен быть термометр, в данном случае термометр сопротивления, показания которого выведены на электронный тепловычислитель. Далее следует очень важный элемент схемы теплоузла – регулятор давления РД. Остановимся на нем поподробнее, для чего он нужен? Я уже писал выше, что давления в ИТП приходит с избытком, его больше, чем нужно для нормальной работы элеватора (о нем чуть позже), и приходится это самое давление сбивать до нужного перепада перед элеватором.

Иногда даже бывает так, мне приходилось сталкиваться, что давления на вводе так много, что одного РД мало и приходится еще ставить шайбу (регуляторы давления тоже имеют предел сбрасываемого давления), в случае превышения этого предела начинают работать в режиме кавитации, то есть вскипания, а это вибрация и т.д. и т.п. Регуляторы давления тоже имеют много модификаций, так есть РД, у которых две импульсные линии (на подаче и на обратке), и таким образом они становятся и регуляторами расхода. В нашем случае это это так называемый регулятор давления прямого действия «после себя», то есть он регулирует давление после себя,что нам собственно и нужно.

         И еще про дросселирование давления. До сих пор иногда  приходится видеть такие теплоузлы, где сделано шайбирование ввода, то есть когда вместо регулятора давления стоят дроссельные диафрагмы, или проще говоря, шайбы. Очень не советую такую практику, это каменный век. В этом случае у нас получается не регулятор давления и расхода, а попросту ограничитель расхода, не более того. Подробно расписывать принцип действия регулятора давления «после себя» не стану, скажу только, что принцип этот основан на уравновешивании давления в импульсной трубке (то есть давления в трубопроводе после регулятора) на диафрагму РД  силой натяжения пружины регулятора. И это давление  после регулятора (то есть после себя) можно регулировать, а именно выставлять больше или меньше с помощью гайки настройки РД.

         После регулятора давления стоит фильтр перед счетчиком потребления теплоэнергии. Ну думаю, функции фильтра понятны. Немного о теплосчетчиках. Счетчики существуют сейчас разных модификаций. Основные типы счетчиков: тахометрические (механические), ультразвуковые, электромагнитные, вихревые. Так что выбор есть. В последнее время большую популярность приобрели электромагнитные счетчики. И это неспроста, есть у них ряд преимуществ. Но в данном случае у нас счетчик тахометрический (механический) с турбиной вращения, сигнал с расходомера выведен на электронный тепловычислитель.

Затем после счетчика теплоэнергии идут ответвления на вентиляционную нагрузку (калориферы), если она есть, на нужды горячего водоснабжения. 

         На горячее водоснабжение идут две линии с подачи и с обратки, и через регулятор температуры ГВС на водоразбор. О нем я писал в этой статье.  В данном случае регулятор исправный, рабочий, но так как система ГВС тупиковая, эффективность его снижается.

Следующий элемент схемы очень важный, пожалуй, самый важный в теплоузле – это можно сказать, сердце отопительной системы. Я говорю об узле смешения – элеваторе. Схема  зависимая со смешением в элеваторе была предложена выдающимся нашим ученым В.М.Чаплиным, и стала повсеместно внедряться в капитальном строительстве с 50х годов по самый закат Советской империи.

         Правда, Владимир Михайлович предлагал со временем (при удешевлении электроэнергии)  заменить элеваторы смесительными насосами. Но про эти его идеи как то забыли. Элеватор состоит из нескольких основных частей. Это всасывающий коллектор ( вход с подачи), сопло (дроссель), камера смешения (средняя часть элеватора, где смешиваются два потока и подравнивается давление), приемная камера (подмес с обратки ), и диффузор (выход с элеватора непосредственно в теплосеть с установившимся давлением).

         Немного о принципе работы элеватора, его преимуществах и недостатках. Работа элеватора основана на основном, можно сказать, законе гидравлики – законе Бернулли. Который, в свою очередь, если обойтись без формул гласит о том, что сумма всех давлений в трубопроводе – динамического давления (скорости), статического давления на стенки трубопровода и давления веса жидкости всегда остается постоянной, при любых изменениях потока. Так как мы имеем дело с горизонтальным трубопроводом, то давлением веса жидкости приблизительно можно пренебречь. Соответственно, при снижении статического давления, то есть при дросселировании через сопло элеватора, возрастает динамическое давление (скорость), при этом сумма этих давлений  остается неизменной. В конусе элеватора образуется разрежение, и вода из обратки подмешивается в подачу.

        То есть элеватор работает  как смесительный насос.  Вот так все просто, никаких насосов с электроприводом и т.д. Для недорогого  капитального строительства с высокими темпами, без особого учета теплоэнергии — самый верный вариант. Так и было в советское время и это было оправдано. Однако у элеватора есть не только достоинства, но и недостатки. Основных два: для его нормальной работы  перед ним нужно держать относительно высокий перепад давления (а это соответственно сетевые насосы с большой мощностью и немалый  расход электроэнергии), и второй и самый главный недостаток — механический элеватор практически не подается регулировке. То есть, как выставили сопло, в таком режиме он и будет работать весь отопительный сезон, и в мороз и в оттепель.

        Особенно ярко этот недостаток проявляется на «полочке» температурного графика, об этом я писал здесь. В данном случае на фото у нас погодозависимый элеватор с регулируемым соплом, то есть внутри элеватора игла ходит в зависимости от температуры на улице, и расход либо увеличивается, либо уменьшается. Это более модернизированный вариант по сравнению  с механическим элеватором. Это тоже, на мой взгляд, не самый оптимальный, не самый энергоемкий вариант, но об этом не в этой статье. После элеватора, собственно, вода идет уже непосредственно к потребителю, и сразу за элеватором стоит домовая задвижка подачи. После домовой задвижки манометр и термометр, давление и температуру после элеватора нужно знать и контролировать обязательно.

        На фото еще и термопара (термометр) для измерения температуры и выдачи значения температуры  в контроллер, но если элеватор механический, ее соответственно нет.  Далее идет уже разветвление по веткам потребления, и на каждой ветке тоже по домовой задвижке.Движение теплоносителя по подаче в ИТП мы рассмотрели, теперь об обратке. Сразу на выходе обратки с дома в теплоузел устанавливается предохранительный клапан. Назначение предохранительного клапана – сбросить давление в случае превышение нормируемого давления. То есть при превышении этой цифры ( для жилых домов 6 кгс/см² или 6 бар) клапан срабатывает и начинает сбрасывать воду. Таким образом мы предохраняем внутреннюю систему отопления, особенно радиаторы от скачков давления.

        Далее идут домовые задвижки, в зависимости от количества веток отопления. Также должен быть манометр, давление с дома тоже нужно знать. Кроме того по разнице показаний манометров на подаче и обратке с дома можно очень приблизительно прикинуть сопротивление системы, проще говоря потери давления. Затем следует подмес с обратки в элеватор, ветки нагрузки на вентиляцию с обратки,  грязевик ( про него я писал выше). Далее ответвление с обратки на горячее водоснабжение, на котором в обязательном порядке должен быть установлен обратный клапан.

        Функция клапана в том, что он пропускает поток воды только в одном направлении, обратно вода течь не может. Ну и далее по аналогии с подачей фильтр на счетчик, сам счетчик, термометр сопротивления. Далее вводная задвижка на обратке и после нее манометр, давление, которое уходит от дома в сеть, тоже нужно знать.

        Мы рассмотрели стандартный индивидуальный тепловой пункт зависимой системы отопления с элеваторным подключением, при открытом водоразборе горячей воды, горячее водоснабжение по тупиковой схеме. Незначительные отличия в разных ИТП при такой схеме могут быть, но основные элементы схемы обязательны.

      По вопросам приобретения любого тепломеханического оборудования в ИТП можно обращаться непосредственно ко мне по эл.адресу: [email protected]

       Совсем недавно я написал и выпустил книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно.

Вот содержание книги:

1. Введение

2. Устройство ИТП, схема без элеватора

3. Устройство ИТП, элеваторная схема

4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.

5. Заключение

Просмотреть книгу можно по ссылке ниже:

Устройство ИТП (тепловых пунктов) зданий. 

Буду рад комментариям к статье.

teplosniks.ru

Схемы тепловых пунктов — РосТепло Энциклопедия теплоснабжения

Материал из РосТепло Энциклопедия теплоснабжении

Содержание раздела

В общей системе теплоснабжения тепло­вой пункт имеет важное значение как для тепловой сети (распределение теплоносителя), так и для внутренних систем потребителя (регулирование температуры и расхода).

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а — при подключении потребителей непосредст­венно к коллектору теплоисточника; б — при под­ключении потребителей к тепловой сети


На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I, II, III), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) – при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 — подогреватель горячего водоснабжения; 2 — эле­ватор; 3 — регулятор температуры воды; 4 — цир­куляционный насос; 5 — регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 — подогреватель; 2 — элеватор; 3 — регулятор температуры воды; 4 – регулятор расхода; 5 – циркуляционный насос


Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.


Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 — подогреватели первой и второй ступеней; 3 — элеватор; 4 — регулятор температуры воды; 5 — регулятор расхода; 6 — перемычка для переклю­чения на смешанную схему; 7 — циркуляционный насос; 8 — смесительный насос


Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.


Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 — подогреватели первой и второй ступеней; 3 — элеватор; 4 — регулятор температуры воды; 5 — циркуляционный насос; 6 — смесительный на­сос; 7 — регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета — путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором — по-разному. Имеется возможность 100%-го резервирования потребителей до tн = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 — регулятор (смеситель) температуры воды; 2 — элеватор; 3 — обратный клапан; 4 — дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.

www.rosteplo.ru

с гвс, без гвс, с размерами и счетчиком

Теплоноситель в системах центрального теплоснабжения проходит по тепловому пункту до того, как попасть непосредственно в секции радиаторов каждой квартиры и отдельного помещения. В таком узле вода приводится к расчетной температуре, а баланс обеспечивается благодаря тому, что правильно работает схема элеваторного узла отопления. В подвале любого многоэтажного дома, отапливаемого по центральной магистрали, можно найти такой элеватор.

Принцип работы узла

Разбираясь, что такое элеватор, стоит отметить необходимость этого комплекса для соединения с его помощью тепловых сетей и частных потребителей. Тепловой узел – это модуль, выполняющий функции насосного оборудования. Чтобы увидеть, что такое элеватор в системе отопления, необходимо опуститься в подвал практически любого многоквартирного дома. Там среди запорной арматуры и измерителей давления удастся обнаружить искомый элемент отопительной системы (схема указана на рисунке ниже).

Выясняя, элеватор, что это такое, стоит определить его функционал по выполняемым задачам. В их число входит перераспределение давления изнутри отопительной системы, при этом выдается теплоноситель с допустимой температурой. Фактически объем воды удваивается, перемещаясь по магистралям от котельной. Такой эффект достигается при наличии воды в отдельном герметизированном сосуде.

Температура теплоносителя, поступающего из котельной, обычно находится в пределах 105-1500С. Использовать его с данным параметром в бытовых условиях не представляется возможным по соображениям безопасности.

Нормативными документами регламентировано граничное температурное значение для теплоносителя, которое должно составлять не более 950С.

Для справки. В настоящее время активно обсуждается вопрос о снижении температуры горячей воды с 600С, предусмотренной СанПин, до 500С, мотивируя это необходимостью экономить на ресурсах. Как отмечают эксперты, такую минимальную разницу потребитель не заметит, а для того, чтобы ежесуточно проводилась надлежащая дезинфекция воды в трубах, рекомендуется повышать ее до 700С. Насколько эта инициатива рациональна и обдумана, пока рано судить. Изменения в СанПин еще не внесены.

Возвращаясь к теме элеватора системы отопления, отметим, что температуру в системе обеспечивает именно он. Благодаря данным действиям удается снизить риски:

  • с чрезмерно перегретыми батареями легко получить ожег;
  • радиаторы отопления не всегда способны выдерживать длительное время воздействие повышенной температуры теплоносителя под давлением;
  • разводка из полимерных или металлопластиковых труб не предусматривает их применение с таким горячими теплоносителями.

Чем удобен именно этот узел

Элеваторный узел в любом многоквартирном доме

Можно услышать мнение о том, что было бы удобнее не использовать элеватор отопления с таким принципом работы, а подавать напрямую воду меньшей температуры. Однако, это мнение ошибочное, ведь придется существенно повысить диаметры магистралей для передачи более холодного теплоносителя.

ВИДЕО: Элеваторный узел магистрали ЦО

Фактически, грамотная схема теплового узла отопления позволяет подмешивать в подающий объем воды часть объема из обратки, который уже остыл. Хотя в некоторых источниках элеваторный узел системы отопления относят к устаревшему гидравлическому оборудованию, но он доказал свою эффективность в работе. Более современными приборами, используемыми вместо схемы элеваторного узла, являются следующие типы:

  • пластинчатый теплообменник;
  • смеситель с трехходовым клапаном.

Функционирование элеватора

Рассматривая, элеваторный узел системы отопления, что это такое и как работает, стоит отметить, что у рабочей конструкции есть сходство с водяными насосами. Однако, эксплуатация не требует передачи энергии из других систем. Свою надежность он проявляет при определенных условиях.

Снаружи базовая часть аппарата внешне схожа с гидравлическим тройником, смонтированным на обратной ветке. Однако, сквозь стандартный тройник теплоноситель безболезненно проникал бы в обратку без прохождения по радиаторам. Такое поведение являлось бы бессмысленным.

Стандартная схема элеватора

В классической схеме элеваторного узла системы отопления присутствуют следующие составные части:

  • Предкамера, подающая труба, на конце которой расположено сопло определенного диаметра. В нее поступает теплоноситель из обратки.
  • В выходной части вмонтирован диффузор. Он передает воду потребителям.

Сегодня встречаются узлы, где диаметр сопла регулируется электрическим приводом. Это дает возможность оптимизировать температуру теплоносителя в автоматическом режиме.

Выбор узла с электроприводом основан на том, что можно изменять коэффициент смешения теплоносителя в пределах 2-5, что невозможно в элеваторах, где диаметр сопла не регулируется. Таким образом система с регулируемым соплом позволяет значительно экономить на отоплении, что возможно в домах, где установлены центральные счетчики.

Строение

Как работает схема теплового узла

В целом принцип работы можно описать таким образом:

  • вода перемещается по магистрали от котельной к входу в сопло;
  • во время прохода по небольшому диаметру существенно повышается скорость рабочего теплоносителя;
  • формируется район с небольшим разряжением;
  • за счет образовавшегося вакуума вода подсасывается из обратки;
  • турбулентные потоки однородной массой отправляются к выходу сквозь диффузор.

Более подробно можно все рассмотреть на рабочей схеме.

Для эффективной работы системы, в которой задействована схема элеваторного узла системы отопления, нужно обеспечить величину по значениям давления между подачей и обраткой больше, чем значение расчетного гидросопротивления.

Недостатки системы

Кроме позитивных качеств, тепловой узел или схема теплового узла имеют определенный недостаток. Он заключаются в следующем. Элеватор системы отопления не имеет возможности проводить регулировку выходной температурной смеси. В такой ситуации понадобится замерить разогретый теплоноситель из магистрали или от обратного трубопровода. Понижать температуру удастся лишь при изменении габаритов сопла, что конструкционно не получается сделать.

В некоторых случаях спасают элеваторы, имеющие электропривод. В их конструкцию входит механический привод. Данный узел приводится в действие с помощью электрического привода. Таким способом удается варьировать в диаметре сопла. Базовым элементом такой конструкции является дроссельная иголка, имеющая конусный вид. Она входит в отверстие по внутреннему диаметру конструкции. Перемещаясь на определенное расстояние, ей удается корректировать температуру смеси именно за счет изменения диаметра сопло.

На валу бывает смонтирован как привод ручной в виде рукоятки, так и запускаемый дистанционно электроприводной движок.

За счет таких модернизированных решений котельная в подвале не претерпевает значительных дорогостоящих переоборудований. Достаточно смонтировать регулятор, чтобы получить современный тепловой узел.

Неисправности

В большинстве случаев поломки вызваны следующими факторами:

  • засорение оборудования;
  • постепенное увеличение диаметра сопло в процессе эксплуатации, в результате чего температуру теплоносителя сложнее контролировать;
  • забитые грязевики;
  • поломка арматуры;
  • выход из строя регуляторов и т.д.

Определить поломку этого устройства несложно, она сразу сказывается на температуре теплоносителя и на ее резком перепаде. При незначительных отклонениях от нормы, скорее всего, речь идет о засорении или небольшом увеличении диаметра сопло. Если перепад очень значительный (более 5 градусов), тогда уже нужно проводить диагностику и вызывать специалиста для ремонта.

Диаметр сопло увеличивается либо в процессе коррозии при контакте с водой, либо в результате непроизвольного сверления. И то, и другое в итоге приводит к разбалансировке системы и должно быть устранено незамедлительно.

Нужно знать, что современные модернизированные системы могут эксплуатироваться с узлами учета потребления электроэнергии. При отсутствии данного устройства в цепи отопления тяжело добиться экономичного эффекта. Установка же счетчиков тепла и горячей воды позволяет существенно снижать коммунальные платежки.

ВИДЕО: Принцип работы узла

www.portaltepla.ru

АЛЬБОМ ТИПОВЫХ СХЕМ. Индивидуальный тепловой пункт «ИТП Этра»

Транскрипт

1 АЛЬБОМ ТИПОВЫХ СХЕМ Индивидуальный тепловой пункт «ИТП Этра»

2

3 Содержание Введение 4 Основные технологические схемы ИТП «Этра»… 6 Опросный лист Разрешительная документация

4 1. Введение В данном альбоме представлены типовые схемы индивидуальных тепловых пунктов (ИТП), выпускаемые серийно компанией «Этра». Предложенные принципиальные схемы и типовые параметры разработаны на основе наиболее распространённых технологических схем используемых в сфере ЖКХ с учётом требований нормативных документов. ИТП «Этра» предназначены для передачи тепловой энергии, а так же автоматического регулирования параметров теплоносителя, подаваемого от наружных тепловых сетей (ТС) в систему отопления (СО), систему горячего водоснабжения (ГВС), систему вентиляции (СВ), систему кондиционирования жилых и общественных зданий, а так же производственных помещений. ИТП «Этра» (рис. 1.1) это единый многофункциональный комплекс, собранный из модулей, смонтированных на раме, укомплектованный теплообменниками, насосами, системой автоматического регулирования и управления, контрольно-измерительными приборами, запорной и регулирующей арматурой. Рис. 1.1 Внешний вид ИТП 4

5 ИТП может устанавливать и поддерживать заданные значения параметров теплоносителя при следующих условиях: воздействие температуры окружающего воздуха от 5 C до 40 C и относительной влажности до 90% при температуре 25 С; суммарная тепловая нагрузка до 10 МВт, с единичной мощностью отдельных модулей до 2,5 МВт давление в подающем трубопроводе (Р1) до 2,5 МПа; температура теплоносителя в подающем трубопроводе (Т1) до 250 C; рабочая среда: вода пар, раствор этиленгликоля, раствор пропиленгликоля. Состав и исполнение структурных частей ИТП зависят от конкретного его назначения, параметров объекта, региональных нормативных требований по функционированию теплосистем. ИТП поставляется в виде единого агрегата или отдельных модулей. В комплект поставки, помимо самого ИТП, входит техническая документация: паспорт, руководство по эксплуатации, сборочный чертёж, комплект документации на оборудование, входящее в состав ИТП. ИТП (рис. 1.2) может состоять из следующих блоков: узел ввода*; узел учёта тепловой энергии* * ; узел обеспечения гидравлических режимов; узел присоединения системы СВ; модуль системы ГВС; модуль насосов системы ГВС; модуль системы СО; модуль насосов системы СО; узел подпитки системы СО; модуль расширительных сосудов; щит управления. Рис. 1.2 Обобщенная структурная схема ИТП * Узел ввода и узел учёта тепловой энергии могут проектироваться отдельно с индивидуальным согласованием и сдачей теплоснабжающей организации. 5

6 2. Основные технологические схемы ИТП «Этра» Технологическая схема 1 ИТП для одной системы отопления при независимом присоединении к тепловой сети 6

7 Технологическая схема 2 ИТП для двух систем отопления при независимом присоединении к тепловой сети 7

8 Технологическая схема 3 ИТП для одной системы отопления при зависимом присоединении к тепловой сети 8

9 Технологическая схема 4 ИТП для двух систем отопления при зависимом присоединении к тепловой сети 9

10 Технологическая схема 5 ИТП для системы ГВС с одноступенчатым водонагревателем АЛЬБОМ ТИПОВЫХ СХЕМ ИТП «Этра» 10

11 Технологическая схема 6 ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с одноступенчатым водонагревателем 11

12 Технологическая схема 7 ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем 12

13 Технологическая схема 8 ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем 13

14 Технологическая схема 9 ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем 14

15 Технологическая схема 10а ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе двухходового моноблочного теплообменника 15

16 Технологическая схема 10б ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе раздельных одноходовых теплообменников 16

17 Технологическая схема 11а ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе двухходового моноблочного теплообменника 17

18 Технологическая схема 11б ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе раздельных одноходовых теплообменников 18

19 Технологическая схема 12а ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе двухходового моноблочного теплообменника 19

20 Технологическая схема 12б ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе одноходовых теплообменников 20

21 Технологическая схема 13а ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе двухходового моноблочного теплообменника 21

22 Технологическая схема 13б ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым водоподогревателем на базе одноходовых теплообменников 22

23 Технологическая схема 14 ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором 23

24 Технологическая схема 15 ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором 24

25 Технологическая схема 16 ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором 25

26 Технологическая схема 17 ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором 26

27 Схема резервирования водоподогревателя системы СО Варианты модуля насосов систем СО, ГВС, СВ или узла подпитки а) с одним безфундаментым насосом; б) со сдвоенным насосом; в) с двумя раздельными насосами 27

28 Перечень оборудования и КИП и А, применяемых в составе ИТП «Этра» Позиция Наименование оборудования Проектная маркировка Производитель 1 Одноходовой теплообменник системы СО, ГВС, или СВ 2 Двухходовой моноблочный теплообменник системы ГВС 3 Насос циркуляционный или подпиточный Серии ЭТ Серии ЭТ «Grundfos» или «Wilo» ООО НПО «Этра» ООО НПО «Этра» «Grundfos» или «Wilo» 4 Клапан регулирующий CV216GG «Tour&Andersson» 5 Электропривод клапана регулирующего МС55/230 «Tour&Andersson» 6 Регулятор перепада давления DA516/DAF516 «Tour&Andersson» 7 Регулятор перепуска PM512 «Tour&Andersson» 8 Клапан электромагнитный соленоидный EV220B h4 «Danfoss» 9 Реле давления электроконтактное (прессостат) KPI35 «Danfoss» 10 Реле разности давлений TA Link «Tour&Andersson» 11 Электронный регулятор температуры СПЕКОН СК-52, СК-53 ЗАО «Теплоком- Автоматизция» 12 Датчик температуры наружного воздуха ESMT «Danfoss» 13 Термометр сопротивления погружной (медь, нержавеющая сталь) ТМТ 1-3 ЗАО «Термико» 14 Расходомер 15 Клапан балансировочный STAD/STAF «Tour&Andersson» 16 Кран шаровой (фланцевый или под приварку) 17 Кран шаровой (стальной, муфтовый) КШЦФ, КШЦП КШЦМ «LD» «LD» 18 Кран трёхходовой под манометр ЗАО «Росма» 19 Затвор дисковый поворотный «Genebre» 20 Клапан обратный «Genebre» 21 Фильтр сетчатый «Genebre» 22 Манометр показывающий ТМ-510 «Росма» 23 Термометр показывающий биметаллический с гильзой БТ «Росма» 24 Клапан пружинный предохранительный «Прегран» По согласованию с заказчиком возможно применение оборудования, приборов и средств измерений других марок и производителей. 28

29 3. Опросный лист Опросный лист-заявка на изготовление индивидуального теплового пункта Заказчик Название объекта Тепловая нагрузка Система отопления (СО) Гкал/ч (МВт) Система вентиляции (СВ) Гкал/ч (МВт) Система ГБС, Гкал/ч (МВт) Параметры теплосети (ТС) Температурный график (зима), С Вход (Т1) Выход (Т2) Температурный график (лето), С Вход (Т1) Выход (Т2) Давление в ТС (зима), кг/см 2 Вход (P1) Выход (P2) Давление в ТС (лето), кг/см 2 Вход (P1) Выход (P2) Схема присоединения к тепловой сети 2-х трубная 3-х трубная 4-х трубная Система отопления (СО) Тип подключения: зависимая через насосы смешения зависимая через элеватор незавсимая с ТО Тип регулирования: качественное по температурному графику с регулированием температуры Т2 по графику иное (уточнить) Нагреваемая среда вода этилен-гликоль % Резервирование ПТО нет 2 шт. по 100% мощности каждый 2 шт. по 50% мощности каждый иное (уточнить) Температурный график СО, С Вход (Т21) Выход (Т11) Гидравлическое сопротивление, кг/см 2 Расчетное давление, кг/см 2 Объем воды в СО, л Статический напор в СО, м Циркулярный насос для СО Система вентиляции (СВ) резервирование да нет сдвоеный да нет частое регулирование да нет Тип подключения: непосредственная (прямые параметры) зависимая через насосы смешения Нагреваемая среда независимая через теплообменники эиное (уточнить) Резервирование ПТО нет 2 шт. по 100% мощности каждый 2 шт. по 50% мощности каждый иное (уточнить) Температурный график СВ, С Вход (Т21) Выход (Т11) Гидравлическое сопротивление, кг/см 2 Расчетное давление в СВ, кг/см 2 Объем воды в СВ, м 3 Статический напор в СВ, м Циркулярный насос для СВ резервирование да нет сдвоеный да нет частое регулирование да нет 29

30 Система ГВС Тип подключения: одноступенчатая параллельная двухступенчатая смешанная Конструктивное исполнение двухступенчатой смешаной схемы моноблок 2 раздельных теплообменника Нагреваемая среда вода этилен-гликоль % Массовый расход воды ГВС, л/с Резервирование ПТО нет 2 шт. по 100% мощности каждый 2 шт. по 50% мощности каждый иное (уточнить) Температурный график ГВС, С Вход (Т21) Выход (Т11) Гидравлическое сопротивление, кг/см 2 Расчетное давление в ГВС, кг/см 2 Объем воды в ГВС, л Статический напор в ГВС, м Мин. давление холодной воды (В1), кг/см 2 Расход воды на циркуляцию ГВС, л/с Циркулярный насос для ГВС резервирование да нет сдвоеный да нет частое регулирование Узел подпитки Подпиточный насос да нет да нет Соленоидный клапан подпитки да нет да нет Расширительный бак да нет да нет Автоматическое регулирование Автоматическое регулирование СО да нет да нет Автоматическое регулирование СВ да нет да нет Автоматическое регулирование ГВС да нет да нет Автоматическое регулирование узла да нет да нет да нет Электропитание 1х230 В 3х380 В Габаритные размеры Температура среды эксплуатации, С Относительная влажность эксплуатации, % Минимальный монтажный проем (ширина/высота), м Размеры помещения для установки БИТП (длина/ширина/высота), м Дополнительные требования Составил: Организация Контактное лицо Контактные данные Заполненный опросный лист можно отправить по 30

31 31

32 ДЛЯ ЗАМЕТОК 32

33

34 Нижний Новгород , г. Нижний Новгород, ул. Баррикад, д.1 тел.: (831) Сервисная служба: тел.: (831) , Казань , Республика Татарстан, г. Казань, ул. Журналистов, д. 2а, оф. 405а тел.: (843) Краснодар , г. Краснодар. ул. Новороссийская, д. 210 тел.: (861) Москва , г. Москва, Хорошевское шоссе, д. 50, строение 1 тел.: (495) Новосибирск , г. Новосибирск, ул. Немировича-Данченко, д. 165, оф. 224 тел.: (383) Санкт-Петербург , г. Санкт-Петербург, Лесной проспект, д. 20, к. 14, лит. Т, оф. 306 и 307 тел.: (812) Самара , г. Самара, ул. Чернореченская, д. 21, оф. 317 тел.: (846) , факс: (846) Дилер: Редакция 1 сентябрь, 2013


docplayer.ru

как читать чертежи и что они значат

О значении теплового пункта в общей системе теплоснабжения много говорить не надо. Тепловые схемы тепловых узлов задействованы как в сети, и так и в системе внутреннего потребления.

Понятие о тепловом пункте

Экономичность использования и уровня подачи тепла к потребителю напрямую зависит от правильности функционирования оборудования.

По сути, тепловой пункт представляет собой юридическую границу, что само по себе предполагает обустройство его набором контрольно-измерительной техники. Благодаря такой внутренней начинке определение взаимной ответственности сторон становится более доступным. Но прежде чем разобраться с этим, необходимо понять, как функционируют тепловые схемы тепловых узлов и для чего их читать.

Как определить схему теплового узла

При определении схемы и оборудования теплового пункта опираются на технические характеристики местной системы теплопотребления, внешней ветки сети, режима работы систем и их источников.

В этом разделе предстоит ознакомиться с графиками расхода теплоносителя – тепловой схемой теплового узла.

Подробное рассмотрение позволит понять, как производится подключение к общему коллектору, давление внутри сети и относительно теплоносителя, показатели которых напрямую зависят от расхода тепла.

Важно! В случае присоединения теплового узла не к коллектору, а к тепловой сети расход теплоносителя одной ветки неизбежно отражается на расходе другой.

На рисунке изображены два типа подключений: а – в случае подключения потребителей непосредственно к коллектору; б – при присоединении к ветке тепловой сети.

Чертеж отражает графические изменения расходов теплоносителя при наступлении таких обстоятельств:

А – при подключении систем отопления и водоснабжения (горячего) к коллекторам теплоисточника по отдельности.

Б – при врезке тех же систем к наружной тепловой сети. Интересно, что присоединение в таком случае отличается высокими показателями потери давления в системе.

Рассматривая первый вариант, следует отметить, что показатели суммарного расхода теплоносителя возрастают синхронно с расходом на снабжение горячей водой (в режиме І, ІІ, ІІІ), в то время как во втором, хоть рост расхода теплового узла и имеет место быть, вместе с ним показатели расхода на отопление автоматически понижаются.

Исходя из описанных особенностей тепловой схемы теплового узла, можно сделать вывод, что в результате суммарного расхода теплоносителя, рассмотренного в первом варианте, при его применении на практике составляет около 80 % расхода при применении второго прототипа схемы.

Место схемы в проектировании

Проектируя схему теплового узла отопления в жилом микрорайоне, при условии, что система теплоснабжения закрытая, уделите особое внимание выбору схемы соединения подогревателей горячего водоснабжения с сетью. Выбранный проект будет определять расчетные расходы теплоносителей, функции и режимы регулирования, прочее.

Выбор схемы теплового узла отопления в первую очередь определяется установленным тепловым режимом сети. Если сеть функционирует по отопительному графику, то подбор чертежа производится исходя из технико-экономического расчета. В таком случае параллельную и смешанную схемы тепловых узлов отопления сравнивают.

Особенности оборудования теплового пункта

Чтобы сеть теплоснабжения дома исправно функционировала, на пункты отопления дополнительно устанавливают:

  • задвижки и вентили;
  • специальные фильтры, улавливающие частицы грязи;
  • контрольные и статистические приборы: термостаты, манометры, расходомеры;
  • вспомогательные или резервные насосы.

Условные обозначения схем и как их читать

На рисунке выше изображена принципиальная схема теплового узла с подробным описанием всех составляющих элементов.

Номер элемента

Условное обозначение

1

Трехходовой кран

2

Задвижка

3

Кран пробковый

4,12

Грязевик

5

Клапан обратный

6

Шайба дроссельная

7

V-образный штуцер для термометра

8

Термометр

9

Манометр

10

Элеватор

11

Тепломер

13

Водомер

14

Регулятор расхода воды

15

Регулятор подпара

16

Вентили в системе

17

Линия обводки

Обозначения на схемах тепловых узлов помогают разобраться в функционировании узла путем изучения схемы.

Инженеры, ориентируясь на чертежи, могут предположить, где возникает поломка в сети при наблюдающихся неполадках, и быстро ее устранить. Схемы тепловых узлов пригодятся и в том случае, если вы занимаетесь проектированием нового дома. Такие расчеты обязательно входят в пакет проектной документации, ведь без них не выполнить монтаж системы и разводку по всему дому.

Информация о том, что такое чертеж тепловой системы и как его принимать на практике, пригодится каждому, кто хотя бы раз в своей жизни сталкивался с отопительными или водонагревающими приборами.

Надеемся, приведенный в статье материал поможет разобраться с основными понятиями, понять, как определить на схеме основные узлы и точки обозначения принципиальных элементов.

fb.ru

Автоматизация ИТП | Блог инженера теплоэнергетика

        Здраствуйте, уважаемые читатели! Автоматизация теплового пункта (теплоузла) — это замена устаревшего, зачастую еще советского оборудования на современное, с автоматизированным регулированием давления и расхода.И начинать автоматизацию, или по другому модернизацию системы отопления здания следует именно с теплоузла.Так как, если вы поставите на радиаторы современные терморегуляторы, пусть даже самых лучших заморских фирм, а в теплоузле механический элеватор, то терморегуляторы не будут работать корректно.

       И основная причина в том, что «советский» механический элеватор работает при постоянном гидравлическом режиме, а терморегуляторы при переменной гидравлике. В этом случае вероятна гидравлическая разрегулировка, перегрев обратки. Вообщем нет смысла ставить по всему зданию термостаты на радиаторы, если теплоузел оборудован механическим элеватором.

        Хотя и регулируемый элеватор не устраняет всех недостатков механического элеватора. Также не имеет смысла ставить балансировочные клапаны по всему зданию по стоякам при элеваторном присоединении, практически по той же причине. Насчет балансировочных клапанов надо еще просчитать, подумать, нужны ли они вообще, в принципе, в здании.

       Итак, какие же схемы автоматизации ИТП существуют? Мне на практике приходилось сталкиваться с двумя вариантами: с погодозависимым электронным элеватором с регулируемым соплом, и схема с регулятором потребления теплоэнергии с двухходовым клапаном. Про недостатки механического элеватора я писал в этой статье. Регулируемый элеватор позволяет во многом устранить эти недостатки, и прежде всего он позволяет осуществить количественно-качественное регулирование, и устранить сезонный осенне-весенний перегрев.Схема подключения таких элеваторов включает в себя сам элеватор, контроллер, таймер, датчик температуры наружного воздуха, и датчики температур по подаче и обратке.

     У меня на нескольких объектах поставлены такие элеваторы, работают неплохо.В чем еще особенность установки таких элеваторов, так это в том, что окупаются они довольно быстро.Чем больше отопительная нагрузка на здание в Гкал, тем быстрее окупится такой элеватор. Экономию тепла за счет снижений температуры по подаче в ночные часы и выходные дни и нормального регулирования расхода в осенне-весенний период они дают хорошую. В обычном режиме работают четко по температурному графику теплоснабжающей организации, перегрев обратки невозможен в принципе.

       Приходилось встречаться с настороженным отношением к этим элеваторам, думаю это из за того, что самые первые регулируемые элеваторы, выпущенные в конце 80х, в 90х годах нередко выходили из строя, в частности очень часто ломался блок автоматики.

Ненадежность автоматики вызывала большое количество отказов в работе, однако это уже в прошлом. Современные погодозависимые элеваторы и автоматика к ним работают нормально.

       Вторая схема автоматизации ИТП — это схема с насосом на обратке и регулятором потребления теплоэнергии с двухходовым клапаном.

Циркуляционный насос располагается на обратке, с помощью него осуществляется количественно-качественное регулирование систем отопления, учитывая температуру наружного воздуха.Необходимая температура в системе отопления устанавливается электронным регулятором МР -1 ООО «ТЕРМО-К» по температурному графику от энергоснабжающей организации путем воздействия на двухходовой клапан регулятора потребления теплоэнергии. Про схему эту можно сказать, что она тоже довольно быстро окупается, хотя и является более затратной по сравнению со схемой с электронным элеватором. Преимуществом такой схемы является ее способность поддерживать постоянство циркуляции в системе отопления за счет взаимовлияния характеристик насоса и внутренней сети отопления.

При такой схеме решается проблема перетопов в осенний и весенний период. Кроме того, можно оптимизировать режим теплопотребления с учетом температуры на улице, то есть поддерживать температуру в помещениях в зависимости от уличной температуры, и также экономить тепло на ночных снижениях температуры отопления и снижения в выходные и праздничные дни. Также контроллер МР-01 можно запрограммировать на любую tвн, то есть температуру внутри помещений. Экономия теплоэнергии от применения такой схемы очень неплохая. Другое дело, что в немногих пока ИТП она реализована, все таки дело это затратное.

       По поводу элеваторной схемы подключения существуют мнения как за, так и против. Я отношусь к сторонникам второй точки зрения, то есть против. Ведь элеватор — это частный случай насосной схемы подключения вообще, и вообще сам автор изобретения планировал, что в будущем элеватор заменит смесительный насос.В целом же вывод такой, только с заменой элеваторов на циркуляционные насосы можно провести полную автоматизацию систем отопления.Все остальные варианты половинчатые.

       Большая часть реализуемых схем автоматизации ИТП с насосным подключением —   это схемы, пришедшие с западных, европейских стран. Конечно, наши инженеры и проектировщики ничуть не хуже, а даже лучше западных. Но у европейских специалистов огромное преимущество  по времени, если они занимаются этими вопросами уже лет шестьдесят, не меньше, то наши специалисты всего последние лет пятнадцать. Я привел только два примера, с которыми приходится сталкиваться на практике. На самом деле таких схем модернизации ИТП множество, они разработаны для всех видов и типов систем отопления.

      Совсем недавно я выпустил книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно.

Вот содержание книги:

1. Введение

2. Устройство ИТП, схема без элеватора

3. Устройство ИТП, элеваторная схема

4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.

5. Заключение

Просмотреть книгу можно по ссылке ниже:

Устройство ИТП (тепловых пунктов) зданий

Буду рад комментариям  к статье.


teplosniks.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *