Расчет воздуховодов и фасонных частей калькулятор: Расчет площади воздуховодов и фасонных изделий

Содержание

Расчет площади воздуховодов и фасонных изделий: точные методики

Вентиляция жилища играет очень важную роль, поддерживая необходимый для человека микроклимат. От того, насколько правильно она спроектирована и выполнена, зависит здоровье проживающих в доме. Однако не только проект имеет значение. Очень важно правильно высчитать параметры воздушных магистралей. Сегодня речь пойдёт о такой работе, как расчёт площади воздуховодов и фасонных изделий, что необходимо для правильного воздухообмена квартиры или частного дома. Мы узнаем, как вычислить скорость воздуха в шахтах, что на этот параметр влияет, а также разберём, какие программы можно использовать для более точных вычислений.

Для чего производится расчёт площади воздуховодов и фасонных изделий

Правильный проект систем вентиляции – это лишь полдела. Если ошибиться в расчёте квадратуры воздуховодов, то может получиться обратный эффект – идеальная план-схема есть, а оттока или притока воздуха нет. Подобные просчёты могут привести к тому, что в помещениях будет повышенная влажность, которая приведёт к появлению грибка, плесени и неприятному запаху.

Очень важно!

Если домашний мастер не уверен в своих силах, боится не справиться с вычислениями, то лучше обратиться за инженерной помощью в расчёте воздуховодов. Лучше заплатить за работу профессионалу, чем впоследствии кусать локти.

Данные, необходимые для расчёта параметров воздуховода

Высчитать площадь воздуховодов можно по различным параметрам. Это могут быть:

  • санитарно-гигиенические нормы (СанПиН),
  • количество проживающих,
  • площадь помещений.

При этом вычисления проводятся как для всего жилища в целом, так и для каждой комнаты в частности. Существуют различные способы вычислений. Можно воспользоваться формулами, которые мы обязательно рассмотрим в сегодняшней статье, однако, проще всего воспользоваться специальным онлайн-калькулятором площади поверхности воздуховодов. В нём уже заложены все необходимые алгоритмы и формулы. Ещё одним плюсом программы является отсутствие человеческого фактора – можно не волноваться, что в вычисления закрадётся ошибка.

Как рассчитать площадь воздуховода с использованием формул

Для того чтобы правильно выполнить все расчёты, нужно первым делом определиться с сечением фасонных изделий. Они могут быть:

  • в форме квадрата или прямоугольника:
  • круглые (реже овальные).

Рассмотрим, какие формулы применимы для тех или иных вычислений. Начнём с квадратных или прямоугольных изделий.

Как посчитать площадь воздуховода прямоугольного сечения: формулы и расшифровки обозначений

Формула площади воздуховода, необходимой для правильного устройства вентиляции, довольно проста:

S = A × B, где

  • S – площадь, м²,
  • А – ширина короба, м,
  • В – высота, м.

С круглым воздуховодом немного иная ситуация.

Расчёт площади круглого воздуховода: нюансы вычислений

Круглые вентиляционные шахты обладают лучшей пропускной способностью – воздух не встречает на своём пути никаких препятствий. К тому же монтаж круглых деталей намного проще, чем квадратных или прямоугольных. Вычисления площади производятся по формуле:

S = π × D2/ 4, где:

  • S – площадь, м²,
  • π – постоянная величина, равная 3,14,
  • D
    – диаметр, м.

Мнение экспертаАндрей ПавленковИнженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО ‘АСП Северо-Запад’Спросить у специалистаЧем короче вентиляционные каналы, тем лучше система будет выполнять свою задачу. Следует учесть, что с увеличением размеров шахт снижается скорость потока воздуха и шум, производимый при передвижении воздушных масс. Расчёты прямых участков следует производить отдельно, не стоит забывать о потере давления в сети.

Расчёт фасонных частей воздуховодов – как он производится и что следует учесть

Вычисления площади фасонных частей воздуховодов без специальной программы под силу только опытным инженерам-проектировщикам. Сегодня целые отделы различных институтов работают над усовершенствованием программ-калькуляторов, способных до миллиметра рассчитать площади воздуховодов и фасонных изделий, учитывая малейшие изменения углов изгибов и прочие нюансы.

В сети Интернет можно найти множество подобных программ, способных произвести вычисления с минимальными погрешностями. И подобные калькуляторы выходят практически ежедневно. Они позволяют не только высчитать необходимые параметры, но и сделать развёртку всех деталей воздуховода. Многие спросят – для чего это нужно? В наш век высоких технологий появилось такое новшество, как 3D-принтер. На него с компьютера отправляем развёртку нашей вентиляции и в результате получаем идеально подогнанные вентиляционные каналы с необходимыми параметрами.

Редакция Seti.guru предлагает уважаемому читателю воспользоваться онлайн-калькулятором расчёта площади воздуховодов и фасонных изделий. Всё, что требуется от пользователя,− это верно внести запрашиваемые параметры в соответствующие поля и нажать кнопку «Рассчитать». Остальное программа выполнит за вас.

Как высчитать сечение воздуховода в квадратных метрах

Ошибка в вычислениях этого параметра вентиляционной системы может быть фатальной. Уменьшение необходимого показателя неизбежно приведёт к повышению давления в шахтах, а значит, появится посторонний гул, который довольно сильно раздражает. Это значит, что вычисления необходимо производить внимательно, не упуская ни малейшей детали, не округляя цифры. Расчёт квадратных метров производится по формуле:

S = L × k / w, где

  • S – площадь сечения, м²,
  • L
    – расход воздуха, м³/ч,
  • k – скорость, с которой движется воздушный поток, м/с,
  • w– коэффициент расчёта, который равен 2,778.

Расчёт скорости воздуха в воздуховоде: как его выполнить

Для этих вычислений используем формулу:

w = L / 3600 × S, где

  • L – расход воздуха, м³/час,
  • S – сечение вентиляционного короба, м².

Однако при этом стоит знать ещё и кратность воздухообмена, которая является одним из важнейших параметров. Если говорить простым языком, то это количество воздуха, которое должно пройти через 1 м3 за 1 час. Можно воспользоваться существующими таблицами, но данные в них усреднены, поэтому самостоятельные вычисления по формуле будут куда как точнее. Для расчёта необходимо знать объём комнаты в м3 (W) и высчитанный объём воздуха, попадающий в помещение в течение часа (V). В этом случае используется формула:N = V / W.

Онлайн-калькулятор расчёта необходимого сечения воздуховода

Как высчитать потери давления воздуха на прямых участках

Для вычисления этого параметра применяется формула, которая немного сложнее предыдущих:

P = R × L + Ei × V2 × Y / 2, где:

  • P – давление воздуха в воздуховоде,
  • R – потери давления на трение в воздуховоде,
  • L – протяжённость вентиляционной шахты,
  • Ei – сумма потерь давления на местные сопротивления (отводы, переходы, ответвления и т.п.),
  • V – скорость воздуха в вентиляционной системе,
  • Y – плотность воздушных масс по каналу.

Сопротивление сети воздуховода и его расчёты

Не стоит надеяться на то, чтобы рассчитать сопротивление сети самостоятельно. Такая работа под силу только программам. Найти подходящую, обладающую высокой точностью вычислений в сети тоже вряд ли получится. Это значит, что если есть желание получить точный результат, придётся обращаться в проектные бюро.

Сложностей здесь действительно много. Сопротивление создают не только углыи ответвления. Квадратное или прямоугольное сечение также увеличивает сопротивление воздуха. От этого параметра зависит производительность, которой должен обладать вентилятор для принудительной циркуляции воздуха.

Полезная информация! При отсутствии вентилятора и слабой циркуляции воздуха (недостаточно интенсивной вытяжке) можно пойти на хитрость. Необходимо увеличить длину вентиляционной трубы на крыше. Чем выше она будет находиться, тем интенсивнее будет работать вытяжка.

Каким образом рассчитать количество материалов для воздуховода и фасонных частей

Никакого смысла в расчётах количества материалов вручную нет – это займёт довольно большое количество времени, да и ошибиться при подсчётах очень легко. В сети Интернет существует множество программ, которые сделают это за вас в автоматическом режиме. Достаточно просто загрузить проект. Некоторые подобные программы способны высчитать количество фасонных деталей даже по первичным данным.

Нагреватель в сети: для чего он нужен, и как рассчитать его мощность

Если планируется приточная вентиляция, то в зимнее время без подогрева воздуха не обойтись. Современные системы позволяют регулировать производительность вентилятора, что помогает в холодное время года. Убавив силу приточки, можно добиться не только экономии электроэнергии на меньшем расходе вентилятора, но и воздух, медленнее проходя через нагреватель, будет теплее. Однако вычисления температуры нагрева наружного воздуха всё же необходимы. Их производят по формуле:

ΔТ = 2,98 × Р / L, где:

  • Р – потребляемая мощность нагревателя, который должен повысить температуру воздуха с улицы до 18°С (Вт),
  • L – производительность вентилятора (м3/ч).

Подводя итоги

Проектирование и последующий монтаж систем вентиляции – процесс трудоёмкий и не всегда выполнимый самостоятельно. Такая работа требует особых знаний и навыков. Конечно, сегодня существует множество программ, помогающих спроектировать вентиляционные магистрали, однако они не могут заменить инженерной мысли. Оптимальным вариантом будет доверить всю работу, от начала до конца, настоящим профессионалам. Но проблема в том, что в наши дни начали появляться проектные конторы, работники в которых совершенно не знакомы с инженерным делом. Хотя подобная ситуация наблюдается и в других отраслях. По этой причине прежде чем доверить какой-либо фирме разработку проекта вентиляционной системы для своего дома, постарайтесь узнать о ней как можно больше. В идеале будет пообщаться с их клиентами, дома которых уже обжиты. Только в этом случае можно надеяться на тот результат, которого вы ожидаете.

Редакция Seti.guru надеется, что сегодняшняя статья была интересна и полезна нашему уважаемому читателю. Если у вас остались вопросы, их можно задать в обсуждениях ниже, наша команда с удовольствием на них ответит в максимально короткие сроки. Если у вас есть опыт в монтаже вентиляционных систем или их проектировании (неважно, положительный или отрицательный), просим вас поделиться им с другими читателями. Это будет полезно начинающим домашним мастерам, делающим первые шаги в области устройства вентиляции. А мы напоследок, по уже сложившейся доброй традиции, предлагаем посмотреть короткий видеоролик по сегодняшней теме, который вам точно будет интересен.

Загрузка...

Определение коэффициентов местных сопротивлений тройников в системах вентиляции | C.O.K. archive

Цель аэродинамического расчета заключается в определении размеров поперечных сечений и потерь давлений на участках системы и в системе в целом. При расчете необходимо учитывать следующие положения.

1. На аксонометрической схеме системы проставляются расходы и двсех участков.

2. Выбирается магистральное направление и производится нумерация участков, затем нумеруют ответвления.

3. По допустимой скорости на участках магистрального направления определяют площади поперечных сечений:

Полученный результат округляют до стандартных значений, являющихся расчетными, и по стандартной площади находят диаметр d или размеры a и b канала.

В справочной литературе до таблиц аэродинамического расчета приведен перечень стандартных размеров площадей воздуховодов круглой и прямоугольной формы.

*Примечание: мелкие птицы, попавшие в зону факела со скоростью, равной 8 м/с, прилипают к решетке.

4. Из таблиц аэродинамического расчета по выбранному диаметру и расходу на участке определяют расчетные значения скорости υ, удельные потери на трение R, динамическое давление Р дин. Если необходимо, то определяют коэффициент относительной шероховатости β ш.

5. На участке определяют виды местных сопротивлений, их коэффициенты ξ и суммарное значение ∑ξ.

6. Находят потери давления в местных сопротивлениях:

Z = ∑ξ · Р дин.

7. Определяют потери давления на трение:

∆Р тр = R · l.

8.Рассчитывают потери давления на данном участке по одной из следующих формул:

∆Р уч = Rl + Z,

∆Р уч = Rlβ ш + Z.

Расчет повторяют с пункта 3 до пункта 8 для всех участков магистрального направления.

9. Определяют потери давления в оборудовании, расположенном на магистральном направлении ∆Р об.

10. Рассчитывают сопротивление системы ∆Р с.

11. Для всех ответвлений повторяют расчет с пункта 3 до пункта 9, если на ответвлениях есть оборудование.

12. Производят увязку ответвлений с параллельными участками магистрали:

. (178)

Ответвления должны иметь сопротивление немного больше или равное сопротивлению параллельного участка магистрали.

Воздуховоды прямоугольной формы имеют аналогичный порядок расчета, только в пункте 4 по значению скорости, найденной из выражения:

,

и эквивалентного диаметра по скорости d υ находят из таблиц аэродинамического расчета справочной литературы удельные потери на трение R, динамическое давление Р дин, причем L табл ≠ L уч.

Аэродинамические расчеты обеспечивают выполнение условия (178) за счет изменения диаметров на ответвлениях или установкой дросселирующих устройств (дроссель-клапанов, шиберов).

Для некоторых местных сопротивлений значение ξ приводится в справочной литературе в зависимости от скорости. Если значение расчетной скорости не совпадает с табличным, то ξ пересчитывают по выражению:

Для неразветвленных систем или систем незначительных размеров увязку ответвлений производят не только с помощью дроссель-клапанов, но и диафрагм.

Для удобства аэродинамический расчет выполняют в табличной форме.

Рассмотрим порядок аэродинамического расчета вытяжной механической системы вентиляции.

№№ участ-каL, м 3 /чF, м 2V, м/сa×b, ммD э, ммβ шR, Па/мl, мRlβ ш, ПаВид местного сопротивления∑ξР д, ПаZ=∑ξ· Р д ПаΔР = Rl + Z, Па
на участкена магист-рале
1-20,19611,712,5611,9330,50,42-вн. расширение 0,38-конфузор 0,21-2отвода 0,35-тройник1,5783,63131,31282,85282,85
2-30,39611,591,6315,3525,00,21-3отвода 0,2-тройник0,8381,9568,0293,04375,89
3-40,50210,931,252,763,50,21-2отвода 0,1-переход0,5272,8437,8841,33417,21
4-50,6328,68795х7952,0850,823,506,05,98423,20
2″-20,19611,712,566,2716,10,42-вн. расширение 0,38-конфузор 0,21-2отвода 0,98-тройник1,9983,63166,43303,48
6-70,03755,50250х2001,8-сетка1,8018,4833,2633,26
0,07810,583,795,5421,01,2-поворот 0,17-тройник1,3768,3393,62114,61
7-30,07811,484,425,4123,90,17-отвод 1,35-тройник1,5280,41122,23146,14
7″-70,0154,67200х1001,8-сетка1,8013,2823,9123,91
0,01235,693,801,234,71,2-поворот 5,5-тройник6,7019,76132,37137,04

Тройники имеют два сопротивления — на проход и на ответвление, и они всегда относятся к участкам с меньшим расходом, т.е. либо к проходному сечению, либо к ответвлению. При расчете ответвлений в графе 16 (табл. стр.88) прочерк.

Главное требование ко всем типам систем вентиляции – обеспечивать оптимальную кратность обмена воздуха в помещениях или конкретных рабочих зонах. С учетом этого параметра проектируется внутренний диаметр воздуховода и подбирается мощность вентилятора. Для того чтобы гарантировать требуемую эффективность функционирования системы вентиляции, выполняется расчет потерь давления напора в воздуховодах, эти данные принимаются во внимание во время определения технических характеристик вентиляторов. Показатели рекомендуемой скорости воздушного потока указаны в таблице № 1.

Табл. № 1. Рекомендованная скорость движения воздуха для различных помещений

НазначениеОсновное требование
БесшумностьМин. потери напора
Магистральные каналыГлавные каналыОтветвления
ПритокВытяжкаПритокВытяжка
Жилые помещения35433
Гостиницы57.56.565
Учреждения686.565
Рестораны79776
Магазины89776

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150200250300350400450500
250210245275
300230265300330
350245285325355380
400260305345370410440
450275320365400435465490
500290340380425455490520545
550300350400440475515545575
600310365415460495535565600
650320380430475515555590625
700390445490535575610645
750400455505550590630665
800415470520565610650685
850480535580625670710
900495550600645685725
950505560615660705745
1000520575625675720760
1200620680730780830
1400725780835880
1600830885940
1800870935990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции


Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Чтобы определиться с размерами сечений на любом из отрезков воздухораспределительной системы, необходимо произвести аэродинамический расчет воздуховодов. Показатели, полученные при таком расчёте, определяют работоспособность как всей проектируемой системы вентиляции, так и отдельных её участков.

Для создания комфортных условий в кухне, отдельной комнате или помещении в целом необходимо обеспечить правильную проектировку воздухораспределительной системы, которая состоит из множества деталей. Важное место среди них занимает воздуховод, определение квадратуры которого оказывает влияние на значение скорости воздушного потока и шумность вентиляционной системы в целом. Определить эти и ряд других показателей позволит аэродинамический расчет воздуховодов.

Расчет потерь давления в воздуховоде

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение Pтр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Этап первый

Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.

Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.

Формирование схемы

Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.

Здесь следует определиться с магистралью – основной линией исходя из которой проводятся все операции. Она представляет собой цепь последовательно соединённых отрезков, с наибольшей нагрузкой и максимальной протяжённостью.

Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная.

Приточная

Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.

Вытяжная

Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.

Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.

Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:

  • воздуховод единого размера сечения;
  • из одного материала;
  • с постоянным потреблением воздуха.

Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.

Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.

Определение размерных величин сечений воздуховодов

Производится исходя из таких показателей, как:

  • потребление воздуха на отрезке;
  • нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.

Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.

Аэродинамический расчет воздуховодов – алгоритм действий

Работы включают в себя несколько последовательных этапов, каждый из которых решает локальные задачи. Полученные данные форматируются в виде таблиц, на их основании составляются принципиальные схемы и графики. Работы разделяются на следующие этапы:

  1. Разработка аксонометрической схемы распределения воздуха по системе. На основе схемы определяется конкретная методика расчетов с учетом особенностей и задач вентиляционной системы.
  2. Выполняется аэродинамический расчет воздуховодов как по главным магистралям, так и по всем ответвлениям.
  3. На основании полученных данных выбирается геометрическая форма и площадь сечения воздуховодов, определяются технические параметры вентиляторов и калориферов. Дополнительно принимается во внимание возможность установки датчиков пожаротушения, предупреждения распространения дыма, возможность автоматической регулировки мощности вентиляции с учетом составленной пользователями программы.

Этап второй

Здесь рассчитываются аэродинамические показатели сопротивления. После выбора стандартных сечений воздуховодов уточняется величина скорости воздушного потока в системе.

Расчёт потерь давления на трение

Следующим шагом является определение удельных потерь давления на трение исходя из табличных данных или номограмм. В ряде случаев может пригодиться калькулятор для определения показателей на основе формулы, позволяющей произвести расчёт с погрешностью в 0,5 процента. Для вычисления общего значения показателя, характеризующего потери давления на всём участке, нужно его удельный показатель умножить на длину. На этом этапе также следует учитывать поправочный коэффициент на шероховатость. Он зависит от величины абсолютной шероховатости того или иного материала воздуховода, а также скорости.

Вычисление показателя динамического давления на отрезке

Здесь определяют показатель, характеризующий динамическое давление на каждом участке исходя из значений:

  • скорости воздушного потока в системе;
  • плотности воздушной массы в стандартных условиях, которая составляет 1,2 кг/м3.

Определение значений местных сопротивлений на участках

Их можно рассчитать исходя из коэффициентов местного сопротивления. Полученные значения сводят в табличной форме, в которую включаются данные всех участков, причём не только прямые отрезки, но и по несколько фасонных частей. Название каждого элемента заносится в таблицу, там же указываются соответствующие значения и характеристики, по которым определяется коэффициент местного сопротивления. Эти показатели можно найти в соответствующих справочных материалах по подбору оборудования для вентиляционных установок.

При наличии большого количества элементов в системе или при отсутствии определённых значений коэффициентов используется программа, которая позволяет быстро осуществить громоздкие операции и оптимизировать расчёт в целом. Общая величина сопротивления определяется как сумма коэффициентов всех элементов отрезка.

Вычисление потерь давления на местных сопротивлениях

Рассчитав итоговую суммарную величину показателя, переходят к вычислению потерь давления на анализируемых участках. После расчёта всех отрезков основной линии полученные числа суммируют и определяют общее значение сопротивления вентиляционной системы.

Бланк расчета системы вентиляции

№ участка (см. рис. 2.2)

P

Д,


Па
Значения R

определяют или по специальным таблицам, или по номограмме (рисунок 3.2), составленной для стальных круглых воздуховодов диаметром
d
. Этой же номограммой можно пользоваться и для расчета воздуховодов прямоугольного сечения
ab
, только в этом случае под величиной
d
понимают эквивалентный диаметр
d
э = 2
ab
/(
a
+
b
). На номограмме указаны также значения динамического давления потока воздуха, соответствующие плотности стандартного воздуха (
t
= 20 о C; φ = 50 %; барометрическое давление 101,3 кПа;


= 1,2 кг/м 3 ). При плотности


динамическое давление равно показанию шкалы, умноженному на отношение


/1,2

Подбирают вентиляторы по аэродинамическим характеристикам, показывающим графическую взаимозависимость их полного давления, подачи, частоты вращения и окружной скорости рабочего колеса. Эти характеристики составлены для стандартного воздуха.

Удобно вести подбор вентиляторов по номограммам, представляющим собой сводные характеристики вентиляторов одной серии. На рисунке 3.3 изображена номограмма для выбора центробежных вентиляторов серии Ц4-70 * , получивших широкое применение в вентиляционных системах сельскохозяйственных производственных зданий и сооружений. Эти вентиляторы обладают высокими аэродинамическими качествами, бесшумны в работе.

Из точки, соответствующей найденному значению подачи L

в, проводят прямую до пересечения с лучом номера вентилятора (№ вент.) и далее по вертикали до линии расчетного полного давления


вентилятора.

Точка пересечения соответствует КПД вентилятора


и значению безразмерного коэффициентаА

, по которому подсчитывают частоту вращения вентилятора (мин -1 ).

Горизонтальная шкала номограммы показывает скорость движения воздуха в выпускном отверстии вентилятора.

Подбор вентилятора надо вести с таким расчетом, чтобы его КПД был не ниже 0,85 максимального значения.

Необходимая мощность на валу электродвигателя для привода вентилятора, кВт:

Рис.3.2 Номограмма для расчетов круглых стальных воздуховодов

Рис.3.3 Номограмма для подбора центробежных вентиляторов серии Ц4-70

Этап третий: увязка ответвлений

Когда проведены все необходимые расчёты необходимо произвести увязку нескольких ответвлений. Если система обслуживает один уровень, то увязывают ответвления не входящие в магистраль. Расчёт проводят в том же порядке, что и для основной линии. Результаты заносятся в таблицу. В многоэтажных зданиях для увязки используются поэтажные ответвления на промежуточных уровнях.

Критерии увязки

Здесь сопоставляются значения суммы потерь: давления по увязываемым отрезкам с параллельно присоединённой магистралью. Необходимо чтобы отклонение составляло не более 10 процентов. Если установлено, что расхождение больше, то увязку можно проводить:

  • путём подбора соответствующих размеров сечения воздуховодов;
  • при помощи установки на ответвлениях диафрагм или дроссельных клапанов.

Иногда для проведения подобных расчётов необходим всего лишь калькулятор и пара справочников. Если же требуется провести аэродинамический расчёт вентиляции больших зданий или производственных помещений, то понадобится соответствующая программа. Она позволит быстро определить размеры сечений, потери давления как на отдельных отрезках, так и во всей системе в целом.

https://www.youtube.com/watch?v=v6stIpWGDow Video can’t be loaded: Проектирование систем вентиляции. (https://www.youtube.com/watch?v=v6stIpWGDow)

Целью аэродинамического расчета является определение потерь давления (сопротивления) движению воздуха во всех элементах системы вентиляции — воздуховодах, их фасонных элементах, решетках, диффузорах, воздухонагревателях и других. Зная общую величину этих потерь, можно подобрать вентилятор, способный обеспечить необходимый расход воздуха. Различают прямую и обратную задачи аэродинамического расчета. Прямая задача решается при проектировании вновь создаваемых систем вентиляции, состоит в определении площади сечения всех участков системы при заданном расходе через них. Обратная задача – определение расхода воздуха при заданной площади сечения эксплуатируемых или реконструируемых систем вентиляции. В таких случаях для достижения требуемого расхода достаточно изменения частоты вращения вентилятора или его замены на другой типоразмер.

Аэродинамический расчет начинают после определения кратности воздухообмена помещений и принятия решения по трассировке (схеме прокладки) воздуховодов и каналов. Кратность воздухообмена является количественной характеристикой работы системы вентиляции, показывает, сколько раз в течение 1-го часа объем воздуха помещения полностью заменится новым. Кратность зависит от характеристик помещения, его назначения и может отличаться в несколько раз. Перед началом аэродинамического расчета создается схема системы в аксонометрической проекции и масштабе М 1:100. На схеме выделяют основные элементы системы: воздуховоды, их фасонные части, фильтры, шумоглушители, клапана, воздухонагреватели, вентиляторы, решетки и другие. По этой схеме, строительным планам помещений определяют длину отдельных ветвей. Схему делят на расчетные участки, которые имеют постоянный расход воздуха. Границами расчетных участков являются фасонные элементы – отводы, тройники и прочие. Определяют расход на каждом участке, наносят его, длину, номер участка на схему. Далее выбирают магистраль – наиболее длинную цепь последовательно расположенных участков, считая от начала системы до самого удаленного ответвления. Если в системе несколько магистралей одинаковой длины, то главной выбирают с большим расходом. Принимается форма поперечного сечения воздуховодов – круглая, прямоугольная или квадратная. Потери давления на участках зависят от скорости воздуха и состоят из: потерь на трение и в местных сопротивлениях. Общие потери давления системы вентиляции равны потерям магистрали и состоят из суммы потерь всех ее расчетных участков. Выбирают направление расчета – от самого дальнего участка до вентилятора.

По площади F

определяют диаметр
D
(для круглой формы) или высоту
A
и ширину
B
(для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е.
D ст
,
А ст
и
В ст
(справочная величина).

Пересчитывают фактические площадь сечения F

факт и скорость
v факт
.

Для прямоугольного воздуховода определяют т.н. эквивалентный диаметр DL = (2A ст * B ст ) / (A
ст+ Bст), м.
Определяют величину критерия подобия Рейнольдса Re = 64100* D
ст* v факт.
Для прямоугольной формы
D L = D ст .
Коэффициент трения λ тр = 0,3164 ⁄ Re-0,25 при Re≤60000, λ
тр= 0,1266 ⁄ Re-0,167 при Re>60000.
Коэффициент местного сопротивления λм

зависит от их типа, количества и выбирается из справочников.

Комментариев:

  • Исходные данные для вычислений
  • С чего начинать? Порядок вычислений

Сердцем любой вентиляционной системы с механическим побуждением воздушного потока является вентилятор, который создает этот поток в воздуховодах. Мощность вентилятора напрямую зависит от напора, который необходимо создать на выходе из него, а для того, чтобы определить величину этого давления, требуется произвести расчет сопротивления всей системы каналов.

Для расчета потерь давления нужна схема и размеры воздуховода и дополнительного оборудования.

Основные формулы аэродинамического расчета

Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор.

Рассчитывая магистральную ветвь желательно, чтобы скорость в воздуховоде увеличивалась по ходу приближения к вентилятору!

Только не забывайте об увязке остальных ветвей системы. Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой:

Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки необходимо разместить прямоугольные диафрагмы.

Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам

Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.

Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.

Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов , приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.

Пример расчета

По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой. Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.

Проще будет если результаты заносить в таблицу такого вида

Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:

  • Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.

  • Записываем длину каждого участка.
  • Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции . Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250.

V1=L/3600F =100/(3600*0,023)=1,23 м/с.

V11= 3400/3600*0,2= 4,72 м/с

Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

Вернуться к оглавлению

С чего начинать?

Диаграмма потери напора на каждый метр воздуховода.

Очень часто приходится сталкиваться с достаточно простыми схемами вентиляции, в которых присутствует воздухопровод одного диаметра и нет никакого дополнительного оборудования. Такие схемы просчитываются достаточно просто, но что делать, если схема сложная с множеством ответвлений? Согласно методике просчета потерь давления в воздуховодах, которая изложена во многих справочных изданиях, нужно определить самую длинную ветвь системы либо ветку с наибольшим сопротивлением. Выяснить таковую по сопротивлению на глаз удается редко, поэтому принято вести расчет по самой протяженной ветви. После этого пользуясь величинами расходов воздуха, проставленных на схеме, всю ветку делят на участки по этому признаку. Как правило, расходы меняются после разветвлений (тройников) и при делении лучше всего ориентироваться на них. Бывают и другие варианты, например, приточные или вытяжные решетки, встроенные прямо в магистральный воздуховод. Если на схеме это не показано, а такая решетка имеется, потребуется расход после нее высчитать. Участки нумеруют начиная от самого удаленного от вентилятора.

Вернуться к оглавлению

Программы расчета потерь давления вентиляции. Расчет сопротивления воздуховода калькулятор. Расчет давления в воздуховодах. Определение потерь давления в обратном клапане

Целью аэродинамического расчета является определение потерь давления (сопротивления) движению воздуха во всех элементах системы вентиляции - воздуховодах, их фасонных элементах, решетках, диффузорах, воздухонагревателях и других. Зная общую величину этих потерь, можно подобрать вентилятор, способный обеспечить необходимый расход воздуха. Различают прямую и обратную задачи аэродинамического расчета. Прямая задача решается при проектировании вновь создаваемых систем вентиляции, состоит в определении площади сечения всех участков системы при заданном расходе через них. Обратная задача – определение расхода воздуха при заданной площади сечения эксплуатируемых или реконструируемых систем вентиляции. В таких случаях для достижения требуемого расхода достаточно изменения частоты вращения вентилятора или его замены на другой типоразмер.

Аэродинамический расчет начинают после определения кратности воздухообмена помещений и принятия решения по трассировке (схеме прокладки) воздуховодов и каналов. Кратность воздухообмена является количественной характеристикой работы системы вентиляции, показывает, сколько раз в течение 1-го часа объем воздуха помещения полностью заменится новым. Кратность зависит от характеристик помещения, его назначения и может отличаться в несколько раз. Перед началом аэродинамического расчета создается схема системы в аксонометрической проекции и масштабе М 1:100. На схеме выделяют основные элементы системы: воздуховоды, их фасонные части, фильтры, шумоглушители, клапана, воздухонагреватели, вентиляторы, решетки и другие. По этой схеме, строительным планам помещений определяют длину отдельных ветвей. Схему делят на расчетные участки, которые имеют постоянный расход воздуха. Границами расчетных участков являются фасонные элементы – отводы, тройники и прочие. Определяют расход на каждом участке, наносят его, длину, номер участка на схему. Далее выбирают магистраль – наиболее длинную цепь последовательно расположенных участков, считая от начала системы до самого удаленного ответвления. Если в системе несколько магистралей одинаковой длины, то главной выбирают с большим расходом. Принимается форма поперечного сечения воздуховодов – круглая, прямоугольная или квадратная. Потери давления на участках зависят от скорости воздуха и состоят из: потерь на трение и в местных сопротивлениях. Общие потери давления системы вентиляции равны потерям магистрали и состоят из суммы потерь всех ее расчетных участков. Выбирают направление расчета – от самого дальнего участка до вентилятора.

По площади F определяют диаметр D (для круглой формы) или высоту A и ширину B (для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. D ст , А ст и В ст (справочная величина).

Пересчитывают фактические площадь сечения F факт и скорость v факт .

Для прямоугольного воздуховода определяют т.н. эквивалентный диаметр DL = (2A ст * B ст ) / (A ст + B ст ), м.

Определяют величину критерия подобия Рейнольдса Re = 64100* D ст * v факт. Для прямоугольной формы D L = D ст .

Коэффициент трения λ тр = 0,3164 ⁄ Re-0,25 при Re≤60000, λ тр = 0,1266 ⁄ Re-0,167 при Re>60000.

Коэффициент местного сопротивления λм зависит от их типа, количества и выбирается из справочников.

Назначение

Основное требование
Бесшумность Мин. потери напора
Магистральные каналы Главные каналы Ответвления
Приток Вытяжка Приток Вытяжка
Жилые помещения 3 5 4 3 3
Гостиницы 5 7.5 6.5 6 5
Учреждения 6 8 6.5 6 5
Рестораны 7 9 7 7 6
Магазины 8 9 7 7 6

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150 200 250 300 350 400 450 500
250 210 245 275
300 230 265 300 330
350 245 285 325 355 380
400 260 305 345 370 410 440
450 275 320 365 400 435 465 490
500 290 340 380 425 455 490 520 545
550 300 350 400 440 475 515 545 575
600 310 365 415 460 495 535 565 600
650 320 380 430 475 515 555 590 625
700 390 445 490 535 575 610 645
750 400 455 505 550 590 630 665
800 415 470 520 565 610 650 685
850 480 535 580 625 670 710
900 495 550 600 645 685 725
950 505 560 615 660 705 745
1000 520 575 625 675 720 760
1200 620 680 730 780 830
1400 725 780 835 880
1600 830 885 940
1800 870 935 990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции


Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

Pтр = (x*l/d) * (v*v*y)/2g,

z = Q* (v*v*y)/2g,

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

В диаграмме потерь напора указаны диаметры круглых воздуховодов . Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды . Как правило, ширина воздуховода в 2 раза больше высоты).

Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ-
водственных и общественных зданий“. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета - от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: D CT или (а х b) ст (м).

Гидравлический радиус прямоугольных воздуховодов (м):

где - сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом.

Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание

Пример расчета

Исходные данные:

№ участков подача L, м 3 /ч длина L, м υ рек, м/с сечение
а × b, м
υ ф, м/с D l ,м Re λ Kmc потери на участке Δр, па
решетка рр на выходе 0,2 × 0,4 3,1 - - - 1,8 10,4
1 720 4,2 4 0,2 × 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25× 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 × 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 × 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 × 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 × 0,5 9,65 0,545 337000 0,0151 0,64 45,7
10420 0,8 ю. Ø0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 × 1,06 5,15 0,707 234000 0,0312 ×n 2,5 44,2
Суммарные потери: 185
Таблица 1. Аэродинамический расчет

Воздуховоды изготовлены из оцинкованной тонколистовой стали, толщина и размер которой соответствуют прил. Н из. Материал воздухозаборной шахты - кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований проектируют воздуховоды прямоугольного сечения.

Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений

Участок 1. Решетка РР на выходе сечением 200×400 мм (рассчитывают отдельно):

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 - - Табл. 25.1 0,09
Отвод 90 - - - Табл. 25.11 0,19
Тройник-проход - - 0,3 0,8 Прил. 25.8 0,2
∑ = 0,48
2 Тройник-проход - - 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление - 0,63 0,61 - Прил. 25.9 0,48
4 2 отвода 250 × 400 90 - - - Прил. 25.11
Отвод 400 × 250 90 - - - Прил. 25.11 0,22
Тройник-проход - - 0,49 0,64 Табл. 25.8 0,4
∑ = 1,44
5 Тройник-проход - - 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 - - Прил. 25.13 0,14
Отвод 600 × 500 90 - - - Прил. 25.11 0,5
∑= 0,64
Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 - - - Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
∑ = 1,44
Таблица 2. Определение местных сопротивлений

Краснов Ю.С.,

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

Гостиницы

Учреждения

Рестораны

Магазины

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый или . Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Определение скорости движения воздуха в воздуховодах:


V= L / 3600*F (м/сек)

где L - расход воздуха, м 3 /ч;
F - площадь сечения канала, м 2 .

Рекомендация 1.
Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Рекомендация 2.
В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:
Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м 3 /ч. Принимаем диаметр воздуховода равным 200 мм, скорость - 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м 3 /ч. Принимаем диаметр воздуховода равным 250 мм, скорость - 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м 3 /ч.
Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость - 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

Определение потерь давления в воздуховодах.

Определение потерь давления в обратном клапане.

Подбор необходимого вентилятора.


Определение потерь давления в шумоглушителях.

Определение потерь давления на изгибах воздухуводов.


Определение потерь давления в диффузорах.



Калькулятор размеров воздуховодов ASHRAE и ADI

Калькулятор размеров воздуховодов - это быстрый справочный инструмент, который позволяет проектировщикам систем распределения воздуха HVAC более точно определять размеры воздуховодов, особенно гибких воздуховодов при различной степени сжатия, на основе результатов исследований.

В калькуляторе используется информация из исследовательского проекта ASHRAE 1333 «Измерения эффективности воздуховодов HVAC». Он включает три новых поля для эквивалентных размеров воздуховодов, которые помогают продемонстрировать значительную потерю воздушного потока из-за неправильной установки гибких воздуховодов.В калькуляторе есть поля для 4, 15 и 30 процентов сжатия в гибких воздуховодах. Расчеты, используемые для создания этих эталонных размеров, основаны на прямолинейном сжатии, которое выполняется в лаборатории на плоской поверхности. Устанавливаемые на месте гибкие воздуховоды с изгибами, перегибами и чрезмерной длиной будут иметь дополнительное сопротивление, что приведет к уменьшению воздушного потока. Использование этого инструмента позволяет разработчикам воздуховодов учитывать неоптимальную установку и дает более точный расчет для корреляции установленных характеристик.

Исследование ASHRAE позволило количественно оценить влияние сжатия (не растяжения) гибкого воздуховода, которое увеличивает шероховатость и, следовательно, потери на трение внутри гибкого воздуховода. Тестирование воздушного потока проводится в соответствии с протоколами, предписанными стандартом ANSI / ASHRAE 120-2008 «Метод тестирования для определения гидравлического сопротивления воздуховодов и фитингов HVAC».

Испытания в Национальной лаборатории Лоуренса Беркли и Техасском университете A&M вместе с анализом данных Техническим университетом Теннесси позволили количественно оценить неблагоприятное воздействие сжатия на воздушный поток.Эти корреляции полностью совпадают с уравнениями, опубликованными в главе 21 Справочника ASHRAE 2013 г. «Основы», поэтому уравнения были использованы для создания нового калькулятора, сказал он.

Калькулятор размеров воздуховода показывает единицы измерения дюйм-фунт (I-P) с одной стороны и международную систему единиц (SI) с другой.

Для получения дополнительной информации перейдите по указанной ниже ссылке.

Как определить коэффициент трения при проектировании бытовых воздуховодов

Эта статья написана одним из самых умных парней, которых я знаю в Интернете, Нилом Компаретто.Спасибо, Нил!


Недавно я разместил вопрос в школьной группе HVAC на Facebook, который звучал примерно так: «Какой коэффициент трения вы используете при проектировании системы воздуховодов для жилых помещений?» На момент написания этой статьи только один ответ был правильным в соответствии с Руководством ACCA D.


Я чувствую, что есть некоторая путаница в том, что такое коэффициент трения и какой коэффициент трения использовать с калькулятором воздуховода. Надеюсь, вы лучше поймете, прочитав этот технический совет.

Итак, что такое коэффициент трения?

Скорость трения (FR) - это перепад давления между двумя точками в системе воздуховодов, разделенных определенным расстоянием.Вычислители воздуховодов используют 100 футов в качестве опорного расстояния. Итак, если вы установили коэффициент трения на уровне 0,1 дюйма на калькуляторе воздуховода для определенного CFM, калькулятор воздуховода предложит вам выбор того, какой размер воздуховода использовать. Ожидаемое падение давления составит 0,1 ″ вод. Ст. более 100 футов прямого воздуховода при этом CFM и размере / типе воздуховода.

Определение скорости трения

Во-первых, вам необходимо знать номинальное внешнее статическое давление (ESP) для выбранного оборудования для обработки воздуха. (Внешнее статическое давление означает внешнее по отношению к этому элементу оборудования.Для воздухообрабатывающего агрегата учитывается все, что было в коробке, включая змеевик и, как правило, одноразовый фильтр. Для печи внутренний змеевик является внешним и рассчитывается против имеющегося статического давления.)

Затем вы должны вычесть потери давления (CPL) компонентов на стороне воздуха (змеевик, фильтр, регистры / решетки подачи и возврата, балансировочные демпферы и др.). Теперь у вас будет оставшееся доступное статическое давление (ASP). ASP = (ESP - CPL)

Теперь пора рассчитать общую эффективную длину (TEL) системы воздуховодов.В Руководстве D каждому типу воздуховода присвоено значение эквивалентной длины в футах. Это делается с помощью уравнения, преобразующего перепад давления на фитинге в длину в футах (в уравнении есть эталонная скорость и эталонная скорость трения). Сложите систему воздуховодов подачи и возврата в футах. Важно отметить, что это не сумма всей системы распределения. Используется самый ограниченный пробег от вентиляционного устройства до багажника. Supply TEL + Return TEL = TEL

Формула для расчета скорости трения: FR = (ASP x 100) / TEL

Эта формула даст вам коэффициент трения для определения размеров воздуховодов для данной конкретной системы воздуховодов.Если вы проверяете статическое давление, системы воздуховодов меньшего размера встречаются очень часто, почти ожидаемо. Это связано с тем, что при проектировании воздуховодов использовалось «практическое правило».

Это всего лишь введение в процесс проектирования воздуховодов. Я рекомендую вам ознакомиться с Руководством D ACCA и приступить к созданию отличной системы!

—Neil Comparetto

Сопутствующие

Воздуховод ОВК: онлайн-калькулятор воздуховода ОВК

Воздух - Воздуховод Скорости
10100 1000 10000 100000 0.1 1 10 Скорости воздуховодов 100120160200250315400500630800 1000 1250 1500 Расход воздуха (м3 / ч) Скорость (м / с) ... Подробнее

Модуль 5 Воздуховоды и сосуды - ECollege
Модуль 5 Воздуховоды и резервуары Блок 1 Измерения: Воздуховоды и другие большие площади Блок 2 Прямоугольник к Целью системы воздуховодов для отопления, вентиляции и кондиционирования воздуха (ОВКВ) является обеспечение жильцов здания: Калькулятором Ленточным правилом Складывающимся правилом ... Получить документ

Воздуховоды с зажимом вместе
Система Quick-Fit включает простые в использовании зажимы с нитриловыми уплотнениями, сварные, толстые, оцинкованные.трубы и фитинги с закатанными концами. И поговорим об универсальности. Забудьте о печных трубах и изоленте, если вы ищете действительно эффективную и простую в сборке систему воздуховодов, то вот она! ... Доступ к контенту

НОВИНКА! - Smacna.org
HVAC Duct Construction App Использование со стандартами строительства HVAC-воздуховодов - Руководство по металлу и гибкости www.smacna.org/store PRSRT STD, ранний запуск оборудования и чистота воздуховодов для нового строительства. Методы выявления и устранения свинца, асбеста,... Поиск содержимого

Smacna Hvac System Duct Design Manual
Онлайн-руководство Smacna по проектированию воздуховодов системы hvac либо загрузить. Кроме того, на нашем сайте вы можете прочитать руководства и другие книги по искусству в Интернете. Калькулятор воздуховодов HVAC (SMACNA 1052) включает подробные инструкции и позволяет разработчикам систем HVAC выполнять ... Просмотр Doc

Расчет статического давления в воздуховодах

- Проектирование
ШИРИНА ТРУБОПРОВОДА ( ДЮЙМ) ВЫСОТА КАНАЛЫ (ДЮЙМЫ) ДИАМ. КРУГЛ. (ДЮЙМ) ПРАВИЛЬНЫЙ ТРУБОПРОВОД.FACTOR EQUIV. КРУГЛЫЙ ДИАМ. ПЛОЩАДЬ СКОРОСТИ (FPM) СКОРОСТЬ ДАВЛЕНИЕ (IN WG) Расчет статического давления в воздуховодах Автор: Джек Далзил Последнее изменение: drees ... Получение документа

Солнечный тепловой коллектор - Википедия
Солнечный тепловой коллектор собирает тепло, поглощая нижнюю часть Воздухозаборник уменьшает поступление нагретого воздуха в систему отопления, вентиляции и кондиционирования летом без ограничения количества рядов, соединенных параллельно вдоль одного центрального воздуховода, что обычно дает 4 кубических футов в минуту предварительно нагретого воздуха на квадратный фут... Прочтите статью

VariTrane ™ Duct Designer
Это приложение превращает популярный ручной калькулятор размеров и компоновки воздуховодов Trane в удобный инструмент для ПК. Используйте это приложение для быстрого определения размеров компонентов системы и определения подходящего номинального размера воздуховода для приложений с равным трением. ... Возврат Doc

Радиатор - Википедия
Рассмотрим радиатор в воздуховоде. Его основные применения находятся на промышленных объектах, электростанциях, солнечных системах термальной воды, системах отопления, вентиляции и кондиционирования, газовых водонагревателях, системах воздушного отопления и охлаждения. , Онлайн калькуляторы радиаторов... Прочтите статью

Расчеты воздуховодов - Pdfslibforyou.com
http://www.pdfspath.net/get/3/duct_calculations.pdf Расчеты систем отопления, вентиляции и кондиционирования воздуха и определение размеров воздуховодов - PDH Online http://www.pdhonline.org /courses/m199/m199content.pdf Курс PDHonline Калькулятор воздуховодов M199 для каждого воздуховода - Ассоциация инспекторов зданий - Юго-восток ... Загрузить здесь

Www.ahrinet.org
NC_Source Constants DbA Calc Room Звуковой калькулятор Калькулятор излучаемого излучения Калькулятор расхода Номер типа Зон, подаваемых Ширина воздуховода с торцевым отражением, дюймыДлина гибкого трубопровода, футы ... Получить полный исходный код

Elite Software - Ductsize

Обзор

Ductsize быстро рассчитывает оптимальные размеры воздуховода с использованием метода восстановления статического заряда, равного трения или постоянной скорости. Ввод данных может быть выполнен вручную или графически с чертежной доски или 32-разрядных версий Autodesk Building Systems 2006 или 2007, или 32-разрядных AutoCAD MEP 2008–2012. Размеры воздуховодов можно рассчитать по круглой, прямоугольной и плоскоовальной основе.Уровни шума и требуемое затухание печатаются для каждого выходного канала. В программу встроена библиотека данных о вентиляторах для расчета шума. Размер воздуховода позволяет использовать неограниченное количество секций воздуховода и подходит как для систем постоянного объема, так и для систем с переменным расходом воздуха, поскольку учитывается разнообразие. Ductsize также имеет возможность указать ограничения высоты и ширины воздуховода для управления размерами. Эта функция также полезна для анализа проблем в существующих системах, где размеры воздуховодов уже указаны. Размер воздуховода основан на процедурах проектирования, приведенных в Руководстве по основам ASHRAE и Руководстве по проектированию воздуховодов систем SMACNA HVAC.Важные новые функции включают в себя Project Explorer и соответствующий отчет, которые предоставляют графическое представление в виде дерева всех стволов и биений в проекте. Кроме того, в один проект можно включить как приточную, так и обратную системы воздуховодов.

Метод расчета

Программа размеров воздуховодов основана на процедурах проектирования, приведенных в Руководстве по основам ASHRAE, базе данных по фитингам воздуховодов ASHRAE и руководстве по проектированию воздуховодов систем отопления, вентиляции и кондиционирования воздуха SMACNA. Программа может рассчитывать с использованием методов восстановления статического заряда, равного трения или постоянной скорости.В руководстве пользователя приводится подробная информация об используемых точных уравнениях и объясняется, как вручную проверять результаты программы.

Программный ввод

Все введенные данные проверяются во время ввода, чтобы нельзя было ввести неправильные данные. Требуются четыре типа данных: общие данные проекта, данные системы и вентилятора, данные магистрали и данные биения. Общие данные проекта включают название проекта, местоположение, имя клиента, материал воздуховода, желаемый метод определения размеров и многое другое. Данные системы вентиляторов включают тип вентилятора, минимальную и максимальную допустимую скорость воздуха, требуемый уровень шума и многое другое.Данные ствола и биения включают такую ​​информацию, как длина воздуховода, номера соединений, тип материала, R-значения изоляции, фитинговые величины, значения cfm биения и любые ограничения по высоте и ширине воздуховода. При желании входные данные могут быть взяты непосредственно из файла чертежа воздуховода, созданного в 32-битных версиях Autodesk Building Systems 2006 или 2007, или 32-битных AutoCAD MEP 2008–2012, или из собственного окна чертежной доски Ductsize.

Программный вывод

Ductsize предоставляет четыре основных выходных отчета: общие данные проекта, информацию о размерах ствола и биения, а также анализ шума.В дополнение к этим отчетам, если вы также приобретете чертежную доску, вы можете распечатать план этажа вашей системы воздуховодов с названиями воздуховодов и фитингов, стрелками потока и регистрировать размеры и ориентацию.

Ссылка на 32-разрядные версии AutoDesk Building Systems 2006 и 2007 и 32-разрядные версии AutoCAD MEP с 2008 по 2012 год.

Static Regain версия Ductsize может импортировать системы воздуховодов из файла DWG, созданного с помощью 32-разрядных версий Autodesk Building Systems 2006 или 2007 или 32-разрядных AutoCAD MEP 2008–2012.Вы просто щелкаете по основному стволу системы, которую хотите импортировать из чертежа, и Ductsize затем импортирует всю информацию о воздуховоде из этой системы объектов воздуховодов. Затем Ductsize рассчитает размеры воздуховодов и информацию о потерях давления и автоматически назначит эти данные обратно объектам на чертеже. Затем вы можете нажать «Изменить размер системы» в ABS или AutoCAD MEP, и он обновит чертеж и перерисует воздуховоды и фитинги с размерами, рассчитанными для Ductsize. Эта мощная и простая в использовании функция полностью включена только на уровне Static Regain в Ductsize, но включена в демонстрационную версию и версию Equal Friction в ограниченной форме, так что вы можете попробовать ее.

Исследование потерь давления в системах распределения воздуха в жилых помещениях (Конференция)

Абушакра, Басс, Уокер, Иэн С. и Шерман, Макс Х. Исследование потерь давления в системах распределения воздуха в жилых помещениях . США: Н. П., 2002. Интернет.

Абушакра, Басс, Уокер, Иэн С. и Шерман, Макс Х. Исследование потерь давления в системах распределения воздуха в жилых помещениях . Соединенные Штаты.

Абушакра, Басс, Уокер, Иэн С. и Шерман, Макс Х. Мон. «Исследование потерь давления в системах распределения воздуха в жилых помещениях». Соединенные Штаты. https://www.osti.gov/servlets/purl/803766.

@article {osti_803766,
title = {Исследование потерь давления в системах распределения воздуха в жилых помещениях},
author = {Абушакра, Басс и Уокер, Иэн С. и Шерман, Макс Х},
abstractNote = {Было проведено экспериментальное исследование для оценки характеристик перепада давления компонентов системы воздуховодов в жилых помещениях, которые либо отсутствуют, либо не полностью (иногда неправильно) описаны в существующей литературе по проектированию воздуховодов.Тесты были разработаны для имитации случаев, которые обычно встречаются в типичных жилых и легких коммерческих установках. В исследование были включены гибкие воздуховоды трех различных размеров с различными конфигурациями сжатия, разделительные коробки, приточные сапоги и колпак для забора свежего воздуха. Экспериментальные испытания соответствовали стандарту ASHRAE Standard 120P - «Методы испытаний для определения гидравлического сопротивления воздуховодов и фитингов HVAC». Исследование гибких воздуховодов охватывало сжимаемость и влияние изгиба на общий перепад давления, и результаты показали, что имеющиеся опубликованные ссылки имеют тенденцию недооценивать эффекты сжатия в гибких воздуховодах, которые могут увеличивать перепады давления до девяти раз.Подушечки подачи были испытаны в различных конфигурациях, включая установку, в которой гибкое угловое соединение воздуховода рассматривалось как неотъемлемая часть кожуха подачи. Результаты загрузки при подаче показали, что диффузоры могут увеличить падение давления в выходных фитингах до двух раз, а конфигурация установки может увеличить падение давления до пяти раз. Результаты показали, что проектировщикам и подрядчикам крайне важно знать об эффектах сжимаемости гибкого воздуховода, а также об установке питающих башмаков и диффузоров.},
doi = {},
url = {https://www.osti.gov/biblio/803766}, journal = {},
number =,
объем =,
place = {United States},
год = {2002},
месяц = ​​{7}
}

Стоимость установки воздуховодов - Калькулятор затрат на 2021 год (настраиваемый)

Обновлено: апрель 2021 г.

Средняя стоимость

Изменяйте коэффициенты затрат, комбинируйте товары homewyse и добавляйте товары, которые вы создаете, - в приложении для определения цен с возможностью повторного использования, настроенном для вашего бизнеса .Начните с популярных шаблонов ниже или создайте свой собственный (бесплатно; требуется регистрация учетной записи):

Для базового проекта с почтовым индексом 47474 с 25 погонными футами стоимость установки воздуховодов начинается с 11,85–14,19 долларов за погонный фут. Фактические затраты будут зависеть от размера работы, условий и опций.

Чтобы оценить затраты для вашего проекта:

1. Установите почтовый индекс проекта Введите почтовый индекс для места, где нанимается рабочая сила и закупаются материалы.

2.Укажите размер и параметры проекта. Введите количество «погонных футов», необходимое для проекта.

3. Пересчитать Нажмите кнопку «Обновить».



Удельные затраты: как выгодно цена

В отличие от веб-сайтов, на которых цены на разнородные вакансии смешиваются, Homewyse создает индивидуальные оценки из себестоимости единицы . Метод Удельная стоимость основан на деталях конкретного задания и текущих затратах. Подрядные, торговые, проектные и обслуживающие предприятия полагаются на метод Себестоимость единицы для обеспечения прозрачности, точности и справедливой прибыли.


Ручные вычисления J, D и S | e3 Power

Что такое ручные вычисления J, S и D?

Это не просто буквы алфавита, а стандарты и протокол, разработанный компанией Air Conditioning Contractors of America (ACCA) для надлежащего проектирования и установки оборудования HVAC и воздуховодов для повышения эффективности кондиционирования воздуха. Каждый стандарт важен и играет роль в следующем стандарте. Обычно они выполняются в установленном порядке для достижения наилучших результатов.Каждый дом индивидуален, и многие расчеты зависят от его местоположения. Есть разница между домом в Денвере и аналогичным домом в Пуэбло или Брекенридже.

Отопление

Согласно старому практическому правилу в Колорадо, никто не беспокоился о размерах котлов или печей, потому что каждая система была слишком большой. Энергия была дешевой, и слишком много тепла было намного лучше, чем недостаток тепла. Кроме того, преимущества теплоизоляции не были так четко определены, и лучше было увеличить размер, чем уменьшить.Оборудование также было не таким эффективным, и сделать дома комфортными удалось за счет увеличения размеров систем. Сегодня крупногабаритные системы неэффективны в эксплуатации, могут иметь короткий цикл и фактически работают хуже, чем оборудование надлежащего размера.

Охлаждение

Охлаждение немного сложнее нагрева. Однако большинство подрядчиков имеют слишком большие размеры охлаждающего оборудования. Они используют практический метод: 400-500 футов на тонну охлаждения (12 000 БТЕ). Это было установлено очень давно, когда мы измеряли охлаждение тоннами льда! Неправильный размер охлаждающей жидкости может доставить домашнему жителю большие неприятности.В экстремальных обстоятельствах оборудование большого размера может привести к конденсации в воздуховодах и, в конечном итоге, к образованию плесени в воздуховодах и на стенах. Это чаще встречается во влажном климате, когда влажный воздух конденсируется на холодных поверхностях, вызывая конденсацию.

Manual J

На случай, если вас интересуют тепловые и охлаждающие нагрузки, доступно несколько программ, которые упрощают расчет этих нагрузок. Здесь, в e3 Power, мы используем программное обеспечение под названием Right Suite Universal от WrightSoft для разработки системы отопления, вентиляции и кондиционирования воздуха с целью повышения энергоэффективности кондиционеров.Здание или оболочка построено из блоков, размер которых подогнан под размер комнаты. На чертеж добавлены окна и двери. После того, как дом построен, в программу вводятся атрибуты стены, потолка, окна и двери. Наконец, вводятся нагрузка устройства и человеческий фактор. Конечным результатом является расчет тепловой нагрузки на помещение. Вам нужна тепловая и охлаждающая нагрузка, чтобы правильно рассчитать нагревательное и охлаждающее оборудование. После того, как оборудование определено по размеру, пора разметить воздуховоды, включить систему и сбалансировать воздушный поток.

Преимущества использования Руководства J

· Правильный выбор размера системы помогает оптимизировать производительность системы для повышения эффективности кондиционера

· Выгадывать из уравнения

· Снижает затраты, поскольку более крупные системы стоят больше, чем системы меньшего размера для повышения эффективности кондиционирования воздуха .

· Повышает комфорт, особенно летом, за счет одновременного охлаждения и осушения воздуха. Если система не работает достаточно долго, возможно, воздух будет прохладным, но сохранит влажность.В этом случае на регистрах и внутри воздуховода может образоваться конденсат, что может стать причиной таких серьезных проблем, как плесень. И наоборот, если система слишком мала, в доме не будет прохлады.

Manual S

Выбор системы - это следующий шаг к правильному проектированию оборудования HVAC. У каждого производителя оборудование проходит испытания в лабораторных условиях. Результаты печатаются в руководстве по спецификациям для каждой единицы оборудования. Гудман собирается действовать иначе, чем Перевозчик.Ваш подрядчик HVAC или проектировщик HVAC может указать производителя в своих отношениях с дистрибьютором или может иметь предпочтение, основанное на цене, предыдущих установках, прошлых характеристиках, гарантиях или наличии запчастей.

Руководство D

Конструкция воздуховода обеспечивает правильный CFM для каждой комнаты в зависимости от типа, размера и расположения комнаты в доме. Воздуховоды и фитинги бывают разных типов и размеров, чтобы соответствовать каждому конкретному пространству. Каждый воздуховод и фитинг имеют определенное сопротивление воздуха (трение), препятствующее воздушному потоку.Длина прямых воздуховодов обычно составляет 1: 1. Некоторые фитинги имеют соотношение 1:90, что означает, что один фитинг может иметь такое же сопротивление, как 90 футов прямого воздуховода. Полная эквивалентная длина воздуховода влияет на статическое давление, которое, в свою очередь, регулирует воздушный поток.

Manual T

Последний кусок головоломки - это комната с воздушным потоком. Этот расчет выполняется одновременно с Руководством D, поскольку программное обеспечение одновременно определяет воздушный поток и конструкцию воздуховода. Есть некоторые переменные, которыми может управлять дизайнер.Какой тип реестра будет установлен? Где находится возвратное отверстие? Где находится поставка? Некоторые ответы на эти вопросы зависят от планировки комнаты и мебели в ней. Примером неудачного дизайна может быть установка напольного регистра на кухне, которая находится под кухонным шкафом.

Измерение и проверка

M&V. После завершения JS D T мы тестируем окончательную систему на предмет правильности потока воздуха в каждый регистр и сравниваем ее с разработанной системой.Воздушный поток можно регулировать в каждом регистре, чтобы завершить точную настройку. Если вы ищете ручной расчет J, D и S рядом со мной, это тестирование может быть выполнено компанией HVAC или оценщиком Energy Star ™, оценщиком HERS или другим лицом, знакомым с этой процедурой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Детали товара Кол-во Низкий Высокий
Стоимость воздуховодов ОВК
Без скидки на: гибкий воздуховод диаметром 8 дюймов, фитинги и регистр.Оболочка воздуховода из полиэстера с изоляцией R8. Ограниченная гарантия сроком на 1 год. Количество включает типичный излишек отходов, материалы для ремонта и местную доставку.
27 погонных футов 53,21 $ $ 62,10
Монтаж воздуховодов ОВКВ, базовый
Основные работы по установке воздуховодов в благоприятных условиях площадки. Установите металлический воздуховод диаметром 10 дюймов с 1 заслонкой и 1 регистром на каждые 20 футов. Соберите, закрепите, поддержите и соедините секции воздуховода.Герметизация и ленточные соединения. Ботинки, регистры и прочая фурнитура в комплект не входят. Включает в себя планирование, приобретение оборудования и материалов, подготовку и защиту территории, настройку и очистку.
27 погонных футов 53,21 $ 62,10 $
Рабочие материалы по установке воздуховодов ОВК
Стоимость сопутствующих материалов и материалов, обычно требуемых для установки воздуховодов, включая фитинги, крепеж и монтажное оборудование.
27 погонных футов 53 $.21 62,10 долл. США
Минимальный неиспользованный труд
Остаток минимальной платы за труд в размере 2 часов, которая может быть применена к другим задачам.
Итого - стоимость установки воздуховода