Скорость в воздуховоде
Какой должна быть скорость воздуха, что транспортируется по воздуховоду и как ее рассчитать?
Естественно, что скорость в воздуховоде, зависит в первую очередь от количества, воздуха перемещающегося внутри воздуховода за единицу времени, а также от площади поперечного сечения воздуховода. Чем больше расход воздуха и, конечно, чем меньше размеры воздуховода, тем выше значение скорости воздуха в нем.
Содержание статьи:
Скорость в воздуховоде строго не регламентируется нормативными документами, но в справочниках проектировщиков можно найти рекомендуемые значение этого параметра. Различают рекомендуемую скорость движения воздуха в воздуховоде для гражданских и для промышленных зданий. Значение рекомендуемой скорости для гражданских зданий равно 5-6 м/с, в то же время для промышленных — от 6-12 м/с. Ниже приведены значения скоростей в различных типах (участках) воздуховодов.
Таблица 1 — Значения рекомендуемой скорости движения воздуха по воздуховодам.
Тип здания | Тип участка | Рекомендуемая скорость, м/с |
Промышленное | Магистральные каналы вентиляции | 6-12 |
Гражданское | Магистральные каналы вентиляции | 5-6 |
Промышленные и гражданские | Боковые ответвления воздуховодов | 4-5 |
Промышленные и гражданские | Распределительный канал с вентиляционными решетками и дефлекторами | 1,5-2,0 |
Проектировщики определяют скорость в воздуховоде во время выполнения аэродинамического расчета системы вентиляции. Но нет необходимости производить аэродинамический расчет для того, чтобы только определить скорость воздуха в вентиляционном канале. Поэтому, приведем пример простого расчета скорости в воздуховоде.
Пример расчета скорости воздуха в воздуховоде
Исходными данными в этом случае послужат:
- расход воздуха на участке;
- рекомендуемая скорость движения воздуха, которую мы принимаем по таблице 1.
Алгоритм расчета скорости в воздуховоде:
- определение расчетной площади сечения воздуховода;
- по расчетной площади определяют фактическое значение скорости в воздуховоде.
Итак, начнем. Для примера возьмем гражданское здание. Допустим у нас есть расход на участке 1-2, который составляет 3000 м3/ч. Для удобства и наглядности занесем данные в таблицу:
Определим расчетную площадь Fр в м2 по формуле:
Fр = G/(3600*Vp),
где G — расход воздуха на участке, м3/ч;
Vp — рекомендуемая скорость воздуха на участке, м/с.
Расчетная площадь в нашем случае равна:
Fр = 3000/(3600*5)= 0,167 (м
Внесем данные в таблицу:
Далее воспользуемся каталогом воздуховодов, чтобы заполнить ячейки «размеры» и «стандартная площадь».
По расчетной площади принимаем на наш участок, воздуховод размером 300х500 мм площадью сечения 0,15 м2. Данные заносим в нашу таблицу:
Теперь нам осталось посчитать только фактическую скорость, которая и будет скоростью движения воздуха по участку 1-2. Расчет ведется по такой формуле:
Vф = G/(3600*Fст),
где G — расход воздуха на участке, м3/ч;
Fст — стандартная (принятая по каталогу) площадь сечения воздуховода, м2;
Для нашего участка:
Vф = 3000/(3600*0,15)= 5,56 (м/с).
Окончательный вариант таблицы:
Вот мы и определили скорость в воздуховоде, которая равна 5,56 м/с, а это значит, что фактическая скорость соответствует рекомендуемым значениям.
Как Вы могли бы заметить, расчет скорости воздуха в воздуховоде влечет за собой подбор размеров воздуховода. После установки воздуховодов проверяют фактическую скорость воздуха в них. Для этого используют специальные приборы — анемометры.
Заключение
Этот несложный расчет является частью аэродинамического расчета системы вентиляции и кондиционирования воздуха. Такие расчеты выполняются в специализированных программах или, например, в Excel.
Следует помнить о том, что слишком высокие значения скоростей в воздуховодах являются негативным фактором, так как из-за них образуется шум и свист в сетях воздуховодов, что приводит к несоответствиям нормам акустики. Материалы для снижения шума в воздуховодах представлены в этом разделе нашего сайта.
Читайте также:
airducts.ru
Скорость воздуха в воздуховоде (формула расчёта)
Для разработки будущей системы вентиляции немаловажно определиться с габаритами каналов, которые нужно проложить в тех или иных условиях. Во вновь строящемся здании это сделать проще, еще на стадии проектирования расположив все инженерные сети и технологическое оборудование в соответствии с нормативными документами. Другое дело, когда идет реконструкция или техническое перевооружение производства, тут требуется прокладка трасс воздуховодов с учетом существующих условий.
Таблица скорость воздуха в воздуховоде.
Порядок выполнения расчета
Имеется еще один вариант устройства приточно-вытяжной вентиляции с механическим побуждением. Заключается он в том, чтобы использовать существующие воздухопроводы для новых вентиляционных установок. Тут также не обойтись без просчета скорости потока в этих старых трубопроводах на основании обследований и измерений.
Общая формула расчета величины скорости воздушных масс (V, м/с) происходит из формулы вычисления расхода приточного воздуха (L, м.куб/ч) в зависимости от размера площади сечения канала (F, м.кв.):
L = 3600 x F x V
Примечание: умножение на цифру 3600 необходимо для приведения в соответствие единиц времени (часы и секунды).
Процесс замера скорости воздуха.
Соответственно, формулу скорости потока можно представить в следующем виде:
V = L / 3600 x F
Рассчитать площадь сечения существующего канала не составляет труда, а если ее нужно вычислить? Тогда и приходит на помощь способ подбора размеров воздуховода по рекомендуемым скоростям воздушных потоков. Изначально из трех параметров, участвующих в расчетах, на данном этапе четко должен быть известен один — это количество воздушной смеси (L, м.куб/ч), необходимое для вентиляции того или иного помещения. Оно определяется в соответствии с нормативной базой в зависимости от назначения строения и его внутренних комнат. Выполняется расчет по числу людей в каждом помещении или по величине выделяющихся вредных веществ, излишков тепла или влаги. После этого нужно принять предварительное значение скорости воздуха в воздуховодах, сделать это можно воспользовавшись таблицей рекомендуемых скоростей.
Тип воздухопровода | Основная магистраль | Разводящие каналы | Распределение по помещению | Раздающие приточные устройства | Вытяжные панели, зонты, решетки |
Рекомендуемая скорость | 6 — 8 м/с | 4 — 5 м/с | 1,5 — 2 м/с | 1 — 3 м/с | 1,5 — 3 м/с |
Вернуться к оглавлению
Подбор габаритов канала
Выбрав вид воздухопровода и приняв расчетную скорость, можно определить сечение будущего канала по формулам, приведенным выше. Если планируется его изготовить круглой формы, то диаметр посчитать просто:
Расчет воздуховодов для равномерной раздачи воздуха.
D = √ F / 4 π, где:
- D — диаметр круглого канала в метрах;
- F — площадь его поперечного сечения в м.кв.;
- π = 3.14
Далее необходимо обратиться к нормативным документам, которые определяют стандартные размеры воздуховодов круглой формы, и выбрать среди них ближайший к расчетному диаметр. Это делается для того, чтобы унифицировать производство элементов вентиляционных систем, номенклатура изделий которых и так достаточно велика. Понятно, что принятый по СНиП новый диаметр будет иметь и другое сечение, поэтому потребуется пересчитать его в обратной последовательности и выйти на значение действительной скорости потока воздушных масс в стандартном канале. При этом величина расхода L по-прежнему должна участвовать в вычислениях как константа. Таким методом просчитывается каждый отдельно взятый участок вентиляционной системы, а разбивка на участки производится по одному неизменному признаку — количеству воздуха (расходу).
Если предполагается выполнить прокладку каналов прямоугольной конфигурации, то нужно подобрать размеры сторон такими, чтобы их произведение дало площадь сечения, которая была вычислена ранее. Нормативное ограничение к таким каналам одно:
А / В ≤ 6,3
Здесь параметры А и В — размеры сторон в метрах. Простыми словами, нормами запрещается выполнять прямоугольные трубопроводы слишком узкими при большой высоте или чересчур низкими и широкими. На таких участках сопротивление потоку будет слишком большим и вызовет экономически необоснованные энергозатраты. Остальной просчет действительной скорости воздуха в воздуховоде производится так, как было описано выше.
Вернуться к оглавлению
Рекомендации по подбору в стесненных условиях
При разработке вентиляционных схем нужно руководствоваться одним правилом, которое просматривается и в таблице: скорость воздуха на каждом участке системы должна возрастать по мере приближения к вентиляционной установке. Если результаты вычислений дают показатели скоростей на каких-нибудь участках, не соответствующие данному правилу, то такая схема работать не будет или же в реальных условиях величины скорости потоков будут далеки от расчетных. Решить вопрос можно изменением размеров воздухопроводов на проблемных участках в сторону уменьшения или увеличения.
Формула определения воздухообмена по кратности.
При выполнении строительных работ по реконструкции или техническому перевооружению производственных зданий часто возникает ситуация, когда для устройства вентиляционных каналов просто не остается свободного места, поскольку насыщенность технологическим оборудованием и трубопроводами в помещении слишком велика. Тогда приходится прокладывать трассы в самых труднодоступных местах либо пересекать перекрытия и стены несколько раз. Все эти факторы могут значительно увеличить сопротивление таких участков. Получается замкнутый круг: чтобы пройти узкие места, нужно уменьшить размер и увеличить скорость, что резко повысит сопротивление участка. Уменьшить скорость воздуха нельзя, потому что тогда увеличатся габариты канала и он не пройдет где нужно. Выход из ситуации заключается в уменьшении габаритов и наращивании мощности вентилятора либо разветвлении воздухопровода на несколько параллельных рукавов.
Если возникает необходимость просчета существующей системы приточных или вытяжных каналов для использования их с другими параметрами производительности по воздуху, то вначале потребуется снять натурные замеры каждого участка воздуховода с разными габаритами. Затем, используя новые значения расходов воздуха, определить действительную скорость потока и сравнить полученные значения с таблицей. На практике допускается превышение рекомендованных скоростей на 3-5 м/с в магистральных, разводящих каналах и ответвлениях. В приточных и вытяжных устройствах увеличение скорости приводит к повышению уровня шума, поэтому недопустимо. Если эти условия соблюдаются, старые воздухопроводы пригодны к использованию после соответствующего их обслуживания.
Правильность всех выполненных расчетов вентиляционной системы покажут пусконаладочные работы, в процессе которых производятся замеры скорости воздуха в каналах через специальные лючки.
Также с помощью измерительных приборов — анемометров — измеряется скорость потока на входе или выходе вентиляционных решеток. Если показатели не соответствуют расчетным, выполняется регулировка всей системы с помощью устанавливаемых дополнительно дроссельных заслонок или диафрагм.
1poclimaty.ru
Детальный расчет скорости воздуха в воздуховодах по формуле
Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в воздуховоде должна обеспечивать выполнение существующих норм.
Что учитывается при определении скорости движения воздуха
Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?
Уровень шума в помещении
В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.
Таблица 1. Максимальные значения уровня шума.
Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещенииВо время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.
Таблица 2. Максимальные показатели допустимой вибрации.
При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.
Значения по скорости движения потока, влажности и температуре содержатся в таблице.
Таблица 3. Параметры микроклимата.
Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.
Таблица 4. Кратность воздухообмена в различных помещениях.
Бытовые | |
Бытовые помещения | Кратность воздухообмена |
Жилая комната (в квартире или в общежитии) | 3м3/ч на 1м2 жилых помещений |
Кухня квартиры или общежития | 6-8 |
Ванная комната | 7-9 |
Душевая | 7-9 |
Туалет | 8-10 |
Прачечная (бытовая) | 7 |
Гардеробная комната | 1,5 |
Кладовая | 1 |
Гараж | 4-8 |
Погреб | 4-6 |
Промышленные | |
Промышленные помещения и помещения большого объема | Кратность воздухообмена |
Театр, кинозал, конференц-зал | 20-40 м3 на человека |
Офисное помещение | 5-7 |
Банк | 2-4 |
Ресторан | 8-10 |
Бар, Кафе, пивной зал, бильярдная | 9-11 |
Кухонное помещение в кафе, ресторане | 10-15 |
Универсальный магазин | 1,5-3 |
Аптека (торговый зал) | 3 |
Гараж и авторемонтная мастерская | 6-8 |
Туалет (общественный) | 10-12 (или 100 м3 на один унитаз) |
Танцевальный зал, дискотека | 8-10 |
Комната для курения | 10 |
Серверная | 5-10 |
Спортивный зал | не менее 80 м3 на 1 занимающегося и не менее 20 м3 на 1 зрителя |
Парикмахерская (до 5 рабочих мест) | 2 |
Парикмахерская (более 5 рабочих мест) | 3 |
Склад | 1-2 |
Прачечная | 10-13 |
Бассейн | 10-20 |
Промышленный красильный цел | 25-40 |
Механическая мастерская | 3-5 |
Школьный класс | 3-8 |
Алгоритм расчетовСкорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.
Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.
Самостоятельный расчет
К примеру, в помещении объемом 20 м3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м3×3= 60 м3. Формула расчета скорости потока V= L / 3600× S, где:
V – скорость потока воздуха в м/с;
L – расход воздуха в м3/ч;
S – площадь сечения воздуховодов в м2.
Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:
В нашем примере S = (3.14×0,42 м)/4=0,1256 м2. Соответственно, для обеспечения нужной кратности обмена воздуха (60 м3/ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м3) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.
С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.
L = 3600×S (м3)×V(м/с). Объем (расход) получается в квадратных метрах.
Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.
Таблица 6. Рекомендованные параметры скоростей воздуха
Рекомендуемые значения скорости | |||
Квартиры | Офисы | Производственные помещения | |
Приточные решетки | 2,0-2,5 | 2,0-2,5 | 2,5-6,0 |
Магистральные воздуховоды | 3,5-5,0 | 3,5-6,0 | 6,0-11,0 |
Ответвления | 3,0-5,0 | 3,0-6,5 | 4,0-9,0 |
Воздушные фильтры | 1,2-1,5 | 1,5-1,8 | 1,5-1,8 |
Теплообменники | 2,2-2,5 | 2,5-3,0 | 2,5-3,0 |
По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.
Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.
Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:
После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.
Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток. Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.
Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.
Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.
Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.
Таблица 7. Рекомендованные скорости воздуха в различных каналах
Тип и место установки воздуховода и решетки | Вентиляция | |
Естественная | Механическая | |
Воздухоприемные жалюзи | 0,5-1,0 | 2,0-4,0 |
Каналы приточных шахт | 1,0-2,0 | 2,0-6,0 |
Горизонтальные сборные каналы | 0,5-1,0 | 2,0-5,0 |
Вертикальные каналы | 0,5-1,0 | 2,0-5,0 |
Приточные решетки у пола | 0,2-0,5 | 0,2-0,5 |
Приточные решетки у потолка | 0,5-1,0 | 1,0-3,0 |
Вытяжные решетки | 0,5-1,0 | 1,5-3,0 |
Вытяжные шахты | 1,0-1,5 | 3,0-6,0 |
Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.
Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса. Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.
В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2.1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.
Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:
- Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов, так и из технического задания заказчиков.
- Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.
Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.
plast-product.ru
Расчет скорости воздуха в воздуховоде: инструкция, формулы, таблица
Для определения внешних размеров воздуховодов нужно знать величину их поперечного сечения, которая высчитывается в зависимости от расхода воздуха в канале и скорости его движения. Расчет и подбор оптимальной скорости на каждом участке оказывает непосредственное влияние на правильную работу всей вентиляционной системы. Расчетные значения скорости после монтажа и пуска сети воздухопроводов проверяют с помощью измерений специальными приборами.
Воздуховод – это система труб из различных материалов, которые установлены в помещениях для разделения и распределения воздуха по ним и вытяжки воздуха из них.
Исходная информация для просчета
Всю вентиляционную систему раскладывают на отдельные участки и на каждом из них определяют оптимальную скорость воздушной смеси. Признак, по которому отличают один участок от другого, это количество воздуха (расход). Если данная величина неизменна, то раскладывать вентиляционную сеть трубопроводов на участки не требуется. Суть расчета сводится к следующему:
Расчет воздуховодов для равномерной раздачи воздуха.
- Определить расчетное значение скорости потока.
- Вычислить размеры воздуховодов круглой или прямоугольной формы, сравнить их с нормируемыми размерами по СНиП.
- Если габариты отличаются от нормируемых, взять ближайшее в ряду нормативное значение и произвести вычисления в обратном порядке для определения реальной скорости движения воздушных потоков.
Нормативный ряд диаметров в миллиметрах круглых каналов представлен в таблице:
50 | 58 | 63 | 71 | 80 | 90 | 100 | 110 | 125 | 140 | 160 | 180 |
200 | 224 | 250 | 280 | 315 | 355 | 400 | 450 | 500 | 560 | 630 | 710 |
800 | 900 | 1000 | 1120 | 1250 | 1400 | 1600 | 1800 | 2000 | 2240 | 2500 | 2800 |
Нормативные требования к воздухопроводам прямоугольной формы несколько проще: соотношение высоты и ширины сторон канала не должно быть больше чем 6:3. На практике это означает, что нельзя изготавливать слишком узкие трубопроводы при большой ширине, такие как 700х100 мм. Такой канал будет иметь очень высокое сопротивление, а при его работе допустимый уровень шума будет превышен, поскольку слишком широкая часть начнет вибрировать от воздействия на нее воздушного потока изнутри. В этом случае соотношение будет равно 7, что не соответствует нормам, а канал 600х100 мм с соотношением сторон 6 нормативами допускается. Но даже в этом случае широкую сторону необходимо ужесточить, особенно при высокой скорости воздушных масс. Для этого на ней выполняют зиги либо диагональные перегибы с определенным шагом.
Вернуться к оглавлению
Инструкция по выполнению вычислений
Формула определения воздухообмена по кратности.
Формула, применяемая для расчета скорости воздушного потока в трубопроводе, связывает между собой расход воздуха на данном участке (L, куб.м/ч), размер поперечного сечения канала (F, кв.м) и значение самой скорости (V, м/с):
L=3600xFxV.
Значение количества воздушной смеси выражается в куб.м за 1 час, а скорость — в метрах за секунду, поэтому в формуле присутствует цифра 3600 для увязки временных величин, как известно, 1 час — это 3600 секунд. Для расчета скорости потока формула выглядит так:
V=L/3600xF.
Размеры сечения трубопровода для воздуха вычисляют в зависимости от его конфигурации. Если форма канала круглая, то сечение определяется следующим образом:
F=(πxD2)/4 или F=πxr2.
В приведенных формулах:
- D — диаметр воздуховода круглой формы в метрах;
- r — радиус круглого канала в метрах;
- π = 3,14.
Второй параметр, принимающий участие в основной формуле, это количество воздуха для притока или вытяжки на данном участке. Данная величина принимается из соображений потребности количества притока или вытяжки в помещении. Может определяться согласно нормативам, действующим для этих видов помещений, либо расчетам при выделении в пространстве комнаты различных вредных, горючих или взрывоопасных веществ. После выполнения таких вычислений величина расхода воздушной смеси становится величиной постоянной. При разработке схемы вентиляционной системы изменить можно только остальные 2 параметра, скорость и размеры сечения, общий расход должен оставаться неизменным.
Вернуться к оглавлению
Определение параметров существующих систем
Формула для определения поперечного сечения воздуховодов.
Зачастую есть необходимость просчитать пропускную способность существующих вентиляционных каналов, что предусматривает определение скорости воздуха. Это происходит при реконструкции промышленных зданий по причинам внедрения новых технологий или техническом перевооружении производства. Тогда потребность в притоке либо вытяжке может измениться в ту или иную сторону, потребуется принять решение, подойдут для этой цели старые воздухопроводы или надо будет монтировать новые. Определив новую потребность в количестве воздуха для производства, нужно измерить габариты этих каналов или найти их в проектной документации на здание. Однако это часто бывает невозможным по разным причинам, поэтому придется делать замеры.
После этого по основной формуле, которая приведена выше, производят расчет реальных скоростей воздушных потоков в существующей вентиляционной системе. Полученные результаты можно сравнить со значениями рекомендуемых скоростей воздуха в воздуховоде, они лежат в пределах 2-8 м/с. Следует заметить, что эти показатели не являются обязательными к выполнению, в нормативной документации (СНиП 41-01-2003) это не зафиксировано. Если же они получились слишком высокие (свыше 15 м/с), надо рассмотреть 2 варианта решения проблемы:
Таблица расчета для сечения круглых воздуховодов.
- Оставить существующие воздухопроводы. Тогда потребуется выполнить мероприятия по их усилению и ужесточению. Для справки: в трубопроводах аспирационных систем скорость потоков достигает 20-40 м/с, поэтому нужно изучить процесс монтажа таких систем и усиление существующих каналов выполнить аналогично вплоть до замены некоторых участков или фасонных элементов.
- Заменить трубопроводы. Решение оптимальное для работы будущей вентиляционной сети, но влечет за собой повышенные финансовые затраты.
Бывают и обратные ситуации, когда в результате вычислений скорость воздуха в существующей сети чрезвычайно низкая (0,5-2 м/с). Это не является проблемой в том случае, если старые трубопроводы больших размеров не мешают установке и работе нового технологического оборудования. Тогда их оставляют как есть, меняется только вентиляционная установка либо модернизируется старая. Такое решение даст некоторую экономию, ведь сеть воздухопроводов уже имеется. К тому же при малых скоростях она будет иметь невысокое сопротивление, что даст возможность использовать менее мощный вентилятор.
Расчет скорости воздуха в трубопроводах можно проверить после монтажа системы. Это делают с помощью специальных измерительных приборов — анемометров. Датчик прибора вносится в воздушный поток через технологический лючок в трубе во время работы вентилятора. Показания прибора сравнивают с расчетной скоростью и при необходимости вносят корректировки в работу системы с помощью дроссель-клапанов. Эти устройства могут перекрывать пространство канала с помощью заслонки и таким образом создавать искусственное сопротивление потоку.
При вычислении скорости воздушного потока следует добиваться оптимального соотношения параметров скорость/размер сечения канала.
Это позволит разумно тратить средства как при монтаже и пусконаладке системы, так и при ее дальнейшей эксплуатации.
1poclimaty.ru
Пример подбора вентиляторов для вентиляции
Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.
Рекомендуемая скорость движения воздуха в воздуховодах:
Тип | Скорость воздуха, м/с |
Магистральные воздуховоды | 6,0-8,0 |
Боковые ответвления | 4,0-5,0 |
Распределительные воздуховоды | 1,5-2,0 |
Приточные решетки у потолка | 1,0-3,0 |
Вытяжные решетки | 1,5-3,0 |
Определение скорости движения воздуха в воздуховодах:
V= L / 3600*F (м/сек)
где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.
Рекомендация 1.
Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.
Рекомендация 2.
В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.
Пример расчета вентиляционной системы:
Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.
Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.
Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).
Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.
Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.
Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.
Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.
Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.
Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).
Определение потерь давления на изгибах воздуховодов
График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.
Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.
Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.
Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.
Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.
Определение потерь давления в воздуховодах.
Определение потерь давления в обратном клапане.
Подбор необходимого вентилятора.
Определение потерь давления в шумоглушителях.
Определение потерь давления на изгибах воздухуводов.
Определение потерь давления в диффузорах.
ventportal.com
Измерение расхода воздуха в воздуховоде: типы измерителей, организация замеров
Экологически чистая атмосфера является важнейшим фактором нормальной жизнедеятельности человека. Поэтому сегодня такое большое значение придается эффективным системам вентиляции и кондиционирования воздуха.
Современная система вентиляции и кондиционирования в помещениях позволяет организовать комфортную жизнедеятельность человека.
Успешная долговечная эксплуатация таких систем невозможна без их качественной настройки и постоянного техобслуживания. Определению эффективности оборудования служат также регулярные измерения различных параметров работы, в том числе и измерение расхода воздуха в воздуховоде. Для этой важной операции разработаны различные методики и приборы.
Для чего необходимо проводить измерение расхода воздушной массы?
Схема вентиляции и кондиционирования в жилом помещении.
Течение воздуха по системе проветривания осуществляется при определенной скорости, на которую влияют многие факторы. Данный параметр, зависящий от конструкции и сечения вентиляционных каналов, является ключевым критерием для выяснения величины расходования воздуха в воздуховоде. Средняя скорость исчисляется на основе замеров уровня динамического давления.
При этом следует учитывать, что измерение реальной скорости воздуха имеет решающее значение для чистых жилых комнат, которые снабжаются однонаправленным воздушным потоком. В то же время фиксация уровня расхода воздуха является первостепенной операцией для жилых зон с разнонаправленными потоками воздуха.
Целью замеров расхода воздушной массы, перемещающейся в воздуховоде в чистые жилые помещения, является фиксация объема этой массы, прибывающей внутрь комнаты в единицу времени.
Измерения в воздуховоде производятся через специальное технологическое отверстие, точно соответствующее диаметру зонда.
Расход замеряется либо после воздушных фильтров (решеток), либо непосредственно в воздуховоде. В обоих случаях производится измерение скорости движения воздушной массы и учитывается площадь сечения трубы.
Для качественных замеров выбирается достаточно ровный и прямой отрезок трубы. Длина данного участка не может быть меньше 4-5 размеров диаметра после точки местного сопротивления. Вместе с тем до следующего местного сопротивления должно быть 2 или более диаметра канала.
Для фиксации средней скорости воздуха в воздуховоде следует произвести несколько измерений. Их количество зависит от диаметра круглой трубы или от размера сторон прямоугольного канала.
Вернуться к оглавлению
Типы измерителей расхода и скорости воздушного потока
При наладке вентиляционных систем возникает вопрос, какой именно контрольно-измерительный прибор задействовать для замеров скорости воздуха и его расхода в воздуховоде. Следует отметить, что на данный момент рынок специальной аппаратуры для измерения характеристик вентиляции предлагает большое количество самой разнообразной техники, которая учитывает многие факторы естественного и искусственного проветривания помещений.
В частности, при выборе оптимального инструмента необходимо знать, где именно — на вентиляционной входной решетке или прямо в воздуховоде — будут проводиться измерения. Еще важно знать, какие скорости движения воздуха допускаются в трубе, каковы допустимые температура и уровень запыленности вентиляционного канала.
Наиболее популярными типами таких приборов являются следующие:
Конструкция крыльчатого анемометра.
Термоанемометр. Осуществляет измерение скорости воздушной массы. Замеры производятся от специального датчика, который в нагретом состоянии помещается в воздушную струю. Скорость воздуха определяется в зависимости от скорости остывания датчика.
- Ультразвуковой трехмерный анемометр. Данный прибор помещается в воздушный поток, где определяет скорость воздуха благодаря фиксации разницы частоты звука между выбранными контрольными точками
- Крыльчатый анемометр. Скорость течения воздуха определяется при измерении скорости вращающейся крыльчатки прибора.
- Трубка Пито. В данном приборе применяется цифровой электрический манометр. С его помощью в заданной точке потока фиксируется разница между полным и статическим давлением.
- Балометр. Быстро определяет суммарный расход воздушной массы, концентрируя поток в точке замеров с заранее установленным сечением.
Вернуться к оглавлению
Измерение расхода на входной вентиляционной решетке воздуховода
Схема рабочих датчиков телескопического зонда.
Наилучшим образом можно осуществить точные замеры объемного расхода воздуха, используя в указанном месте любой подходящий анемометр или термоанемометр. При этом специалисты рекомендуют обратить особое внимание на анемометр, снабженный достаточно большой крыльчаткой. При своем диаметре от 60 до 100 мм она вполне сопоставима с габаритами решетки. Благодаря такому прибору можно достичь оптимального результата при минимальном количестве замеров.
Вместе с тем упростить процесс измерения и одновременно минимизировать возможные погрешности можно и с помощью дополнительных приспособлений, таких как, например, воронка. Эта несложная по конструкции принадлежность дает возможность проводить более точные измерения всего за один замер, что, как нетрудно догадаться, значительно экономит время работника. Получить доступ для замеров в труднодоступных местах позволит также применение специального телескопического зонда (удлинителя зонда).
При выборе для работы того или иного оборудования рекомендуется отдавать предпочтение тем приборам, которые имеют опции автоматического исчисления объемного расхода воздуха и определения усредненных показателей по времени и числу замеров. Если у прибора отсутствуют указанные функции, оба этих параметра придется определять своими силами.
Вернуться к оглавлению
Организация замеров расхода воздуха в воздуховоде
Процесс замера скорости воздуха с помощью зонда.
Прежде чем начать измерение непосредственно в воздуховоде, необходимо убедиться в том, что в стенке трубы имеется рабочее отверстие, предназначенное для контрольно-измерительных операций. Его диаметр должен точно соответствовать диаметру зонда.
Важно точно выбрать и место для замеров. В частности, указанное отверстие следует просверлить на прямом отрезке воздуховода, длина которого должна составлять не менее 5 диаметров трубы. При этом само отверстие надо располагать таким образом, чтобы расстояние до него равнялось 3 диаметрам, а после него — 2 диаметрам воздуховода.
В отличие от замеров на вентиляционной решетке, при измерении расхода воздуха внутри воздуховода рекомендуется применять крыльчатые анемометры с крыльчаткой небольшого диаметра (16-25 мм). Для данной операции используются также термоанемометры и дифференциальные манометры, снабженные пневмометрической трубкой.
Здесь следует отметить, что дифференциальные манометры не подходят для проведения замеров в воздуховодах, по которым проходит воздушная масса с заведомо невысокой скоростью (менее 2 м/сек). В этом случае необходимо воспользоваться термоанемометром или крыльчатым анемометром.
В случае достаточно высокого расположения воздуховода в помещении (например, под потолком комнаты) рекомендуется воспользоваться зондом с телескопической ручкой либо удлинителем зонда. Если при измерениях используется пневмометрическая трубка, то выбирать ее длину следует заранее, учитывая высоту точки измерения.
Вернуться к оглавлению
Несколько полезных советов по правильному использованию приборов
Если воздушный поток в воздуховоде характеризуется повышенным уровнем запыленности, термоанемометр и трубку Пито в таком случае лучше не применять. Так как отверстие в трубке, которое принимает суммарное давление потока, имеет маленький диаметр, при воздействии загрязненного воздуха оно может быстро засориться.
Термоанемометры не подходят для работы в условиях высоких скоростей воздушного потока (более 20 м/сек). Дело в том, что основной термодатчик, который характеризуется повышенной чувствительностью, под сильным давлением воздуха может просто разрушиться.
Использование контрольно-измерительных приборов для определения расхода воздуха должно осуществляться строго в номинальных температурных диапазонах, указанных в паспортах приборов.
В газоходах (воздуховодах, в которых протекает в основном нагретый воздух) рекомендуется использовать пневмометрические трубки, корпус которых изготовлен из нержавейки. Использование в указанных трубах оборудования с компонентами из пластика нежелательно по причине возможной деформации корпуса под воздействием высоких температур.
Проводя замеры скорости и расхода воздуха, надо следить, чтобы чувствительный датчик зонда был всегда сориентирован точно навстречу воздушному потоку. Несоблюдение данного требования ведет к искажению результатов измерений. Причем искажения и неточности будут тем значительнее, чем больше будет степень отклонения датчика от идеального положения.
Таким образом, правильный выбор контрольно-измерительных приборов для определения расхода воздушных масс в воздуховоде и их надлежащее применение во время работы позволит специалистам составить объективную картину вентиляции помещений. Особую важность этот аспект приобретает, когда речь идет о жилых помещениях.
1poclimaty.ru
Часть I. Исследование давлений и скоростей движения воздуха в воздуховодах вентиляционных систем
Цель работы:
1. Изучить устройство и принцип действия приборов контроля
2. Изучить методику измерения полного Рн статического Рст , скоростного Рск давлении и скоростей движения воздуха в воздуховодах.
3. Провести инструментальные камеры полного Рп , статического Рст и скоростного Рск давлений.
4. Определить средние скорости движения воздуха в сечениях воздуховодов до и после пылеуловителя (циклона) vср, м/с.
5. Рассчитать расход (объем) подаваемого Lвх и удаляемого Lвых м3/ч, воздуха из вентиляционной сети (рис. 1).
Описание лабораторной установки
Лабораторная установка (рис. 1) состоит из вентилятора 1, камеры-дозатора 2, воздуховодов 3 и 5, циклона (пылеуловителя) 4, пневмомет-рической трубки 6, микроманометра (типа ММН-4). В воздуховоде в двух местах до и после пылеуловителя пробиты два отверстия, в которые вставляется пневмометрическая трубка при измерении давлений воздуха (полного Рп , статического Рст и скоростного – Рск).
Приборы контроля и методика измерения давлений и скоростей движения воздуха в воздуховодах.
В вентиляционной системе воздух движется по воздуховодам и преодолевает сопротивление движению вследствие полного давления, развиваемою вентилятором. Полное Рп давление вентилятора складывается из статическою Рст и скоростного Рск давлении. Скоростное Рск давление расходуется на создание необходимой скорости движения воздуха в воздуховоде, статическое Рст – на преодоление имеющихся сопротивлений движения (трения в различных местных сопротивлений).
Рис. 1. Схема лабораторной установки
При технических испытаниях вентиляторов и пылеулавливающих установок определяются полное Рп , статическое Рст и скоростное Рск давления. При исследовании скоростных режимов воздушных потоков в разных сечениях воздуховодов достаточно определить средние значения скоростных давлении Рскср . Приборы контроля – микроманометр типа ММН-4 (рис 2, а) и пневмометрическая трубка (рис 2,б) предназначены для измерения полного Рп, статического Рст и скоростного Рск давлений.
а) б)
рис. 2. Микроманометр типа ММН-4 и пневмометрическая трубка МИОТ.
а) – микроамперметр: 1 – станина; 2 – резервуар; 3 – штуцер; 4 – трехходовой кран; 5 – трубка; 6 стойка наклона трубки; 7- установочный винт;
б) – пневмометрическая трубка МИОТ: 1 – отверстие для измерения полного Рп давления; 2 – отверстия, воспринимающие статическое Рст давление.
Микроманометр ММН–4 имеет неподвижный резервуар 2, соединенный с поворотной измерительной трубкой 5 резиновым шлангом. На резервуаре установлен трехходовой кран 4, при помощи которого микроманометр может быть отключен от присоединенных к нему резиновых трубок установкой крана 4 в положение «0».
Пневмометрическая трубка МИОТ изготовлена из двух полых металлических трубок 1 и 2, спаянных по всей длине, головка трубки 1 имеет центральный канал, трубка 2 имеет щелевые прорези (или сквозные два отверстия), расположенные в плоскости, перпендикулярной движению воздуха в воздуховоде.
Методика измерения.
Измерение давлении полного Рп , статического Рст и скоростного Рск производится микроманометром типа ММН-4 и пневмометрической трубкой. При измерении давления пневмометрическая трубка вводится через небольшое отверстие в воздуховоде и замер производится с соблюдением следующих правил:
– длинная часть трубки располагается перпендикулярно оси воздуховода;
– трубка напорным концом (головкой) должна быть направлена навстречу скоростному потоку воздуха;
– ось напорной головки трубки должна быть направлена параллельно потоку воздуха.
Схема присоединения пневмометрической трубки к микроманометру ММН-4 при измерении полного Рп , статическою Рст скоростною Рск давлений приведена на рис. 3.
Рис. 3 Схема присоединения пневмометрической трубки к микроманометру типа ММН–4;
а – со стороны нагнетания;
б – со стороны разрежения.
Полное давление Рп со стороны разрежения измеряется присоединением конца 1 пневмометрической трубки к одному штуцеру со знаком «+», статическое давление (+Рст) измеряется присоединением конца 2 пневмометрической трубки к штуцеру со знаком «+». Со стороны нагнетания полное давление (-Рп) измеряется присоединением конца 1 пневмометрической трубки к одному штуцеру со знаком « – », статическое давление (-Рст) измеряется присоединением конца 2 пневмометрической трубки к одному штуцеру со знаком « – ». Скоростное Рск давление измеряется присоединением микроманометра к двум концам пневмометрической трубки и определяется как разность полного и статического давлений. Со стороны
нагнетания Рск=-Рп -(-Рст)=Рст–Рп. Со стороны разрежения Рск=Рп–Рст.
По величине скоростного Рскдавление по формуле
определяются скорости движения воздуха в сечениях воздуховода
,
где Рск– скоростное давление движущегося воздушного потока в воздуховоде, Па; ρв – плотность воздуха, кг/м3; g–ускорение свободного падения
(g=9,81 м/с2).
При измерении скоростей движения воздуха количество замерных точек в сечениях воздуховодов определяется в зависимости от диаметра (площади сечения) воздуховода. При диаметре воздуховода до 300 мм их должно быть не менее трех – пяти. Замеры Рп, Рст и Рск давлений должны проводиться по оси воздуховода в двух взаимно перпендикулярных плоскостях. Точки измерений должны быть намечены на расстоянии 5 – 10 мм друг от друга. В каждой точке должно быть выполнено по три измерения скоростных Рск давлений. Затем расчетным путем определяется среднее значение скоростного давления
в каждом сечении воздуховода и среднее значение скорости движения воздуха (Uср, м/с).
Скорости движения воздуха в воздуховодах должны быть определены с достаточной достоверностью по величине их средних значений vср, что позволит при выполнении следующих исследований (часть II) по определению концентрации пыли в воздухе вентиляционных систем, правильно подобрать диаметр наконечника пылеотборной трубки и обеспечить принцип изокинетичности, т. е. равенство скорости движения воздушного потока в воздуховоде (U, м/с) и скорости движения воздуха в воздуходувке (Uв, л/мин). Соблюдение принципа изокинетичности позволит достоверно определить концентрации пыли в воздухе вентиляционных систем в том числе и на выходе в атмосферу.
Техника безопасности при выполнении лабораторной работы
1. Приступить к выполнению экспериментальной части работы только после ознакомления с настоящими правилами техники безопасности и мет одическими указаниями по лабораторному практикуму.
2. Включить вентилятор в сеть напряжением 220 В. Перед включением необходимо провести внешний осмотр установки, проверить исправность соединительных проводов и розетки.
3. Ознакомиться с устройством и принципом действия контрольно-измерительных приборов микроманометра типа ММН-4 и пневмомет-рической трубки МИОТ.
4. Подготовить приборы к началу измерении статического Рст , полного Рп и скоростного Рск давлений.
5. После окончания работы выключить из сети 220 В вентилятор, отключить микроманометр ММН–4, убрать рабочее место и доложить преподавателю о выполнении лабораторной работы.
Порядок выполнения работы
При выполнении лабораторной работы студент должен:
1. Изучить правила техники безопасности.
2. Ознакомиться с устройством лабораторной установки.
3. Изучить устройство и принцип действия приборов контроля.
4. Изучить методику измерения и измерить давления воздуха (полное, статическое, скоростное) в воздуховодах вентиляционной сети лабораторной установки. Условия измерении: 1) вентилятор удаляет чистый воздух; 2) вентилятор удаляет запыленный воздух.
5. Рассчитать средние значения скоростей движения воздуха (vср , м/с) в двух сечениях воздуховода (на схеме рис. 1 это отверстия до и после циклона).
6. Данные измерений Рп, Рст, Рск и расчетные средние значения скоростей движения воздуха (Uср , м/с) занести в табл. 1. Сделать выводы.
Отчет о работе должен содержать:
Схему лабораторной установки (см. рис. 1).
2. Табл. 1, в которой приводятся измеренные давления Рп, Рст, Рск и расчетные скорости движения воздуха (v, м/с) в трех-пяти замерных точках сечений воздуховодов 3 и 5 (в отверстиях до и после циклона).
3. Расчетные данные средних скоростей движения воздушных потоков до и после пылеуловителя (циклона) и расходы воздуха на входе Lвх и на выходе Lвых из циклона.
Таблица 1
Измерение давлений и скоростей движения воздуха (v, м/с) в воздуховодах микроманометром ММН-4
Отверстия воздуховода | Номер точки замера в сечении воздуховода | Измеренные давления Р, кгс/м (Па) | Скорость воздуха в воздуховоде в точке замера U, м/с | Площадь сечения воздуховода в месте замера F, м2 | Расход (объем) воздуха, подаваемого и удаляемого вентилятором Lвх,вых, м3/ч | ||
Статическое, Рст | Полное, Рп | Скоростное, Рск | |||||
До циклона | 1 | 0,01 | Lвх= | ||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | |||||||
После циклона | 1 | Lвых= | |||||
2 | |||||||
3 | |||||||
4 | |||||||
5 |
До циклона: Рск ср= После циклона Рск ср=
Uср= Uср=
Контрольные вопросы
1. Какие вредные вещества выбрасываются в атмосферу?
2. Какие заболевания может вызвать пыль , находящаяся в атмосферном воздухе?
3. От каких свойств пыли зависит ее неблагоприятное действие на организм человека?
4. Что такое предельно допустимая концентрация пыли в атмосфере и какими нормами она регламентируется? Что такое максимально разовая и среднесуточная ПДК?
5. Виды пылеуловителей, принцип их действия, эффективность очистки.
6. Какие приборы предназначены для определения полного, статического и скоростного давлений?
7. Как определяется скорость воздушного потока в сечениях воздуховода?
studfiles.net