Диаметр воздуховода онлайн калькулятор: Сечение воздуховода – Онлайн калькулятор

Содержание

Калькулятор эквивалентного диаметра | ВЕНТА

Эквивалентный диаметр - диаметр круглого воздуховода, в котором потеря давления на трение при одинаковой длине равна его потере в прямоугольном воздуховоде.

Эквивалентный диаметр прямоугольного воздуховода

Эквивалентный диаметр прямоугольного воздуховода можно вычислить по формуле

de = 1.30 x ((a x b)0.625) / (a + b)0.25(1)

где

de = эквивалентный диаметр (мм)

a = длина стороны A (мм)

b = длина стороны B (мм)

Эквивалентный диаметр - de (мм)
Сторона воздуховода
A
мм.
Сторона воздуховода - B (мм.)
100 150 200 250 300 400 500 600
800
1000 1200 1400 1600 1800 2000
100 109 133 152 168 183 207 227
150 133 164 189 210 229 261 287 310
200 152 189 219 244 266 305 337 365
250 168 210 246 273 299 343 381 414 470
300 183 229 266 299 328 378 420 457 520 574
400 207 260 305 343 378 437 488 531 609 674 731
500 227 287 337 381 420 488 547 598 687 762 827 886
600 310 365 414 457 531 598 656 755 840 914 980 1041
800 414 470 520 609 687 755 875 976 1066 1146 1219 1286
1000 517 574 674 762 840 976 1093 1196 1289 1373 1451 1523
1200 620 731 827 914 1066 1196 1312 1416 1511 1598 1680
1400 781 886 980 1146 1289 1416 1530 1635 1732 1822
1600 939 1041 1219 1373 1511 1635 1749 1854 1952
1800 1096 1286 1451 1598 1732 1854 1968 2073
2000 1523 1680 1822 1952 2073 2186

 

Эквивалентный диаметр овального воздуховода

Эквивалентный диаметр овального воздуховода можно вычислить по формуле

de = 1. 55 A0.625/P0.2 (2)

где

A = площадь поперечного сечения овального воздуховода (м2)

P = периметр овального воздуховода (м)

Площадь поперечного сечения овального воздуховода можно вычислить по формуле

A = (π b2/4) + b(a - b) (2a)

где

a = большая сторона овального воздуховода (м)

b = меньшая сторона овального воздуховода (м)

Периметр овального воздуховода можно вычислить по формуле

P = π b + 2(a - b)  (2b)

Онлайн расчёт воздуховодов

1. Расчёт ПРЯМЫХ УЧАСТКОВ прямоугольных воздуховодов

Высота, А (мм)

Ширина, В (мм)

Длина участка, L (м)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

2. Расчёт ПРЯМЫХ УЧАСТКОВ круглых воздуховодов

Диаметр воздуховода, D (мм)

Длина участка, L (м)

Толщина металла, t (мм)0,40,50,550,6

0,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

3. Расчёт ОТВОДА для прямоугольных воздуховодов

Высота, А (мм)

Ширина, B (мм)

Угол поворота, α (°)904530

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

4. Расчёт ОТВОДА для круглого воздуховода

Диаметр воздуховода, D (мм)

Угол поворота, α (°)904530

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

5. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для прямоугольного воздуховода

Высота начальная, А (мм)

Ширина начальная, B (мм)

Высота конечная, a (мм)

Ширина конечная, b (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

6. Расчёт ПЕРЕХОДА СЕЧЕНИЯ для круглого воздуховода

Диаметр начальный, D (мм)

Диаметр конечный, d (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м. кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

7. Расчёт ПЕРЕХОДА с круглого на прямоугольное сечение

Высота начальная, А (мм)

Ширина начальная, B (мм)

Диаметр конечный, D (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШина-ФланецРейка-НиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

8. Расчёт ТРОЙНИКА для прямоугольного воздуховода

Высота главного воздуховода, А (мм)

Ширина главного воздуховода, B (мм)

Высота врезки, a (мм)

Ширина врезки, b (мм)

Угол врезки, α (°)9045

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеШинаРейкаНет

Вес элемента, кг

Площадь поверхности, м. кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

9. Расчёт ТРОЙНИКА для круглого воздуховода

Диаметр главного воздуховода, D (мм)

Диаметр врезки, d (мм)

Толщина металла, t (мм)0,40,50,550,60,70,80,91,0

Тип металлаОц. стальНерж.сталь

Тип соединительных элементов на торцеФланецНиппельНет

Вес элемента, кг

Площадь поверхности, м.кв

Количество элементов

Стоимость элемента, грн.

Экспорт в спецификацию

Запись

Расчёт воздуховодов систем вентиляции - Мир Климата и Холода

Расчёт воздуховодов вентиляции является одним из этапов расчета вентиляции и заключается в определении размеров воздуховода в зависимости от расхода воздуха, который должен проходить через рассматриваемый воздуховод. Кроме того, возникают задачи по определению площади поверхности воздуховода. Рассмотрим их более подробно.

Расчёт воздуховодов онлайн

Для расчета воздуховодов рекомендуем воспользоваться онлайн-калькулятором, расположенным выше. Исходными данными для расчета являются расход воздуха и максимальная допустимая скорость воздуха в воздуховоде.

Преимуществом нашего калькулятора является то, что в результате расчета вы узнаете не только рекомендуемое сечение круглых и/или прямоугольных воздуховодов, но и фактическую скорость воздуха в них, эквивалентный диаметр и потери давления на 1 метр длины.

О расчете площади воздуховодов читайте в отдельной статье.

Расчёт сечения воздуховодов

Задача расчёта сечения воздуховодов вентиляции может звучать по-разному:

  • расчёт воздуховодов вентиляции
  • расчёт воздуха в воздуховоде
  • расчёт сечения воздуховодов
  • формула расчёта воздуховодов
  • расчёт диаметра воздуховода

Следует понимать, что все вышеперечисленные расчёты — по сути, одна и та же задача, которая сводится к определению площади сечения воздуховода, по которому протекает расход воздуха G [м

3/час].

Алгоритм расчета сечения воздуховодов

Расчет сечения воздуховодов подразумевает определение размеров воздуховодов в зависимости от расхода пропускаемого воздуха. Он выполняется в 4 этапа:

  1. Пересчет расхода воздуха в м3
  2. Выбор скорости воздуха в воздуховоде
  3. Определение площади сечения воздуховода
  4. Определение диаметра круглого или ширины и высоты прямоугольного воздуховода.

На первом этапе расчёта воздуховода расход воздуха G, выраженный, как правило, в м3/час, переводится в м3/с. Для этого его необходимо разделить на 3600:

  • G [м3/c] = G [м3/час] / 3600

На втором этапе следует задать скорость движения воздуха в воздуховоде. Скорость следует именно задать, а не рассчитать. То есть выбрать ту скорость движения воздуха, которая представляется оптимальной.

Высокая скорость воздуха в воздуховоде позволяет использовать воздуховоды малого сечения. Однако при этом поток воздуха будет шуметь, а аэродинамическое сопротивление воздуховода сильно возрастёт.

Малая скорость воздуха в воздуховоде обеспечивает тихий режим работы системы вентиляции и малое аэродинамическое сопротивление, но делает воздуховоды очень громоздкими.

Для систем общеобменной вентиляции оптимальной скоростью воздуха в воздуховоде считается 4 м/с. Для больших воздуховодов (600×600 мм и более) скорость воздуха может быть повышена до 6 м/с. В системах дымоудаления скорость воздуха может достигать и превышать 10 м/с.

Итак, на втором этапе расчета воздуховодов задаётся скорость движения воздуха v [м/с].

На третьем этапе определяется требуемая площадь сечения воздуховода путем деления расхода воздуха на его скорость:

  • S [м2] = G [м3/c] / v [м/с]

На четвёртом, заключительном, этапе под полученную площадь сечения воздуховода подбирается его диаметр или длины сторон прямоугольного сечения.

Таблица сечений воздуховодов

В помощь проектировщикам разработано несколько таблиц сечений воздуховодов, которые позволяют быстро подобрать сечение в зависимости от полученной площади.

Пример расчёта воздуховода

В качестве примера рассчитаем сечение воздуховода с расходом воздуха 1000 м3/час:

  1. G = 1000/3600 = 0,28 м3/c
  2. v = 4 м/с
  3. S = 0,28 / 4 = 0,07 м2
  4. В случае круглого воздуховода его диаметр составил бы D = корень (4·S/ π) ≈ 0,3 м = 300мм. Ближайший стандартный диаметр воздуховода — 315 мм.

В случае прямоугольного воздуховода необходимо подобрать такие А и В, чтобы их произведение было равно примерно 0,07. При этом рекомендуется, чтобы А и В не отличались друг от друга более чем в три раза, то есть воздуховод 700×100 — не лучший вариант. Более хорошие варианты: 300×250, 350×200.

Эквивалентный диаметр воздуховода

При сравнении круглых и прямоугольных воздуховодов разного сечения с точки зрения аэродинамики прибегают к понятию эквивалентного диаметра воздуховода. С его помощью можно определить, какой из двух вариантов сечений является предпочтительным.

Что такое эквивалентный диаметр воздуховода

Эквивалентный диаметр прямоугольного воздуховода — это диаметр воображаемого круглого воздуховода, в котором потеря давления на трение была бы равна потере давления на трение в исходном прямоугольном воздуховоде при одинаковой длине обоих воздуховодов.

В книгах и учебниках В.  Н. Богословского такой диаметр называется «Эквивалентный по скорости диаметр», в литературе П. Н. Каменева — «Равновеликий диаметр по потерям на трение».

Расчет эквивалентного диаметра воздуховодов

Эквивалентный диаметр прямоугольного воздуховода вычисляется по формуле:

  • Dэкв_пр = 2·А·В / (А+В), где А и В — ширина и высота прямоугольного воздуховода.

Например, эквивалентный диаметр воздуховода 500×300 равен 2·500·300 / (500+300) = 375 мм. Это означает, что круглый воздуховод диаметром 375 мм будет иметь такое же аэродинамическое сопротивление, что и прямоугольный воздуховод 500×300 мм.

Эквивалентный диаметр квадратного воздуховода равен стороне квадрата:

  • Dэкв_кв = 2·А·А / (А+А) = А.

И этот факт весьма интересен, ведь обычно чем больше площадь сечения воздуховода, тем ниже его сопротивление. Однако круглая форма сечения воздуховода имеет наилучшие аэродинамические показатели. Именно поэтому сопротивление квадратного и круглого воздуховодов равны, хотя площадь сечния квадратного воздуховода на 27% больше площади сечения круглого воздуховода.

В общем случае формула для эквивалентного диаметра воздуховода выглядит следующим образом:

  • Dэкв = 4·S / П, где S и П — соответственно, площадь и периметр воздуховода.

Используя эту формулу можно подтвердить правильность вышеприведённых формул для прямоугольного и квадратного воздуховодов, а также убедиться в том, что эквивалентный диаметр круглого воздуховода равен диаметру этого воздуховода:

  • Dкругл = 4·π·R2 / 2·π·R = 2R = D.

Кроме того, для расчета может помочь таблица эквивалентного диаметра воздуховодов

Пример расчета эквивалентного диаметра воздуховодов и некоторые выводы

В качестве примера определим эквивалентный диаметр воздуховода 600×300:

Dэкв_600_300 = 2·600·300 / (600+300) = 400 мм.

Интересно отметить, что площадь сечения круглого воздуховодам диаметром 400 мм составляет 0,126 м2, а площадь сечения воздуховода 600×300 составляет 0,18 м2, что на 42% больше. Расход стали на 1 метр круглого воздуховода сечением 400 мм составляет 1,25 м2, а на 1 метр воздуховода сечением 600×300 — 1,8 м2, что на 44% больше.

Таким образом, любой аналогичный круглому прямоугольный воздуховод значительно проигрывает ему как в компактности, так и в металлоемкости.

Рассмотрим ещё один пример — определим эквивалентный диаметр воздуховода 500×100 мм:

Dэкв_500_100 = 2·500·100 / (500+100) = 167 мм.

Здесь разница в площади сечения и в металлоемкости достигает 2,5 раз. Таким образом, формула эквивалентного диаметра для прямоугольного воздуховода объясняет тот факт, что чем больше «расплющен» воздуховод (чем больше разница между значениями А и В), тем менее эффективен этот воздуховод с аэродинамической точки зрения.

Это одна из причин, по которой в вентиляционной технике не рекомендуется применять воздуховоды, в сечении которых одна сторона превышает другую более чем в три раза.

Аэродинамический расчет системы вентиляции онлайн

Расчет расхода воздуха по кратности (подробнее)

Площадь помещения, м²:

Высота помещения, м:

Кратность воздухообмена:

Расход воздуха: м³/с

Расчет расхода воздуха по количеству людей (подробнее)

Число людей в помещении:

Активность людей в помещении:
Спокойное состояние
Умеренная деятельность
Активная деятельность

Расход воздуха: м³/с

Расчет площади сечения воздуховода (подробнее)

Расход воздуха, м³/с:

Рекомендуемая скорость, м/с:

Площадь сечения воздуховода: м²

Стандартные размеры воздуховодов по площади сечения

Прямоугольные воздуховоды
Круглые воздуховоды

Расчет фактической скорости (подробнее)

Расход воздуха, м³/с:

Площадь сечения, м²:

Фактическая скорость воздуха: м/c

Расчет эквивалентного диаметра прямоугольного воздуховода (подробнее)

Высота, м:

Ширина, м:

Эквивалентный диаметр: м

Расчет потребляемой мощности вентилятора (подробнее)

Расход воздуха, м³/с:

Давление воздуха, Па:

КПД вентилятора, %:

Потребляемая мощность: кВт


Расчет расхода воздуха по кратности

L = n * S * Н / 3600, где:

L – необходимая производительность м³/с;
n – кратность воздухообмена;
S – площадь помещения;
Н – высота помещения, м.

Расчет расхода воздуха по количеству людей

L = N * Lнорм / 3600, где:

L – производительность м³/с;
N – число людей в помещении;
 – нормативный показатель потребления воздуха на одного человека составляющий:
при отдыхе — 20 м³/ч;
при офисной работе — 40 м³/ч;
при активной работе — 60 м³/ч.

Расчет площади сечения воздуховода

F = Q / Vрек где:

F – площадь сечения воздуховода, м²; 
Q
 – расход воздуха м³/с;
Vрек – рекомендуемая скорость воздуха, м/с. (подбираем из таблицы)

Рекомендуемая скорость воздуха


Расчет фактической скорости

По площади F определяют диаметр D (для круглой формы) или высоту A и ширину B (для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. Dст , Аст и Вст. Это делается для того, чтобы рассчитать фактическую скорость.

Vфакт = Q / Fфакт, где:

Vфакт – фактическая скорость воздуха, м/с;
Q
 – расход воздуха м³/с;
Fфакт – фактическая площадь сечения воздуховода, м².

Расчет эквивалентного диаметра прямоугольного воздуховода

DL = (2Aст * Bст) / (Aст + Bст), где:

DL – эквивалентный диаметр, м;
Aст – стандартная высота, м;
Bст – стандартная ширина, м.

Расчет потребляемой мощности вентилятора

N = (Qвент * Pвент) / (1000 * n * 100), где:

N – мощность электродвигателя приточного или вытяжного вентилятора, кВт;
Qвент – расход воздуха вентилятора, м³/с;
Pвент – давление создаваемое вентилятором, Па;
n – КПД (коэффициент полезного действия), %.

Калькуляторы расчета площади сечения вытяжной отдушины вентиляции

Если вентиляция в доме или квартире не справляется со своими задачами, то это чревато очень серьёзными последствиями. Да, проблемы в работе этой системы проявляются на так быстро и чувствительно, как, скажем неполадки с отоплением, и не все хозяева уделяют им адекватное внимание. Но результаты могут быть весьма печальными. Это — спертый переувлажненный воздух в помещениях, то есть идеальная среда для развития болезнетворных микроорганизмов. Это — запотевшие окна и сырые стены, на которых вскорости могут появиться очаги плесени. Наконец, это — попросту снижение комфорта из-за распространяющихся от санузла, ванной, кухни в жилую зону запахов.

Калькуляторы расчета площади сечения вытяжной отдушины вентиляции

Чтобы избежать застойных явлений, в помещениях в течение отрезка времени должен происходить обмен воздуха с определённой кратностью. Приток осуществляется через жилую зону квартиры или дома, вытяжка – через кухню, ванную, санузел. Именно для этого там и располагаются окна (отдушины) вытяжных вентиляционных каналов. Нередко хозяева жилья, затевающие ремонт, спрашивают, можно ли заделать эти отдушины или уменьшить их в размерах, чтобы, например, установить на стенах те или иные предметы мебели. Так вот — полностью перекрывать их однозначно нельзя, а перенос или изменение в размерах возможны, но не только с условием, что будет обеспечена необходимая производительность, то есть способность пропустить требуемый объем воздуха. А как это определить? Надеемся, читателю помогут предлагаемые калькуляторы расчета площади сечения вытяжной отдушины вентиляции.

Калькуляторы будут сопровождаться необходимыми пояснениями по проведению вычислений.

Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома

Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.

Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:

Тип помещенияМинимальные нормы воздухообмена (кратность в час или кубометров в час)
ПРИТОК ВЫТЯЖКА
Требования по Своду Правил СП 55. 13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»
Жилые помещения с постоянным пребыванием людейНе менее однократного обмена объема в течение часа-
Кухня-60 м³/час
Ванная, туалет-25 м³/час
Остальные помещенияНе менее 0,2 объема в течение часа
Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания:
При общей жилой площади более 20 м² на человека30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час
При общей жилой площади менее 20 м² на человека3 м³/час на каждый 1 м² площади помещения
Требования по Своду Правил СП 54. 13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»
Спальная, детская, гостинаяОднократный обмен объема в час
Кабинет, библиотека0,5 от объема в час
Бельевая, кладовка, гардеробная0,2 от объема в час
Домашний спортзал, биллиардная80 м³/час
Кухня с электрической плитой60 м³/час
Помещения с газовым оборудованиемОднократный обмен + 100 м³/час на газовую плиту
Помещение с твёрдотопливным котлом или печьюОднократный обмен + 100 м³/час на котел или печь
Домашняя прачечная, сушилка, гладильная90 м³/час
Душевая, ванная, туалет или совмещенный санузел25 м³/час
Домашняя сауна10 м³/час на каждого человека

Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).

Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.

Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.

Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции

Перейти к расчётам

Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.

Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.

К примеру, это может выглядеть так:

Помещение и его площадьНормы притока Нормы вытяжки 
1 способ – по объему комнаты2 способ – по количеству людей1 способ2 способ
Гостиная, 18 м²5090--
Спальная, 14 м²3960--
Детская, 15 м²4260--
Кабинет, 10 м²1430--
Кухня с газовой плитой, 9 м²--6025 + 100 = 125
Санузел--25-
Ванная--25-
Гардероб-кладовая, 4 м²2-
Суммарное значение240177
Принимаемое общее значение воздухообмена240

Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.

Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.

Распределение объемов вытяжки по помещениям и определение площади поперечного сечения каналов

Итак, найден объем воздуха, который должен поступить помещения квартиры в течение часа и, соответственно, выведен за это же время.

Далее, исходят их количества вытяжных каналов, имеющихся (или планируемых к организации – при проведении самостоятельного строительства) в квартире или доме. Полученный объем необходимо распределить между ними.

Для примера, вернемся к таблице выше. Через три вентиляционных канала (кухня, санузел и ванная) необходимо отвести 240 кубометров воздуха в час. При этом из кухни по расчетам должно отводиться не менее 125 м³, из ванной и туалета по нормативам – не менее, чем по 25 м³. Больше – пожалуйста.

Поэтому напрашивается такое решение: кухне «отдать» 140 м³/час, а оставшееся — разделить поровну между ванной и санузлом, то есть по 50 м³/час.

Ну а зная объем, который необходимо отвести в течение определённого времени – несложно подсчитать ту площадь вытяжного канала, которая гарантированно справится с задачей.

Правда, для расчетов требуется еще и значение скорости воздушного потока. А она тоже подчиняется определённым правилам, связанным с допустимыми уровнями шума и вибрации. Так, скорость потока воздуха на вытяжных вентиляционных решетках при естественной вентиляции должна быть в пределах диапазона 0,5÷1,0 м/с.

Приводить формулу расчета здесь не будем – сразу предложим читателю воспользоваться онлайн-калькулятором, который определит требуемую минимальную площадь сечения вытяжного канала (отдушины).

Калькулятор расчета минимальной площади сечения вентиляционной отдушины

Обладая элементарными знаниями в геометрии, полученную площадь несложно привести к размерам прямоугольника. Правда, при этом должно соблюдаться условие – соотношение длинной и короткой стороны – не более, чем 3:1.

Нередко вентиляционные решетки имеют и круглое окно. Значит, необходимо пересчитать площадь сечения в диаметр. Или же требуется сделать переход от прямоугольного сечения на круглое. В обоих случаях будет полезен третий калькулятор, предназначенный специально для такой цели.

Калькулятор расчета диаметра круглого канала, эквивалентного площади прямоугольного

Перейти к расчётам

Полученное значение будет ориентиром при приобретении стандартных деталей с круглым сечением. Естественно, округление при этом делается в бо́льшую сторону.

Правильная организации естественной вентиляции

Объем данной статьи не позволяет рассмотреть все нюансы организации вентиляции жилого дома или квартиры. Но в этом и нет особой нужды, так как на страницах нашего портала уже имеется специальная публикация, в которой проблемы естественной вентиляции рассматриваются со всеми подробностями.

Калькулятор расчета вентиляции для частного дома и промышленного помещения

1Калькуляторы онлайн

Для правильного выполнения расчета вентиляции в частном или общественном понимании недостаточно просто воспользоваться онлайн-калькулятором или взять данные из справочных таблиц. Необходимо понимать, как и почему принимаются нормативные показатели и как применить их к конкретным вычислениям.

Кратность воздухообмена

Этот критерий чаще всего используется для упрощенного расчета системы вентиляции. Под термином «кратность воздухообмена» (в английской терминологии air exchange rate) понимают обмен воздушных масс, выражающихся количеством за час. Причем в зависимости от способа эксплуатации помещения учитывается либо число обменов для помещения в целом, либо кратность с учетом площади (объема). Ниже приведена таблица с нормативными данными для помещений частного дома или общественного здания. При этом подразумевается, что приток воздуха идет естественным путем, а кратность считается для вытяжной вентиляции. Расчетная температура в холодный период указывается для того, чтобы при вычислениях компенсировать излишнюю сухость воздуха за счет действия отопительных приборов.

Таблица 1. Кратность воздухообмена по площади или назначению помещений.

При использовании таблицы важно обратить внимание: кратность указывается в расчете на площадь помещения, а в нашем онлайн-калькуляторе расчет ведется для объема.

При этом пользователь теряется – какое значение кратности применить в калькуляторе вентиляции, если максимальное значение не соответствует норме для жилых помещений? Здесь придется делать поправку на пересчет кратности для объема или воспользоваться ориентировочными цифрами (СНиП 2.08.01-89) из таблицы ниже.

Таблица 2. Кратность воздухообмена для помещений общего или специального назначения.

Применяя показатель, соответствующий жилым комнатам или спальням, равный единице, получаем требуемую производительность вентиляционной системы (м.куб./час).

Основой расчета вентиляции онлайн является формула

L = V х Kp

здесь V — объем комнаты (произведение площади на высоту), м. куб.;

Kp — кратность воздухообмена согласно санитарно-гигиеническим нормам, 1/ч.

Для жилой комнаты с площадью 20 м.кв. и высотой 2,5 м требуемая мощность вентиляции составит

L = (20 х 2,5) х 1 =50 м.куб.

При использовании данных первой таблицы расчет ведется без учета высоты помещения, то есть

L = S х Kp

здесь S — площадь помещения, м.кв.;

Kp — кратность воздухообмена согласно нормам, 1/ч.

Для тех же размеров комнаты (20 м.кв.) необходимый объем воздуха в час

L = 20 х 3 = 60 м.куб.

Данный метод вычислений дает более высокие требования к системе вентиляции, поэтому предпочтительным считается предыдущий вариант вычислений. При указании в таблице объема воздуха на помещение именно эти цифры используют для дальнейшего подбора компонентов вентиляционной системы.

Расчет вентиляции помещения в зависимости от числа людей

Второй сравнительно простой способ вычисления производительности вентиляционной системы – по числу находящихся в помещении людей. При этом в калькулятор вентиляции достаточно внести число пользователей и указать степень их активности.

Вычисления ведутся по формуле

L = N х Lнорм

Где L — необходимая производительность вентилирующей системы, м3/ч;

N — число людей;

Lнорм — расход воздушной смеси на человека, согласно нормативам (объем).

Последний показатель принимается согласно санитарно-гигиеническим нормам:

  • спокойствие (отдых, сон) — 20 м3/ч;
  • умеренная активность — 40 м3/ч;
  • активная деятельность (физическая работа, тренировки) — 60 м3/ч.

Таким образом, для комнаты с теми же, что и в предыдущем примере расчета вентиляции, размерами (20 м.кв.) при одновременной умеренной активности 5 человек (офисная работа) потребуется мощность системы

L = 5 х 40 = 200 м.куб.

Если речь идет не о частном доме, а об общественном заведении, следует руководствоваться другими показателями.

Однако для таких помещений производительность вентиляции рассчитывается индивидуально, в ходе проектирования системы (или здания в целом), и кратность воздухообмена считается только дополнительным, проверочным показателем.

Заключение

Несмотря на то, что калькулятор расчета вентиляции, дает только приблизительные данные, он позволит примерно представлять необходимую производительность приточно-вытяжной вентиляции и проверить данные, представленные фирмой, монтирующей систему. Знание того, как рассчитать вентиляцию на бытовом уровне, поможет также при самостоятельной установке принудительно проветривающих помещение установок.

Описание. Формулы. Калькулятор.

Расчёт сечения воздуховода для механической (принудительной) вентиляции?

prjamougolnij_vozduhovodkrugliy_vozduhovod

   Расчёт сечения прямоугольного и/ли круглого воздуховода осуществляется с помощью двух известных параметров: воздухообмен по помещению и скорость потока воздуха.

   Воздухообмен по помещению может быть заменён на производительность вентилятора. Производительность приточного или вытяжного вентиляторов указывается заводом изготовителем в паспортных данных изделия. При проектировании или предпроектной разработке, воздухообмен рассчитывается исходя из кратности. Кратность (количество раз замены полного объёма воздуха в помщении за 1 час) — это коэффициент из нормативной документации.

   Скорость потока в воздуховоде необходимо измерить, если это смонтированная система. А если проект находится в стадии разработки, то скорость потока в воздуховоде  задаётся самостоятельно. Скорость потока в воздуховоде не должна превышать 10 м/с.

Ниже приведены формулы и калькулятор на их основе,  с помощью которых вы сможете рассчитать сечение прямоугольных и круглых воздуховодов.

Формула для расчёта круглого сечения (диаметра) воздуховода

Формула для расчёта прямоугольного сечения  воздуховода

Калькулятор расчёта сечений прямоугольных и круглых воздуховодов через воздухообмен и скорость потока

Введите в поля параметры воздухообмена и требуемую скорость потока в воздуховоде

Онлайн-калькулятор расчета производительности вентиляции

Расчет вентиляции, как правило, начинается с подбора оборудования, подходящего по таким параметрам, как производительность по прокачиваемому объему воздуха и измеряемому в кубометрах в час. Важным показателем в системе является кратность воздухообмена. Кратность воздухообмена показывает, сколько раз происходит полная замена воздуха в помещении в течение часа. Кратность воздухообмена определяется СНиП и зависит от:

  • назначения помещения
  • количества оборудования
  • выделяющего тепло,
  • количества людей в помещении.

В сумме все значения по кратности воздухообмена для всех помещений составляют производительность по воздуху.

Расчет производительности по кратности воздухообмена

Методика расчета вентиляции по кратности:

L = n * S * Н, где:

L — необходимая производительность м3/ч; n — кратность воздухообмена; S — площадь помещения; Н — высота помещения, м.

Расчет производительности вентиляции по количеству людей

Методика расчета производительности вентиляции по количеству людей:

L = N * Lнорм, где:

L — производительность м3/ч; N — число людей в помещении; Lн — нормативный показатель потребления воздуха на одного человека составляющий: при отдыхе — 20 м3/ч; при офисной работе — 40 м3/ч; при активной работе — 60 м3/ч.

Онлайн-калькулятор расчета системы вентиляции

Следующий этап в расчете вентиляции — проектирование воздухораспределительной сети, состоящей из следующих компонентов: воздуховоды, распределители воздуха, фасонные изделия (переходники, повороты, разветвители.)

Сначала разрабатывается схема воздуховодов вентиляции, по которой производится расчет уровня шума, напора по сети и скорости потока воздуха. Напор по сети напрямую зависит от того, какова мощность используемого вентилятора и рассчитывается с учетом диаметров воздуховодов, количества переходов с одного диаметра на другой, и количества поворотов. Напор по сети должен возрастать с увеличением длины воздуховодов и количества поворотов и переходов.

Расчет количества диффузоров

Методика расчета количества диффузоров

N = L / ( 2820 * V * d * d ), где

N — количество диффузоров, шт; L — расход воздуха, м3/час; V — скорость движения воздуха, м/сек; d — диаметр диффузора, м.

Расчет количества решеток

Методика расчета количества решеток

N = L / ( 3600 * V * S ), где

N— количество решеток; L — расход воздуха, м3/час; V — скорость движения воздуха, м/сек; S — площадь живого сечения решетки, м2.

Проектируя системы вентиляции, необходимо находить оптимальное соотношение между мощностью вентилятора, уровнем шума и диаметром воздуховодов. Расчет мощности калорифера производится с учетом необходимой температуры в помещении и нижним уровнем температуры воздуха снаружи.

Расчет мощности калорифера

Методика расчета мощности калорифера

Р = T * L * Сv / 1000, где:

Р — мощность прибора, кВт; T — разница температур на выходе и входе системы, °С; L — производительность м?/ч. Cv — объемная теплоемкость воздуха = 0,336 Вт·ч/м?/°С. Напряжение питания может быть однофазным 220 В или трехфазным 380 В. При мощности более 5 кВт желательно использование трехфазного подключения.

</tr></tbody></table>

Также при выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Вентиляция — это инженерная система, представляющая собой совокупность устройств и мероприятий, обеспечивающих комфортный воздухообмен и поддерживающих определенный температурно-влажностный режим в помещениях.

Расчет системы вентиляции онлайн калькулятором KALK.PRO позволяет узнать необходимую мощность (производительность) вентиляции по площади помещения и кратности воздухообмена. В результате, согласно нормативам, вы получите необходимую производительность вентиляции для заданных условий в м3/ч.

Вы также можете рассчитать вентиляцию по количествую людей в помещении.

Единственный вопрос, который может возникнуть, что такое кратность воздухообмена ?

Кратность воздухообмена — это санитарный показатель, который используется для упрощенного расчета системы вентиляции. Он регламентируется СНиП 2.08.01-89 «Жилые здания» и СНиП 2.09.04-87 «Административные и бытовые здания». Выберите тип помещения, который вам подходит и подставьте значение в калькулятор вентиляции.

Кратность воздухообмена для жилых и технических помещений

Помещение Кратность воздухообмена или количество удаляемого воздуха из помещения, м3

Жилая комната квартир или общежитий

3 м3/ч на 1 м2

Кухня квартиры и общежития, кубовая: с электроплитами, с газовыми плитами

не менее 60 м3/ч при 2-комфорочных плитах,

не менее 75 м3/ч при 3-комфорочных плитах,

не менее 90 м3/ч при 4-комфорочных плитах

Сушильный шкаф для одежды и обуви в квартирах

30 м3

Ванная

25

Уборная индивидуальная

25

Совмещенное помещение уборной и ванной

50

То же, с индивидуальным нагревом

50

Умывальная общая

0,5

Душевая общая

5

Уборная общая

50 м3/ч на 1 унитаз

25 м3/ч на 1 писсуар

Гардеробная комната для чистки и глажения одежды, умывальная в общежитии

1,5

Помещение для культурно-массовых мероприятий, отдыха, учебных и спортивных занятий, помещения для администрации и персонала

1

Постирочная

7

Гладильная, сушильная в общежитиях

3

Кладовые для хранения личных вещей, спортивного инвентаря, хозяйственные и бельевые в общежитии

0,5

Палата изолятора в общежитии

1

Машинное помещение лифтов

не менее 0,5

Мусоросборная камера

1

Если вентиляция в доме или квартире не справляется со своими задачами, то это чревато очень серьёзными последствиями. Да, проблемы в работе этой системы проявляются на так быстро и чувствительно, как, скажем неполадки с отоплением, и не все хозяева уделяют им адекватное внимание. Но результаты могут быть весьма печальными. Это — спертый переувлажненный воздух в помещениях, то есть идеальная среда для развития болезнетворных микроорганизмов. Это — запотевшие окна и сырые стены, на которых вскорости могут появиться очаги плесени. Наконец, это — попросту снижение комфорта из-за распространяющихся от санузла, ванной, кухни в жилую зону запахов.

Калькуляторы расчета площади сечения вытяжной отдушины вентиляции

Чтобы избежать застойных явлений, в помещениях в течение отрезка времени должен происходить обмен воздуха с определённой кратностью. Приток осуществляется через жилую зону квартиры или дома, вытяжка – через кухню, ванную, санузел. Именно для этого там и располагаются окна (отдушины) вытяжных вентиляционных каналов. Нередко хозяева жилья, затевающие ремонт, спрашивают, можно ли заделать эти отдушины или уменьшить их в размерах, чтобы, например, установить на стенах те или иные предметы мебели. Так вот — полностью перекрывать их однозначно нельзя, а перенос или изменение в размерах возможны, но не только с условием, что будет обеспечена необходимая производительность, то есть способность пропустить требуемый объем воздуха. А как это определить? Надеемся, читателю помогут предлагаемые калькуляторы расчета площади сечения вытяжной отдушины вентиляции.

Калькуляторы будут сопровождаться необходимыми пояснениями по проведению вычислений.

Расчет нормального воздухообмена для эффективной вентиляции квартиры или дома

Итак, при нормальной работе вентиляции в течение часа воздух в помещениях должен постоянно меняться. Действующими руководящими документами (СНиП и СанПиН) установлены нормы притока свежего воздуха в каждое из помещений жилой зоны квартиры, а также минимальные объемы его вытяжки через каналы, расположенные на кухне, в ванной в санузле, иногда – и в некоторых других специальных помещениях.

Эти нормативы, опубликованные в нескольких документах, для удобства читателя объединены в одну таблицу, показанную ниже:

Тип помещения Минимальные нормы воздухообмена (кратность в час или кубометров в час)
<font>ПРИТОК</font> <font>ВЫТЯЖКА</font>
<font>Требования по Своду Правил СП 55. 13330.2011 к СНиП 31-02-2001 «Одноквартирные жилые дома»</font>
Жилые помещения с постоянным пребыванием людей Не менее однократного обмена объема в течение часа
Кухня 60 м³/час
Ванная, туалет 25 м³/час
Остальные помещения Не менее 0,2 объема в течение часа
<font>Требования по Своду Правил СП 60.13330.2012 к СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха»</font>
Минимальный расход наружного воздуха на одного человека: жилые помещения с постоянным пребыванием людей, в условиях естественного проветривания:
При общей жилой площади более 20 м² на человека 30 м³/час, но при этом не менее 0,35 от общего объема воздухообмена квартиры в час
При общей жилой площади менее 20 м² на человека 3 м³/час на каждый 1 м² площади помещения
<font>Требования по Своду Правил СП 54. 13330.2011 к СНиП 31-01-2003 «Здания жилые многоквартирные»</font>
Спальная, детская, гостиная Однократный обмен объема в час
Кабинет, библиотека 0,5 от объема в час
Бельевая, кладовка, гардеробная 0,2 от объема в час
Домашний спортзал, биллиардная 80 м³/час
Кухня с электрической плитой 60 м³/час
Помещения с газовым оборудованием Однократный обмен + 100 м³/час на газовую плиту
Помещение с твёрдотопливным котлом или печью Однократный обмен + 100 м³/час на котел или печь
Домашняя прачечная, сушилка, гладильная 90 м³/час
Душевая, ванная, туалет или совмещенный санузел 25 м³/час
Домашняя сауна 10 м³/час на каждого человека

Пытливый читатель наверняка заметит, что нормативы по разным документам несколько отличаются. Причем, в одном случае нормы устанавливаются исключительно по размерам (объему) помещения, а другом – по количеству людей постоянно пребывающих в этом помещении. (Под понятием постоянного пребывания имеется в виду нахождение в комнате 2 часа и более).

Поэтому при проведении расчетов вычисления минимального объема воздухообмена желательно проводить по всем доступным нормативам. А затем – выбрать результат с максимальным показателем – тогда ошибки точно не будет.

Провести быстро и точно расчет притока воздуха для всех помещений квартиры или дома поможет первый предлагаемый калькулятор.

Калькулятор расчета требуемых объемов притока воздуха для нормальной вентиляции

Как видите, калькулятор позволяет провести вычисления и от объёмов помещений, и от количества постоянно пребывающих в них людей. Повторимся, желательно провести оба расчета, а затем выбрать из двух получившихся результатов, если они будут различаться, максимальный.

Проще будет действовать, если заранее составить небольшую таблицу, в которой перечислены все помещения квартиры или дома. А затем в нее вносить полученные значения притока воздуха – для комнат жилой зоны, и вытяжки – для помещений, где предусмотрены вытяжные вентиляционные каналы.

К примеру, это может выглядеть так:

Помещение и его площадь Нормы притока   Нормы вытяжки  
1 способ – по объему комнаты 2 способ – по количеству людей 1 способ 2 способ
Гостиная, 18 м² 50 90
Спальная, 14 м² 39 60
Детская, 15 м² 42 60
Кабинет, 10 м² 14 30
Кухня с газовой плитой, 9 м² 60 25 + 100 = 125
Санузел 25
Ванная 25
Гардероб-кладовая, 4 м² 2
Суммарное значение 240 177
Принимаемое общее значение воздухообмена 240

Затем суммируются максимальные значения (они в таблице для наглядности выделены подчёркиванием), отдельно для притока и для вытяжки воздуха. А так как при работе вентиляции должно соблюдаться равновесие, то есть сколько воздуха в единицу времени поступило в помещения – столько же должно и выйти, итоговым выбирается также максимальное значение из полученных двух суммарных. В приведенном примере – это 240 м³/час.

Этот значение и должно быть показателем суммарной производительности вентиляции в доме или квартире.

Распределение объемов вытяжки по помещениям и определение площади поперечного сечения каналов

Итак, найден объем воздуха, который должен поступить помещения квартиры в течение часа и, соответственно, выведен за это же время.

Далее, исходят их количества вытяжных каналов, имеющихся (или планируемых к организации – при проведении самостоятельного строительства) в квартире или доме. Полученный объем необходимо распределить между ними.

Для примера, вернемся к таблице выше. Через три вентиляционных канала (кухня, санузел и ванная) необходимо отвести 240 кубометров воздуха в час. При этом из кухни по расчетам должно отводиться не менее 125 м³, из ванной и туалета по нормативам – не менее, чем по 25 м³. Больше – пожалуйста.

Поэтому напрашивается такое решение: кухне «отдать» 140 м³/час, а оставшееся — разделить поровну между ванной и санузлом, то есть по 50 м³/час.

Ну а зная объем, который необходимо отвести в течение определённого времени – несложно подсчитать ту площадь вытяжного канала, которая гарантированно справится с задачей.

Правда, для расчетов требуется еще и значение скорости воздушного потока. А она тоже подчиняется определённым правилам, связанным с допустимыми уровнями шума и вибрации. Так, скорость потока воздуха на вытяжных вентиляционных решетках при естественной вентиляции должна быть в пределах диапазона 0,5÷1,0 м/с.

Приводить формулу расчета здесь не будем – сразу предложим читателю воспользоваться онлайн-калькулятором, который определит требуемую минимальную площадь сечения вытяжного канала (отдушины).

Калькулятор расчета минимальной площади сечения вентиляционной отдушины

Обладая элементарными знаниями в геометрии, полученную площадь несложно привести к размерам прямоугольника. Правда, при этом должно соблюдаться условие – соотношение длинной и короткой стороны – не более, чем 3:1.

Нередко вентиляционные решетки имеют и круглое окно. Значит, необходимо пересчитать площадь сечения в диаметр. Или же требуется сделать переход от прямоугольного сечения на круглое. В обоих случаях будет полезен третий калькулятор, предназначенный специально для такой цели.

Калькулятор расчета диаметра круглого канала, эквивалентного площади прямоугольного

Полученное значение будет ориентиром при приобретении стандартных деталей с круглым сечением. Естественно, округление при этом делается в бо́льшую сторону.

Правильная организации естественной вентиляции

Объем данной статьи не позволяет рассмотреть все нюансы организации вентиляции жилого дома или квартиры. Но в этом и нет особой нужды, так как на страницах нашего портала уже имеется специальная публикация, в которой проблемы естественной вентиляции рассматриваются со всеми подробностями.

Используемые источники:

  • https://stroy-okey.ru/calculator/onlajn-kalkuljator-rascheta-ventiljacii/
  • https://torvent.ru/raschyot_ventilyacii/
  • https://sms161.ru/uslugi/ventilyaciya/raschet/
  • https://kalk.pro/ventilation/ventilation-power/
  • https://stroyday.ru/kalkulyatory/obshhestroitelnye-voprosy/kalkulyatory-rascheta-ploshhadi-secheniya-vytyazhnoj-otdushiny-ventilyacii.html

Калькулятор ОВК - расчеты для проектирования систем ОВК

Аэродинамика
Массовый расход воздуха
Объемный расход воздуха
Подбор диаметра воздуховода
Подбор размеров воздуховода
Диаметр круглой диафрагмы
Размеры прямоугольной диафрагмы
Скорость воздуха по площади
Расход воздуха по площади
Скорость воздуха по диаметру воздуховода
Скорость воздуха по размерам воздуховода
Расход воздуха по диаметру воздуховода
Расход воздуха по размерам воздуховода
Потери давления на трение в круглом воздуховоде
Потери давления на трение в прямоугольном воздуховоде
Потери давления в местных сопротивлениях
Гидравлика
Расход жидкости по мощности. Вода
Расход жидкости по мощности. Гликоль
Мощность по диаметру трубопровода. Гликоль
Мощность по расходу жидкости. Вода
Мощность по расходу жидкости. Гликоль
Подбор диаметра трубопровода по расходу жидкости
Подбор диаметра трубопровода по мощности. Вода
Подбор диаметра трубопровода по мощности. Гликоль
Потери давления на трение в трубопроводе. Гликоль
Потери давления в местных сопротивлениях. Гликоль
Диаметр дросселирующей шайбы. Вода
Kv клапана
Изменение объема системы. Вода
Изменение объема системы. Гликоль
Тепловое удлинение трубопровода
Скорость жидкости
Расход жидкости по диаметру трубопровода
Мощность по диаметру трубопровода. Вода
Потери давления на трение в трубопроводе. Вода
Потери давления в местных сопротивлениях. Вода
Потери давления на клапане
Отопление
Сопротивление теплопередаче ограждения из двух материалов
Сопротивление теплопередаче ограждения из одного материала
Температура внутренней поверхности ограждения
Вентиляция
Мощность на охлаждение воздуха по температуре теплообменника
Мощность на охлаждение воздуха по относительной влажности
Мощность на охлаждение воздуха по энтальпии
Мощность электродвигателя вентилятора
Располагаемое давления естественной вентиляции
Расход воды на пароувлажнение воздуха
Мощность на пароувлажнение воздуха
Мощность на нагрев воздуха
Расход воздуха по тепловыделениям
Расход воздуха по влаговыделениям
Свойства воздуха
Температура смеси воздуха
Влагосодержание смеси воздуха
Энтальпия смеси воздуха
Относительная влажность смеси воздуха
Давление насыщения пара по температуре
Давление насыщения пара по влагосодержанию
Барометрическое давление
Парциальное давление
Температура точки росы
Плотность воздуха
Удельная теплоёмкость воздуха
Температура влажного термометра по относительной влажности
Температура влажного термометра по энтальпии
Влагосодержание воздуха по энтальпии
Влагосодержание воздуха по относительной влажности
Энтальпия воздуха по влагосодержанию
Энтальпия воздуха по относительной влажности
Относительная влажность воздуха по влагосодержанию
Относительная влажность воздуха по энтальпии
Свойства жидкости
Температура замерзания. Гликоль
Плотность. Вода
Плотность. Гликоль
Удельная теплоёмкость. Вода
Удельная теплоёмкость. Гликоль
Кинематическая вязкость. Вода
Кинематическая вязкость. Гликоль
Температура конденсации. Фреон
Температура кипения. Фреон
Давление конденсации. Фреон
Давление кипения. Фреон
Инженерная геометрия
Площадь изоляции покрытой по круглому сечению
Площадь изоляции покрытой по прямоугольному сечению
Эквивалентный диаметр
Масса стального трубопровода
Площадь поверхности круглого воздуховода
Площадь поверхности прямоугольного воздуховода
Калькулятор размеров воздуховодов

- Размеры воздуховодов

Размер воздуховодов

Системы

HVAC работают намного эффективнее, если размер используемых вами воздуховодов подходит для вашего дома. Установите воздуховоды слишком маленького размера, и вашей системе придется усерднее работать, чтобы поддерживать тепло и охлаждение вашего дома. Если размер вашего воздуховода слишком велик, скорость будет нарушена, а это означает, что вы не сможете почувствовать ее через вентиляционные отверстия.

Для определения размеров воздуховодов

используется сложная формула, которая включает размеры вашего дома в квадратных футах, размер вашего блока, необходимую скорость воздушного потока, а также потери на трение и статическое давление вашей системы HVAC.Вот почему профессионалы HVAC имеют в своем распоряжении схемы и инструменты, позволяющие упростить весь процесс.

Что нужно знать для расчета размеров воздуховодов для дома:

  • Квадратный метр вашего дома.
  • квадратных метров каждой отдельной комнаты в вашем доме.
  • Расчет кубических футов в минуту (поясняется ниже)
  • Расчетный размер воздуховода Коэффициент потерь на трение

Самостоятельное определение размеров воздуховода может оказаться утомительной и сложной задачей. Иногда лучше доверить это специалисту по HVAC, чтобы получить идеальный рабочий размер воздуховода HVAC для вашего дома.


Определение площади вашего дома в квадратных футах

Размер вашего дома определяет размер ваших нагревательных и охлаждающих устройств, но он также определяет, насколько большими должны быть размеры ваших воздуховодов. Чтобы точно определить размер воздуховода, вам необходимо точно измерить квадратные метры не только вашего дома в целом, но и размера каждой комнаты.

Проведите рулеткой по длине и ширине каждой стены, разделив комнаты необычной формы на отдельные прямоугольные части, чтобы при необходимости рассчитать размеры. Запишите каждое измерение в таблицу, чтобы отслеживать их, потому что они вам понадобятся позже!

Расчет кубических футов в минуту

  • Кубических футов в минуту = (Тонны единиц HVAC x 400) / общий квадратный метр дома.
  • Рассчитать для каждой отдельной комнаты.

Далее нам нужно поговорить о кубических футах в минуту или CFM.Это измерение указывает скорость или расход воздуха, необходимые для точного обогрева или охлаждения комнаты. Поскольку размер вашего воздуховода может увеличивать или уменьшать это измерение, вам нужно будет найти необходимый CFM для каждой комнаты, прежде чем вы сможете получить правильный размер воздуховода для каждого помещения.

Для расчета CFM вам необходимо знать размер вашего нагревательного или охлаждающего устройства в тоннах. Умножьте это число на 400, что является средней производительностью блока HVAC. Затем разделите на общую площадь вашего дома. Это даст вам множитель для CFM всех ваших комнат.Итак, если вы начинаете с кухни, а площадь кухни составляет 300 квадратных футов, чтобы найти CFM комнаты, вам нужно умножить 300 на (размер единицы x 400) / общий квадратный метр вашего дома. Сделайте это для каждой комнаты в вашем доме.

Размер воздуховода Коэффициент потерь на трение

Еще одна важная единица измерения - коэффициент потерь на трение в воздуховодах. Это поможет вашему подрядчику определить статическое давление для вашего устройства по всей длине воздуховодов - еще одно измерение размера, которое влияет на общий поток воздуха из вашей системы.

Коэффициент потерь на трение зависит от множества различных размеров воздуховодов, например от длины каждого воздуховода; количество катушек, фильтров, решеток, регистров и заслонок в вашей системе; и количество витков в воздуховоде. Ваш подрядчик будет использовать калькулятор размера воздуховода, чтобы объединить эти измерения и функции в измерения статического давления вашей системы. Затем они умножают ее на 100 и делят на общую длину воздуховодов вашей системы.

Однако это, очевидно, очень сложное измерение - и оно становится еще более сложным в зависимости от размера и формы ваших воздуховодов.По этой причине обычно лучше доверить расчет коэффициента потерь на трение профессиональному подрядчику. Но вы можете найти общее число, используя онлайн-калькулятор потерь на трение.

Использование калькулятора размеров воздуховодов HVAC

Ваш общий размер воздуховода определяется суммированием размера, CFM и потерь на трение в вашем доме, а это означает, что расчет оказывается довольно сложным. Из-за этого профессионалы и любители HVAC обычно не рассчитывают окончательный размер воздуховодов HVAC самостоятельно.Вместо этого они используют программное обеспечение или программные калькуляторы, которые могут сделать за них эти окончательные выводы.

Поскольку специалист по HVAC имеет доступ к более сложным инструментам, можно с уверенностью сказать, что его расчеты будут немного более точными, чем у домашнего мастера.

Тем не менее, при проектировании системы воздуховодов HVAC всегда следует проконсультироваться со знающим специалистом. Размер вашей системы воздуховодов может существенно повлиять на комфорт вашего дома, а также на сумму, которую вы тратите каждый месяц на обогрев или охлаждение дома.Установки HVAC представляют собой самую большую часть энергии, потребляемой вашим домом, поэтому правильные цифры крайне важны, чтобы сэкономить как можно больше денег на счетах за коммунальные услуги.

Как определять размеры и проектировать воздуховоды и воздуховоды

Как рассчитывать и проектировать воздуховоды и воздуховоды

EMS HOME

ТРИ ШАГА ДО РАЗМЕР ВОЗДУХОВОДОВ

1. Рассчитайте CFM необходимо на каждую комнату

КАК: Выполнить целый дом и расчет нагрузки по помещению (Руководство J).Затем примените следующую формулу:

CFM в помещении = (Нагрузка в помещении / Загрузка всего помещения) X CFM на оборудование

* А Расчет нагрузки по помещению должен быть выполнен для определения CFM для поставляться в каждую комнату, иначе температура будет неравномерной по всей дом

2. Рассчитайте коэффициент потерь на трение

КАК: Определить внешний статическое давление воздуходувки по данным производителя.Затем вычтите перепады давления, создаваемые любыми компонентами, добавленными в систему распределения воздуха (змеевики, фильтры, решетки, регистры, заслонки и т. д.). Это доступное статическое давление для системы воздуховодов. Затем определите общее количество эффективная длина . Общая эффективная длина равна измеренным. длина от самого дальнего выходного отверстия через оборудование и до самого дальнего возвратный патрубок плюс эквивалентная длина всех витков и арматура.Чтобы получить коэффициент трения применить следующую формулу:

Скорость трения = (доступное статическое давление х 100) / общая эффективная длина

ПРИМЕЧАНИЕ: Хотя это неприемлемо с инженерной точки зрения, для большинства типов типовых системы воздуховодов, коэффициент трения по умолчанию 0,05 - 0,08 может использоваться вместо выполнение вышеуказанного расчета.

3.Выберите размер воздуховода с помощью таблицы трения или калькулятора воздуховодов

КАК: Используя таблицу трения. Для выбора размера подающего и обратного трубопроводов выберите размер воздуховода в пересекающиеся линии трения скорости и оборудования CFM. As соединительные линии сокращаются, используя общий CFM оставшихся нисходящих ветвей . Для определения размера воздуховодов выберите размер воздуховода на пересекающихся линиях коэффициент трения и комнатный CFM.

С помощью калькулятора воздуховодов. Для калибровки стволов или веток просто выровняйте коэффициент трения с CFM, и размер воздуховода будет отображаться

ПРИМЕЧАНИЕ: Используется ли диаграмму трения или калькулятор воздуховода, всегда проверяйте скорость на таблица трения или калькулятор воздуховодов . Как правило, скорость не должна быть более 700 кадров в минуту. Если скорость слишком высока, выберите на один размер трубы больше пока скорость не упадет ниже 700 футов в минуту.

Перед тем, как продолжить работу с воздуховодами проект, пожалуйста, найдите время, чтобы прочитать МИФ КВАРТИРЫ Бустер

К НАЙТИ ЭКОНОМИЧНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ РАСЧЕТА НАГРУЗКИ И РАЗМЕРА КАНАЛОВ НАЖМИТЕ ЗДЕСЬ

Ниже приведен пример воздуховода калибровка

Избавьтесь от боли при расчете нагрузки и канале размер всего за 49 долларов с нашим

"Самый простой в мире калькулятор нагрузки и Воздуховод "

"

Это как конструктор системы HVAC в коробке

Размеры, расчет и проектирование воздуховодов для обеспечения эффективности

Как спроектировать систему воздуховодов. В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также моделирование CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы посмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!

🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https://www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale - это революционная облачная платформа CAE, которая мгновенно доступ к технологиям моделирования CFD и FEA для быстрого и простого виртуального тестирования, сравнения и оптимизации конструкций в нескольких отраслях, включая HVAC , AEC и electronics .

Методы проектирования воздуховодов

Существует множество различных методов, используемых для проектирования систем вентиляции, наиболее распространенными из которых являются:

  • Метод снижения скорости: (жилые или небольшие коммерческие установки)
  • Метод равного трения: (от среднего до большого размера коммерческие установки)
  • Восстановление статического электричества: Очень большие установки (концертные залы, аэропорты и промышленные объекты)

В этом примере мы сосредоточимся на методе равного трения, поскольку это наиболее распространенный метод, используемый для коммерческих систем HVAC, и просто следовать.

Пример проектирования

План здания

Итак, сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут размещаться вентилятор, фильтры и воздухонагреватель или охладитель.

Нагрузка на отопление и охлаждение в здании

Первое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.В этой статье я не буду рассказывать, как это сделать, нам придется рассказать об этом в отдельном руководстве, так как это отдельная предметная область.

После того, как они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, поскольку нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.

Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:

mdot = Q / (cp x Δt)

Рассчитать массовый расход воздуха скорость от охлаждающей нагрузки

Где mdot означает массовый расход (кг / с), Q - охлаждающая нагрузка помещения (кВт), cp - удельная теплоемкость воздуха (кДж / кг.K), а Δt - разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что мы будем использовать стандартную скорость 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.

Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все массовые расходы.

Расчет массового расхода воздуха для каждой комнаты

Теперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но я предпочитаю использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Мы просто добавляем эти числа и получаем плотность воздуха 1,2 кг / м3.

Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1.-1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть возможность рассчитать объемный расход по формуле:

vdot = mdot, умноженное на v.

Рассчитайте объемный расход воздуха, исходя из массового расхода

, где vdot равно объемному расходу, mdot равно массовому расходу скорость комнаты и v равна удельному объему, который мы только что рассчитали.
Итак, если мы опустим эти значения для комнаты 1, мы получим объемный расход 0,2158 м3 / с, то есть сколько воздуха необходимо для входа в комнату для удовлетворения охлаждающей нагрузки.Так что просто повторите этот расчет для всех комнат.

Объемный расход воздуха в здании - выбор размера воздуховода

Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы мы могли начать его размер.

Схема воздуховодов

Прежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.

Соображения по конструкции

Первым из них является форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглые воздуховоды - безусловно, самый энергоэффективный тип, и это то, что мы будем использовать в нашем рабочем примере позже. Если мы сравним круглый воздуховод с прямоугольным, мы увидим следующее:

Сравнение круглого и прямоугольного воздуховода

Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Таким образом, прямоугольный воздуховод требует больше металла для своей конструкции, что увеличивает вес и стоимость конструкции. Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать больше, что приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, так как пространство ограничено.

Падение давления в воздуховодах

Второе, что необходимо учитывать, - это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение. Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале.Один изготовлен из стандартной оцинкованной стали, другой из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.

Энергоэффективная арматура для воздуховодов

Третье, что мы должны учитывать, - это динамические потери, вызванные арматурой. Мы хотим использовать максимально гладкую арматуру для повышения энергоэффективности. Например, используйте изгибы с длинным радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.

CFD-моделирование воздуховодов

Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете получить доступ к этому программному обеспечению бесплатно, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.

SimScale не ограничивается только проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также для теплового и структурного анализа.

Просто взгляните на их сайт, и вы можете найти тысячи симуляторов для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для вашего собственного дизайна. анализ.

Они также предлагают бесплатные вебинары, курсы и учебные пособия, которые помогут вам настроить и запустить собственное моделирование. Если у вас, как и у меня, есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.

Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, всю работу выполняют их серверы, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно облегчает нашу жизнь как инженеров.

Итак, если вы инженер, дизайнер, архитектор или просто кто-то, кто заинтересован в испытании технологии моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.

CFD конструкция воздуховодов стандартная и оптимизированная

Теперь, если мы посмотрим на сравнение двух конструкций, мы увидим стандартную конструкцию слева и более эффективную конструкцию справа, которая была оптимизирована с помощью simscale. Обе конструкции используют скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный - области высокой скорости.

Воздуховоды стандартной конструкции

Из цветовой шкалы скорости и линий обтекания видно, что в схеме слева входящий воздух напрямую ударяет по резким поворотам, присутствующим в системе, что вызывает увеличение статического давления. Резкие повороты приводят к появлению большого количества областей рециркуляции в воздуховодах, что препятствует плавному движению воздуха.

Тройник на дальнем конце основного воздуховода заставляет воздух внезапно делиться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и снижает количество подаваемого воздуха.

Высокая скорость в главном воздуховоде, вызванная резкими поворотами и резкими изгибами, уменьшает поток в 3 ветви на осталось.

Оптимизированная конструкция воздуховодов с энергоэффективностью

Если теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе. В дальнем конце главного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.

Теперь три ответвления главного воздуховода получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отрываться от основного потока и поступать в эти меньшие ветви.

С учетом этих соображений мы можем вернуться к конструкции воздуховода.

Этикетки для воздуховодов и фитингов

Теперь нам нужно пометить каждую секцию воздуховодов, а также фитинги буквой. Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, входные отверстия, гибкие соединения, противопожарные клапаны и т. Д.

Теперь мы хотим сделать стол с строки, помеченные как в примере. Каждому воздуховоду и штуцеру нужен отдельный ряд. Если воздушный поток разделяется, например, с тройником, тогда нам нужно включить линию для каждого направления, мы увидим это позже в статье.

Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.

Диаграмма воздуховода для воздуховодов

Мы можем начать вводить некоторые данные, сначала мы можем включить объемный расход для каждого из ответвлений, это просто, поскольку это просто объемный расход для помещения, которое он обслуживает. Вы можете видеть на диаграмме, которую я заполнил.

Схема воздуховодов Расходы в главном воздуховоде

Затем мы можем начать определять размеры главных воздуховодов. Для этого убедитесь, что вы начали с самого дальнего главного воздуховода.Затем мы просто складываем объемные расходы для всех ответвлений ниже по потоку. Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A это сумма L, I, F и C. Поэтому просто введите их в таблицу.

По черновому чертежу мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.

Размеры воздуховодов - Как определить размеры воздуховодов

Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2

Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Компоновка диаграммы может немного отличаться в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр воздуховода. Горизонтальные линии показывают объемный расход. Диагональные линии, направленные вниз, соответствуют скорости, а диагональные линии вверх - диаметру воздуховода.

Мы начинаем подбирать размеры с первого главного воздуховода, который является участком А. Чтобы ограничить шум в этом разделе, мы укажем, что он может иметь максимальную скорость только 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.

Пример размера воздуховода

Возьмем диаграмму и прокрутим ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 Па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем пересечение с направленными вверх диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.

Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных каналов.

Для остальных воздуховодов мы используем тот же метод.

Подбор размеров воздуховода, метод равного давления

На диаграмме мы начинаем с рисования линии от 0,65 Па / м на всем протяжении вверх, а затем проводим линию поперек нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с . На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.

Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.

Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Проделайте это со всеми воздуховодами и ответвлениями на столе.

Размер фитингов для воздуховодов

Первый фитинг, который мы рассмотрим, это изгиб 90 * между воздуховодами J и L

Для этого мы ищем наш коэффициент потерь для изгиба от производителя или отраслевого органа, вы можете найти, что нажав на эту ссылку.

Коэффициент потери давления в фитинге изгиба воздуховода

В этом примере мы видим, что коэффициент равен 0,11

Затем нам нужно рассчитать динамические потери, вызванные изгибом, изменяющим направление потока. Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, разделенную на 2, где co - наш коэффициент, rho - плотность воздуха, а v - скорость.

Формула потери давления на изгибе воздуховода

Мы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим ответ 0,718 паскаля. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).

Потеря давления на тройнике в воздуховоде

Следующий фитинг, который мы рассмотрим, - это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе. Теперь для этого нам нужно учесть, что воздух движется в двух направлениях: прямо и также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.

Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем отношение скоростей, используя формулу скорости на выходе, деленной на скорость на входе. В этом примере выход воздуха составляет 3,3 м / с, а входящий - 4 м / с, что дает us 0,83

Затем мы выполняем еще один расчет, чтобы найти отношение площадей, для этого используется формула: диаметр вне квадрата, деленный на диаметр в квадрате. В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр - 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0. 53

Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.

Размер тройника для воздуховода

В руководствах мы находим две таблицы, одна из которых зависит от направления потока. Мы используем прямое направление, поэтому мы определяем ее, а затем просматриваем каждое соотношение, чтобы найти коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам нужно выполнить билинейную интерполяцию. Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).

Мы заполняем наши значения и находим ответ 0,143

Расчет потерь давления в тройнике

Теперь мы рассчитываем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженную на v в квадрате, деленную на 2. Если мы опускаем наши значения и получаем ответ в 0,934 паскаля, так что добавьте это в таблицу.

Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб. Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается по скорости, чтобы найти наше соотношение скоростей.Затем мы находим отношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.

Изгиб фитинга тройника с потерями

Затем мы используем таблицу изгиба для тройника, опять же между значениями, указанными в таблице, поэтому нам нужно найти числа, используя билинейную интерполяцию. Мы опускаем значения, чтобы получить ответ 0.3645 паскалей. Так что просто добавьте это в таблицу.

Теперь повторите этот расчет для других тройников и фитингов до завершения таблицы.

Нахождение индексного участка - размер воздуховода

Затем нам нужно найти индексный прогон, который представляет собой участок с наибольшим падением давления. Обычно это самый длинный пробег, но также может быть пробег с наибольшим количеством приспособлений.

Мы легко находим, складывая все потери давления от начала до выхода каждой ветви.

Например, чтобы добраться от A до C, мы теряем 5.04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)

От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E ( 2,55 Па) + F (1,95)

От A до I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H ( 0,36 Па) + I (1,95 Па)

От A до L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па) + K (0,72 Па) + L (1,95 Па)

Следовательно, используемый нами вентилятор должен преодолевать пробег с наибольшими потерями, а именно A - L с 12.5pa, это индексный прогон.

Заслонки воздуховода - балансировка системы

Чтобы сбалансировать систему, нам необходимо добавить заслонки к каждой из ветвей, чтобы обеспечить равный перепад давления во всех помещениях для достижения проектных расходов в каждой комнате.

Мы можем рассчитать, какой перепад давления должен обеспечивать каждый демпфер, просто вычитая потери в ходе прогона из индексного прогона.

от A до C составляет 12,5 Па - 5,04 Па = 7,46 Па

От A до F составляет 12,5 Па - 8,8 Па = 3,7 Па

От A до I составляет 12.5 Па - 10,56 Па = 1,94 Па

И это наша система воздуховодов. Мы сделаем еще одно руководство, посвященное дополнительным способам повышения эффективности системы воздуховодов.

Калькулятор объема трубы | Объем, диаметр, вес

Сантехникам и другим подрядчикам нужны правильные инструменты для решения сложных математических уравнений в полевых условиях, например, для расчета объема трубы, чтобы определить, сколько воды она может выдержать. Калькулятор объема трубы ServiceTitan делает расчет трубы простым и легким.

Измерьте объем труб в зависимости от внутреннего диаметра и длины.Вы также можете использовать этот калькулятор, чтобы подсчитать, сколько весит объем воды в трубах.

Что такое калькулятор объема трубы?

Сантехники и другие квалифицированные специалисты используют калькулятор объема воды в трубе для определения точного объема трубы, а также массы жидкости или веса воды, которая протекает через нее. Этот очень полезный инструмент, по сути, работает как калькулятор объема жидкости.

Кто пользуется калькулятором объема трубы?

Сантехники, подрядчики по ирригации, бригады септиков и работники обслуживания бассейнов постоянно проводят расчеты труб в полевых условиях, чтобы определить правильный размер трубы для установки, определить расход и давление воды или работать над максимальным КПД насоса.

Счетчик объема трубы ServiceTitan также легко вычисляет:

  • Водопропускная способность домашних систем отопления.

  • Расчеты трубопроводов, необходимые для заполнения садового пруда.

  • Объем трубопроводов, необходимый для установки системы орошения газонов и садов.

  • Расчет правильного размера трубы, необходимый для наполнения бассейна.

Формула объема трубы

Формула объема трубы:

Объем = pi x радиус² x длина

Для расчета размера трубы выполните следующие действия:

  • Найти внутренний диаметр и длина трубы в дюймах или миллиметрах.

  • Вычислите внутренний диаметр трубы, измерив расстояние от одной внутренней кромки, поперек центра и до противоположной внутренней кромки.

  • Используйте те же единицы измерения (дюймы или миллиметры) для измерения длины трубы.

  • Рассчитайте радиус трубы по ее диаметру. Чтобы получить радиус, разделите диаметр на 2.

  • Возьмите радиус и возведите его в квадрат или умножьте на себя. Например, 5² = 25.

Пример расчета объема трубы

Вот конкретный пример того, как применить формулу объема трубы:

Полезный совет: Чтобы возвести число в квадрат, умножьте его на само. Чтобы получить число в кубе, умножьте его на само себя три раза.

Калькулятор объема трубы в галлонах

Если вам нужно знать водоемкость в галлонах, вам нужно преобразовать объем воды в метрической системе калькулятора трубы в кубические дюймы.

  • Кубический дюйм = 1 дюйм x 1 дюйм x 1 дюйм.

  • дюйм = измерение длины.

  • Квадратный дюйм = мера площади.

  • Кубический дюйм = мера объема.

  • В 1 галлоне США 231 кубический дюйм.

  • Плотность воды = 997 кг / м³

Пусть калькулятор объема водопровода ServiceTitan исключит из уравнения догадки при попытке определить объем воды в трубах, измеренный в галлонах.Для получения информации об общих размерах труб подрядчики также могут обратиться к общей диаграмме объема труб в Интернете.

Калькулятор размера трубы Дополнительный наконечник

Если вы не знаете, как измерить внутренний диаметр трубы, подумайте о приобретении набора штангенциркулей, которые подходят по внешней стороне трубы. Используйте штангенциркуль для непосредственного измерения внешнего диаметра вместо оценки внутреннего диаметра на основе окружности.

После определения внешнего диаметра обратитесь к этой таблице общих размеров трубы, чтобы точно определить внутренний диаметр вашей трубы.

Объем трубы: нижняя линия

Объем трубы равен объему жидкости внутри нее или занимаемому пространству.

Сантехники и другие подрядчики по обслуживанию стремятся к точным измерениям при работе с трубами для водопровода, вентиляции, кондиционирования, орошения и т. Д., Поэтому они выполняют работу правильно с первого раза.

Калькулятор объема трубы ServiceTitan повышает точность данных, экономит время и сокращает количество отходов, поэтому вы всегда будете знать, что выбираете трубы правильного размера для работы.

Заявление об отказе от ответственности

* Рекомендуемые значения являются добросовестными и предназначены исключительно для общих информационных целей. Мы не гарантируем точность этой информации. Обратите внимание, что другие внешние факторы могут повлиять на рекомендации или исказить их. Для получения точных результатов обратитесь к профессионалу.

Калькулятор объема трубы - Дюймовый калькулятор

Рассчитайте объем трубы с учетом ее внутреннего диаметра и длины. Калькулятор также найдет, сколько весит этот объем воды.

Как найти объем трубы

Объем жидкости в трубе можно определить по внутреннему диаметру трубы и ее длине. Чтобы оценить объем трубы, используйте следующую формулу:

объем = π × d 2 4 × h

Таким образом, объем трубы равен пи, умноженному на диаметр трубы d в квадрате 4, умноженный на длину трубы h .

Эта формула является производной от формулы объема цилиндра, которую также можно использовать, если известен радиус трубы.

объем = π × r 2 × h

Найдите диаметр и длину трубы в дюймах или миллиметрах. Воспользуйтесь нашим калькулятором футов и дюймов, чтобы рассчитать длину в дюймах или миллиметрах.

Если вы не знаете, каков внутренний диаметр трубы, но знаете внешний диаметр, обратитесь к общим таблицам размеров трубы, чтобы найти наиболее вероятный внутренний диаметр вашей трубы.

Введите значения длины и диаметра в формулу выше, чтобы рассчитать объем трубы.

Пример: рассчитать объем трубы диаметром 2 дюйма и длиной 50 футов


длина = 50 ′ × 12 = 600 ″
объем = π × 2 2 4 × 600 ″
объем = 3,1415 × 44 × 600 ″
объем = 3,1415 × 1 × 600 ″
объем = 1885 дюймов 3

Объем и вес воды для обычных размеров труб

Объем и вес воды на фут для обычных размеров труб
Размер трубы Том Вес
в дюйм 3 / фут галлона / фут фунт / фут
1 / 8 0. 1473 дюйм 3 0,000637 галл. 0,005323 фунтов
1 / 4 0,589 дюйма 3 0,00255 галлона 0,0213 фунтов
3 / 8 1,325 дюйма 3 0,005737 галлона 0,0479 фунтов
1 / 2 2,356 дюйма 3 0,0102 галлона 0.0852 фунтов
3 / 4 5,301 дюйм 3 0,0229 галлона 0,1916 фунтов
1 ″ 9,425 дюйма 3 0,0408 галлона 0,3407 фунта
1 1 / 4 14,726 дюйм 3 0,0637 галлона 0,5323 фунтов
1 1 / 2 21. 206 в 3 0,0918 галлона 0,7665 фунтов
2 ″ 37,699 дюйм 3 0,1632 галлона 1,363 фунта
2 1 / 2 58,905 дюйм 3 0,255 галлона 2,129 фунта
3 ″ 84,823 дюйм 3 0,3672 галлона 3,066 фунта
4 ″ 150.8 в 3 0,6528 галлона 5,451 фунта
5 ″ 235,62 дюйма 3 1,02 галлона 8,517 фунтов
6 ″ 339,29 дюйма 3 1,469 галлона 12,264 фунта
Объем и вес воды на метр для обычных метрических размеров труб
Размер трубы Том Вес
мм мм 3 / м л / м кг / м
6 мм 28274 мм 3 0. 0283 л 0,0283 кг
8 мм 50265 мм 3 0,0503 л 0,0503 кг
10 мм 78,540 мм 3 0,0785 л 0,0785 кг
15 мм 176715 мм 3 0,1767 л 0,1767 кг
20 мм 314,159 мм 3 0,3142 л 0.3142 кг
25 мм 490,874 мм 3 0,4909 л 0,4909 кг
32 мм 804 248 мм 3 0,8042 л 0,8042 кг
40 мм 1,256,637 мм 3 1,257 л 1,257 кг
50 мм 1,963,495 мм 3 1,963 л 1,963 кг
65 мм 3 318 307 мм 3 3.318 л 3,318 кг
80 мм 5026548 мм 3 5,027 л 5,027 кг
100 мм 7 853 982 мм 3 7,854 л 7,854 кг
125 мм 12 271 846 мм 3 12,272 л 12,272 кг
150 мм 17 671 459 мм 3 17,671 л 17. 671 кг

Калькулятор диаметра трубы и расхода, онлайн

Когда применим этот калькулятор?

Расчет диаметра трубы с помощью калькулятора диаметра трубы очень прост. Вы можете использовать калькулятор диаметра трубы и расхода для быстрого расчета диаметра трубы в замкнутых, круглых, прямоугольных (только версия онлайн-калькуляторов) и заполненных трубах с жидкостью или чистым газом.

Для расчета диаметра трубы с помощью этого калькулятора вы должны знать и ввести скорость потока.Если скорость потока неизвестна, вы должны использовать падение давления калькулятор для расчета диаметра трубы. Вы можете использовать калькулятор падения давления, когда перепад давления между началом и концом трубопровода (потеря напора) доступна как известное значение.

С помощью калькулятора диаметра трубы внутренний диаметр трубы рассчитывается с использованием простое соотношение между расходом, скоростью и площадью поперечного сечения (Q = v · A).

Чтобы рассчитать внутренний диаметр трубы, вы должны ввести только расход и скорость в соответствующие поля в калькуляторе и нажмите кнопку вычислить, чтобы получить результаты.

Другие значения, помимо внутреннего диаметра трубы, также могут быть рассчитаны. Вы можете рассчитать скорость потока для данного расхода жидкости. и внутренний диаметр трубы. Поскольку скорость разная в разных местах трубы площади поперечного сечения, средняя скорость потока рассчитывается на основе уравнение неразрывности.

Расход, используемый в калькуляторе, может быть массовым или объемным.

Преобразование между массовым и объемным расходом доступно для данной плотности жидкости. Кроме того, для идеальных газов преобразование объемного расхода для различных условий потока. (давления и температуры), поэтому вы можете быстро рассчитать объемный расход от определенного давления или определенной температуры в трубе, например, после редукционных клапанов.

Если текущая жидкость представляет собой идеальный газ, вы можете рассчитать объемный расход этого газа при различное давление и температура. Например, если вам известен объемный расход некоторый идеальный газ при некотором заданном давлении и температуре (например, при нормальном условия p = 101325 Па и T = 273,15 K), можно рассчитать фактический объемный расход для давления и температуры, которые фактически находятся в трубе (например, реальное давление и температура в трубопроводе p = 30 psi и t = 70 F).Объемный расход идеального газа в этих двух условиях различен. Узнать больше о нормальные условия по давлению и температуре.

С помощью этого калькулятора вы можете преобразовать объемный расход из стандартного или другого предопределенные условия к фактическим условиям и наоборот. В калькуляторе используется закон сохранения массы. для расчета объемного расхода для этих двух условий, что означает постоянство массового расхода, несмотря на это, условия, например, давление и температура меняются.

Закон сохранения массы применим, только если поток в закрытом трубопроводе, без добавленного или вычитаемого потока, если поток не изменение во времени и ряд других условий. Узнать больше о массе сохранение массы.

Так когда это не применимо?

Этот калькулятор имеет практически безграничное применение, но некоторые функции зависят от нескольких условия.

Как упоминалось выше, расчет диаметра трубы с помощью этого калькулятора невозможен, если вы не уверен в скорости потока и объемном / массовом расходе. Если что-то из этих двух отсутствует, вам следует использовать Калькулятор падения давления.

Вы должны знать плотность жидкости, если доступен массовый расход вместо объемного расхода. Если плотность жидкости недоступна, а известен только массовый расход, то требуется объемный расход. расчет диаметра трубы невозможен.

Для идеальных газов плотность жидкости не является обязательной, если вы знаете давление, температуру и газовую постоянную для проточный газ. Калькулятор использует уравнение идеального газа для расчета плотности. Однако, если текущая жидкость является газом, но не идеальным (идеальным) газом, то есть, если это давление, температура и плотность не связаны согласно закон идеального газа, этот калькулятор не применим, если вы пытаются вычислить эту плотность газа для известного давления и температуры.

Что нужно знать, чтобы рассчитать диаметр трубы?

Чтобы рассчитать диаметр трубы, вы должны знать скорость потока и расход. Если вам известен массовый расход, то необходимо знать плотность жидкости.

Если текущая жидкость представляет собой газ, то вместо плотности вы должны знать газовую постоянную, абсолютное давление и температуру. Плотность рассчитывается по уравнению для идеального газа.

Что нужно знать, чтобы рассчитать скорость потока?

Чтобы рассчитать скорость потока, вы должны знать скорость потока и внутренний диаметр трубы. Если вам известен массовый расход, то необходимо знать плотность жидкости.

Если текущая жидкость представляет собой газ, то вместо плотности вы должны знать газовую постоянную, абсолютное давление и температуру. Плотность рассчитывается по уравнению для идеального газа.

Как производится расчет?

Для расчета диаметра трубы и скорости потока используется уравнение неразрывности, которое дает соотношение между скоростью потока, скоростью потока и внутренним диаметром трубы.

Для потока газа уравнение идеального газа используется для расчета плотности на основе газовой постоянной, абсолютного давления и температуры.

Потери на трение в воздуховоде в рабочем состоянии

530 530 530

Вытяжки:

Как выглядят эти вытяжки?
Нет Обычный конец воздуховода Конец воздуховода с фланцем
Bellmouth Entry Отверстие с острыми краями Стандартный кожух шлифовального станка (конический t.о.)
Стандартный кожух шлифовального станка (без конуса) Ловушка или отстойная камера
Абразивоструйная камера Абразивоструйный подъемник Сепаратор абразива
Лифты (корпуса) Фланцевая труба с закрытым коленом Гладкая труба с закрытым коленом

Покажите мне, как выглядит конический капюшон
Конические кожухи Угол конуса (градусы): 15304560150180 Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ

Покажите мне, как выглядит составной кожух
Составные вытяжки
Размеры паза: Номер слота: Угол конуса (градусы):
Высота (дюйм. ): 15304560150180
Длина (дюймы): Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ

Другое
Коэффициент потерь для другого типа воздуховода:

Вводы ответвлений (поправки на изменение скорости):

Показать конфигурацию записи ветки
Сегмент воздуховода берет начало в филиале
Расход во входном патрубке №1 (ACFM):
Давление скорости во входном патрубке №1 (дюймы водяного столба):
Расход во входном патрубке №2 (ACFM):
Скоростное давление входного ответвления №2 (дюймы водяного столба):
Примечание. Сумма потоков в ответвлениях №1 и №2 должна равняться скорости потока во вводе ACFM выше.
Примечание: нельзя смешивать воздуховоды круглого и прямоугольного сечения в одном расчете.
Круглые воздуховоды:
Покажите мне, как выглядят эти круглые локти
Номер: Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 Размах локтя (градусы):
Номер: Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 Размах локтя (градусы):
Номер: Тип: Штампованные: 5 шт., 4 шт., 3 шт. 0.50.751.001.502.002.50 Размах локтя (градусы):

Прямоугольные воздуховоды (на выбор до трех различных типов колен):
Покажите мне, как выглядят эти прямоугольные локти
Номер: Соотношение сторон (Ш / Г): 0. 250.51.02.03.04.0 П / Д: 0.00.51.01.52.03.0
Номер: Соотношение сторон (Ш / Г): 0.250.51.02.03.04.0 R / D: 0.00.51.01.52.03.0
Номер: Соотношение сторон (Ш / Г): 0.250.51.02.03.04.0 R / D: 0.00.51.01.52.03.0
Главный воздуховод
(ветвь 1 на этом чертеже)

Филиал Вход Угол входа ответвления (градусы): 1015202530354045506090
(ветвь 2 на этом чертеже)

Покажите мне, как выглядят эти расширения и сокращения
Расширение в воздуховоде Угол конуса (градусы): 3.55101520253090
Соотношение диаметров (выходной диаметр / входной диаметр): 1.25: 11.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *